Journal papers

60. J.L. Powell and M.B. Sweatman, ‘Data vs. Derision: The Abuse of Language in Scientific Publication’, submitted.

59. N. Afify and M.B. Sweatman, ‘Monte Carlo simulation of ammonia adsorption in nanoporous carbon: optimal pore sizes for adsorption refrigeration applications’, submitted.

58. J. Tan and M.B. Sweatman, ‘Secondary nucleation in symmetric binary SALR mixtures’, submitted.

57. N, Afify and M.B. Sweatman, ‘Monte Carlo simulation of ammonia adsorption in high-silica zeolites for refrigeration applications’, accepted, in press.

56. N. Afify and M.B. Sweatman, ‘Computational chemistry simulations unravel solvent-induced reduction in energy penalty of amine-based carbon capture’, J. Chem. Phys. 160, 014501 (2024).

55. M.B. Sweatman and D. Gerogiorgis, ‘Origin of the ancient Greek constellations via analysis of Pillar 43 at Göbekli Tepe’, submitted.

54. N. Afify, C. Ferreiro-Rangel and M.B. Sweatman, ‘Molecular dynamics investigation of giant clustering in small-molecule solutions: the case of aqueous PEHA’, J. Phys. Chem. B 126, 8882 (2022).

53. M.B. Sweatman, ‘Representations of calendars and time at Göbekli Tepe and Karahan Tepe support an astronomical interpretation of their symbolism’, submitted.

52. M.B. Sweatman, N. Afify, C. Ferriero-Rangel, M. Jorge and J. Sefcik, ‘Molecular dynamics investigation of clustering in aqueous glycine solutions’, J. Phys. Chem. B. 126, 4711 (2022).

51. M.B. Sweatman, ‘Response to a comment by Jorgeson, Breslawski and Fisher on “The Younger Dryas impact hypothesis: Review of the impact evidence” by Sweatman’, Earth Science Reviews 225, 103897 (2022).

50. M.B. Sweatman, ‘The Younger Dryas impact hypothesis: review of the impact evidence’, Earth Science Reviews 218, 103677 (2021).

49. J.Z. Tan, N. Afify, C. Rangel, X.F. Fan, and M.B. Sweatman, ‘Cluster formation in symmetric binary SALR mixtures’, J. Chem. Phys. 154, 074504 (2021).

48. M.B. Sweatman, ‘Zodiacal dating prehistoric artworks’, Athens J. History 6, 199 (2020).

47. M.B. Sweatman and S. Coombs, ‘Decoding European Palaeolithic art: Extremely ancient knowledge of precession of the equinoxes’, Athens J. History 5, 1 (2019).

46. N.D. Afify and M.B. Sweatman, ‘Preferential heating of aqueous amine solutions using infrared radiation at selected vibrational frequencies: A molecular dynamics study’, J. Chem. Phys. 151, 024503 (2019).

45. J.D. Evans, S. Krause, S. Kaskel, M.B. Sweatman and L. Sarkisov, ‘Exploring the thermodynamic criteria for responsive adsorption processes’, Chemical Science 10, 5011 (2019).

44. M.B. Sweatman and L. Lue ‘The giant SALR cluster fluid: a review’, Advanced Theory and Simulations 1, 1900025 (2019).

43. M.B. Sweatman and R. Insall ‘Assembly of the Actin Catalyst WASP by Giant SALR Cluster Formation’, Advanced Theory and Simulations 2, 1800203 (2019).

42. L. Sarkisov, M.B. Sweatman and G. Jackson ‘Thermodynamics 2017 Conference – Edinburgh, Scotland, 5-8 September 2017’, Mol. Phys., Vol 116, 1909-1914 (2018).

41. C. Ferriero-Rangel and M.B. Sweatman ‘Cluster formation in binary fluids with competing short-range and long-range interactions’, Mol. Phys. (special issue in honour of Daan Frenkel’s 70th birthday), Vol. 116, 3231-3244 (2018).

40. N. Afify and M.B. Sweatman ‘Molecular dynamics simulation of microwave heating of liquid monoethanolamine (MEA): An evaluation of existing force fields’, J. Chem. Phys. 148, 204513 (2018).

39. N. Affify and M.B. Sweatman ‘Classical molecular dynamics simulation of microwave heating of liquids: the case of water’, Journal of Chemical Physics 148, 024508 (2018).

38. M.B. Sweatman ‘Giant SALR cluster reproduction, with implications for their chemical evolution’, Molecular Physics, Vol 116, 1945-1952 (2018).

37. M.B. Sweatman ‘Catastrophism through the ages, and a cosmic catastrophe at the origin of civilisation’, Archaeology & Anthropolgy Open Access, Vol 1, issue 2 (2017).

36. M.B. Sweatman and D. Tsikritsis, ‘Comment on ‘More than a vulture: A response to Sweatman and Tsikritsis”, Mediterranean Archaeology and Archaeometry 17, 57-70 (2017).

35. M.B. Sweatman and D. Tsikritsis ‘Decoding Göbekli Tepe with archaeoastronomy: What does the fox say?’, Mediterranean Archaeology and Archaeometry 17, 233 (2017).

34. S. McGurk, C. Martin, S. Brandani, M.B. Sweatman and X. Fan, ‘Microwave swing regeneration of aqueous monoethanolamine for post-combustion CO2 capture’, Applied Energy 192, 126 (2017).

33. J. Cardona-Amengual, M.B. Sweatman and L. Lue ‘Molecular dynamics investigation of the influence of the hydrogen bond network of water/ethanol mixtures on dielectric spectra’, Molecular Simulation 42, 370 (2016).

32. C.F. Martin, M.B. Sweatman, S. Brandani and X. Fan, ‘Wet impregnation of a commercial low cost silica using DETA for a fast post-combustion CO2 capture process’, Applied Energy 183, 1705 (2016).

31. M.B. Sweatman and L. Lue, ‘The cluster vapour to cluster solid transition’, J. Chem. Phys. 144, 171102 (2016).

30. J. Cardona, R. Fartaria, M.B. Sweatman and L. Lue, ‘Molecular dynamics simulations for the prediction of the dielectric spectra of alcohols, glycols, and monoethanolamine’, Mol. Sim. 42, 370-390 (2015).

29. M.B. Sweatman ‘Comparison of absolute free energy methods for fluids and solids’, Mol. Phys. 113, 1206-1216 (2015).

28. M.B. Sweatman, R. Fartaria and L. Lue, ‘Cluster formation in fluids with competing short-range and long-range interactions’, J. Chem. Phys. 140, 124508 (2014).

27. M.B. Sweatman ‘Preface to the special issue on ‘Monte Carlo Codes, Tools, and Algorithms”, Mol. Sim. 39, 1123-1124 (2013).

26. R.P.S. Fartaria, N. Javid, J. Sefcik, and M.B. Sweatman, ‘Simulation of scattering and phase behaviour around the isotropic-nematic transition of discotic particles’, J. Colloid & Interface. Sci. 377, 94-104 (2012).

25. M.B. Sweatman, ‘Improving the equilibrium performance of active carbons for separation processes by co-adsorption with low pressure solvent: application to carbon capture’, Adsorption 17, 723-737 (2011).

24. A. Atamas, M.V. Koudriachova, S.W. de Leeuw, and M.B. Sweatman, ‘Monte-Carlo calculations of the free energy of ice-like structures using the self-referential method’, Mol. Sim. 37, 284-292 (2011).

23. R. Fartaria, N. Javid, R.A. Pethrick, J.J. Liggat, J. Sefcik, and M.B. Sweatman, ‘Structure of laponite-styrene precursor dispersions for production of advanced polymer-clay nanocomposites’, Soft Matter 19, 9157-9166 (2011).

22. M.B. Sweatman, ‘Equilibrium behaviour of a novel gas separation process, with application to carbon capture’, Chem. Eng. Sci. 65, 3907-3913 (2010).

21. R.P.S. Fartaria and M.B. Sweatman, ‘Density Minimum in the isotropic-nematic transition of hard cut-spheres’, Chem. Phys. Lett. 478, 150-154 (2009).

20. M.B. Sweatman, A.A. Atamas and J.M. Leyssale, ‘The self-referential method for linear rigid bodies: application to hard and Lennard-Jones dumbbells’, J. Chem. Phys. 130, 024101 (2009).

19. M.B. Sweatman ‘New techniques for simulating crystals’, AICHE 2008: Philadelphia, Mol. Sim. 35, 897-909 (2009).

18. M.B. Sweatman, A.A. Atamas and J.M. Leyssale, ‘The self-referential method combined with thermodynamic integration’, J. Chem. Phys. 128, 064102 (2008).

17. M.B. Sweatman ‘Survey of classical density functionals for modelling hydrogen physisorption at 77 K’, Phys. Rev. E 77, 026712 (2008).

16. M.B. Sweatman, N. Quirke and P. Pullumbi, ‘Predicting ambient temperature adsorption of gases in active carbons’, COPS VII: Aix-en-Provence, Studies in Surf. Sci. and Catal. 160, 95-103 (2006).

15. M.B. Sweatman, N. Quirke, W. Zhu and F. Kapteijn, ‘Analysis of gas adsorption in Kureha active carbon based on the slit-pore model and Monte-Carlo simulations’, Mol. Sim. 32 (special issue), 513 (2006).

14. M.B. Sweatman ‘Self-referential Monte-Carlo method for calculating the free energy of crystalline solids’, Phys. Rev. E. 72, 016711 (2005).

13. M.B. Sweatman and N. Quirke, ‘Modelling gas mixture adsorption in active carbons’, AICHE 2004: Austin, Texas, Mol. Sim. 31, 667-681 (2005).

12. M.B. Sweatman and N. Quirke, ‘Gas adsorption in active carbons and the slit-pore model 1: Pure gas adsorption and the isosteric heat’, J. Phys. Chem. B 109, 10381-10388 (2005).

11. M.B. Sweatman and N. Quirke, ‘Gas adsorption in active carbons and the slit-pore model 2: Mixed gas adsorption using DFT and AST’, J. Phys. Chem. B 109, 10389-10394 (2005).

10. M.B. Sweatman and N. Quirke, ‘Simulating fluid – solid equilibrium with the Gibbs ensemble’, Mol. Sim. 30, 23-28 (2004).

9. M.B. Sweatman, ‘Weighted density approximation for bonding in molecules: ring and cage polymers’, J. Phys.: Condens. Matter 15, 3875-3890 (2003).

8. M.B. Sweatman and N. Quirke, ‘Predicting the adsorption of gas mixtures: Adsorbed solution theory versus density functional theory’, Langmuir 18, 10443-10454 (2002).

7. M.B. Sweatman, ‘Fundamental measure theory for pure systems with soft, spherically repulsive interactions’, J. Phys.: Condens. Matter 14 (special issue), 11921-11932 (2002).

6. M.B. Sweatman, ‘Weighted density functional theory for simple fluids: pre-wetting of a Lennard-Jones fluid’, Phys. Rev. E 65, 011102 (2002).

5. M.B. Sweatman and N. Quirke, ‘Characterization of porous materials by gas adsorption: Comparison of nitrogen at 77 K and carbon dioxide at 298 K for activated carbon’, Langmuir 17, 5011-5020 (2001).

4. M.B. Sweatman, ‘Weighted density functional theory for simple fluids: Supercritical adsorption of a Lennard-Jones fluid in an ideal slit pore’, Phys. Rev. E 63, 031102 (2001).

3. M.B. Sweatman and N. Quirke, ‘Characterization of porous materials at ambient temperatures and high pressure’, J. Phys. Chem. B 105, 1403-1411 (2001).

2. M.B. Sweatman and N. Quirke, ‘Modelling gas adsorption in slit-pores using Monte Carlo simulation’, Mol. Sim. 27, 295-321 (2001).

1. M.B. Sweatman, ‘Analysis of free energy functional density expansion theories’, Mol. Phys. 98, 573-581 (2000).

Books

1. M.B. Sweatman, ‘Prehistory Decoded’ (Troubador, 2019).

Book Chapters

1. M.B. Sweatman and N. Quirke, ‘Modelling gas adsorption in nanopores using Monte Carlo simulation’, in Adsorption and transport at the nanoscale, Ed. N. Quirke, CRC Press (2006).

2. M.B. Sweatman and N. Quirke, ‘Modelling gas adsorption in amorphous nanoporous materials’, in The handbook of theoretical and computational nanotechnology, Eds. W. Schommers and M. Reith, American Scientific Publishers (2006).