Any views expressed within media held on this service are those of the contributors, should not be taken as approved or endorsed by the University, and do not necessarily reflect the views of the University in respect of any particular issue.

Tech Talk: Automatic Differentiation via Effects and Handlers: An Implementation in Frank

Jesse Sigal, University of Edinburgh.

Automatic differentiation (AD) is an important family of algorithms which enables derivative based optimization. We show that AD can be simply implemented with effects and handlers by doing so in the Frank language. By considering how our implementation behaves in Frank’s operational semantics, we show how our code performs the dynamic creation of programs during evaluation.

Slides: jesse-sigal

css.php

Report this page

To report inappropriate content on this page, please use the form below. Upon receiving your report, we will be in touch as per the Take Down Policy of the service.

Please note that personal data collected through this form is used and stored for the purposes of processing this report and communication with you.

If you are unable to report a concern about content via this form please contact the Service Owner.

Please enter an email address you wish to be contacted on. Please describe the unacceptable content in sufficient detail to allow us to locate it, and why you consider it to be unacceptable.
By submitting this report, you accept that it is accurate and that fraudulent or nuisance complaints may result in action by the University.

  Cancel