Any views expressed within media held on this service are those of the contributors, should not be taken as approved or endorsed by the University, and do not necessarily reflect the views of the University in respect of any particular issue.

Future student online experiences

Future student online experiences

Sharing the work of the Prospective Student Web Content Team

Getting insights from qualitative enquiry data

How can we get insights from unstructured enquiry data? In this post I talk about one approach to this question using the Student Immigration Service as a case study.


In January 2022 we started a user experience and content enhancement project for users of the Student Immigration Service (SIS). The SIS team helps international students with immigration matters.

Our goals are to:

  • improve the digital experience of users
  • reduce unnecessary enquiries by encouraging self-service

The SIS team have two enquiry channels: webforms and direct emails. In 2021 the SIS team received close to thirty thousand enquiries – 92% of these were direct emails, the rest were webform submissions.

I hope you will agree with me that reading over twenty-seven thousand emails is not a great way to gain insight, or at least not an effective one. So, how can we get actionable insights from large amounts of unstructured data?

Webform enquiries

Webform submissions data is semi-structured and easy to handle. Any information needed for analysis can be added as a restricted format field on the webform (e.g., multiple choice, radio button, check box, etc.). Using restricted fields we can know, for example:

  • the main topic of an enquiry
  • user or audience types
  • level of study, etc.

It is important to address these needs at the design stage but, once we have data categorisation, calculating metrics and indicators is a simple task.

Email enquiries

Direct email enquiries are a different story. The first hurdle is that, unless you manually tag or set up keyword tags for your emails, there is no automated categorisation. Additionally, there is no guarantee that the enquirer will have included all the information needed for resolution and/or analysis of the enquiry.

This was the case for the SIS inbox, so I had to come up with a way in which we could quantify the data and, where possible, divide it into categories.

To do this, I had to:

  • export the data into a suitable format
  • clean and transform the data
  • analyse the resulting data to inform our project goals

Data acquisition

The first step was to extract and export the data into a suitable format. This involved exporting data from Outlook into Excel via a Macro (it was nice to brush up on my VB skills). In this instance I only extracted emails for analysis, and excluded to-do and calendar items.

Data cleaning

Cleaning your data is essential not only to improve the efficiency of your analysis but also to ensure you are complying with data protection regulations in case it ever gets published. For this dataset I removed:

  • undeliverable emails and automatic replies
  • all instances of university usernames (UUNs) from the subject line
  • all URLs from the subject line

Data transformation

Data transformation is the process of changing data from one format or structure to another. Some examples of this can be aggregation of datasets, data manipulation, attribute creation, etc. For this project, I used these methods to determine:

  • the sender type based on the email protocol (i.e., student, staff, external)
  • the number of emails per enquiry
  • the duration of enquiries

Additionally, I used natural language processing (NLP) to find the most common enquiry topics.

Natural language processing

Natural language processing (NLP) is the application of computational techniques to the analysis and synthesis of human language and speech.

Using an NLP tool, I extracted the most common two and three-word phrases (n-grams) from email subject lines. We used these as a starting point to:

  • define enquiry categories
  • help decide the areas of focus for the enhancement project

One way to visualise these results is as word clouds like the one shown below (Figure 1).

Learn more about NLP


Figure 1. Word cloud showing trigrams extracted from SIS enquiry email subject lines


After data transformation and manipulation, we were able to gain insights into:

  • monthly, daily, and hourly enquiry volume trends
  • the main topics of enquiries based on subject lines. These can be used to inform areas where content enhancements can have the most impact.
  • the type of users making enquiries
  • the average resolution time, which helps us identify enquiries which might be self-served with content enhancements


This was my first foray into NLP. It was a great learning opportunity and gave us great insight into the enquiry trends for this project. But, it can be used more effectively to analyse free text where categorisation already exists. As an example, we can do the same sort of analysis on webform submissions from undergraduate students or EU nationals to better understand those audiences.

This work emphasised how having (semi)structured enquiry data, where possible, translates into a better use of resources where data analysis can be used to drive continuous improvement. And, it means that specialist input is not necessary to gain those insights on a day-to-day basis.


To learn more about the project with the SIS team:

Working with the Student Immigration Service to improve the student experience around applying for visas


To read more about how I decide on which tools to use for data analysis:

So, you have data – now what?


If you have any questions, please get in touch

Carla’s contact details

Leave a reply

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>


Report this page

To report inappropriate content on this page, please use the form below. Upon receiving your report, we will be in touch as per the Take Down Policy of the service.

Please note that personal data collected through this form is used and stored for the purposes of processing this report and communication with you.

If you are unable to report a concern about content via this form please contact the Service Owner.

Please enter an email address you wish to be contacted on. Please describe the unacceptable content in sufficient detail to allow us to locate it, and why you consider it to be unacceptable.
By submitting this report, you accept that it is accurate and that fraudulent or nuisance complaints may result in action by the University.