MY BOOKS (In chronological order)

    \[ \begin{enumerate} \item 1.\;\emph{The Physics of Fluid Turbulence} by W.D. McComb (Oxford University Press: 1990) \item 2.\;\emph{The Physics of Fluid Turbulence} In Romanian: translator Professor S.M. Savalescu (Editura Teknica: 1998) \item 3.\;\emph{Dynamics and Relativity} by W.D. McComb (Oxford University Press: 1999) \item 4.\;\emph{Renormalization Methods: a guide for beginners} by W.D. McComb (Oxford University Press: 2004) \item 5.\;\emph{Homogeneous, Isotropic Turbulence: Phenomenology, Renormalization and Statistical Closures} by W. David McComb (Oxford University Press: 2014) \item 6.\;\emph{Study Notes for Statistical Physics: A concise, unified overview of the subject} by W. David McComb (Bookboon: 2015) \item 7.\;\emph{What's so special about Special Relativity} by David McComb (Kindle edition and paperback: 2016) \end{enumerate} \]

Further details of my books may be found at the link:


SOME OF MY RECENT PAPERS (In reverse chronological order)

    \[ \begin{enumerate} \item 1.\; S.R. Yoffe and W.D. McComb. Onset criteria for freely decaying turbulence. \emph{Phys. Rev. Fluids,} 3:104605, 2018. \item 2.\; W.D. McComb and R.B. Fairhurst. The dimensionless dissipation rate and the Kolmogorov (1941) hypothesis of local stationarity in freely decaying isotropic turbulence. \emph{J. Math. Phys.,} 59:073103, 2018. \item 3.\; W.D. McComb and S.R. Yoffe. A formal derivation of the local energy transfer (LET) theory of homogeneous turbulence. \emph{J. Phys. A: Math. Theor.,} 50:375501, 2017. \item 4.\; W.D. McComb. Infrared properties of the energy spectrum in freely decaying isotropic turbulence. \emph{Phys. Rev. E,} 93:013103, 2016. \item 5.\; W.D. McComb, M.F. Linkmann, A. Berera, S.R. Yoffe and B. Jankauskas. Self-organization and transition to turbulence in isotropic fluid motion driven by negative damping at low wavenumbers. \emph{J. Phys. A Math. Theor.,} 48:25FT01, 2015. \item 6.\; W.D. McComb, A. Berera, S.R. Yoffe, and M.F. Linkmann. Energy transfer and dissipation in forced isotropic turbulence. \emph{Phys. Rev. E,} 91:043013, 2015. \item 7.\; W.D. McComb, S.R. Yoffe, M.F. Linkmann, and A. Berera. Spectral analysis of structure functions and their scaling exponents in forced isotropic turbulence. \emph{Phys. Rev. E,} 90:053010, 2014. \item 8.\; A. Berera, M. Salewski, and W.D. McComb. Eulerian Field-Theoretic Closure Formalisms for Fluid Turbulence. \emph{Phys. Rev. E,} 87:013007-1-25, 2013. \item 9.\; W. David McComb, Arjun Berera, Matthew Salewski, and Samuel R. Yoffe. Taylor's (1935) dissipation surrogate reinterpreted. \emph{Phys. Fluids,} 22:61704, 2010. \item 10.\; David McComb. A fluctuation-relaxation relation for homogeneous, isotropic turbulence. \emph{J. Phys. A: Math. Theor.,} 42:175501, 2009. \end{enumerate} \]