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A B S T R A C T

In order to label the CO2 injected underground for geological storage and allow it to be differentiated from
natural sources, a panoply of additive chemical tracers have been proposed. Yet, the transport of these tracers
relative to CO2 in pore space is currently poorly constrained. This leads to uncertainty as to whether tracers will
act as an early warning of CO2 arrival, or be preferentially retained in the pore space making them ineffective.
Here, we present the factors affecting transport of noble gases and SF6 relative to CO2 in a porous rock. Using a
porous sandstone core, each of the tracers were loaded into a sample loop and injected as discrete gas pulses into
a CO2 carrier stream at five different experiment pressures (10–50 kPag upstream to ambient pressure down-
stream). Tracer arrival profiles were measured using a quadrupole mass spectrometer. Significantly, our results
show that peak arrival times of helium were slower than the other noble gases at each pressure gradient. The
differences in peak arrival times between helium and other noble gases increased as the pressure gradient along
the system decreased and the curve profiles for each noble gas differ significantly. The heavier noble gases (Kr
and Xe) along with SF6 show an earlier arrival time and a wider curve profile compared to He and Ne curves
through the CO2 carrier gas stream. This shows that Kr and Xe could be substituted for SF6, a potent greenhouse
gas, in tracer applications. For comparison, CO2 pulses were passed through a N2 carrier gas resulting in sig-
nificantly slower peak arrival times compared to those of noble gases and SF6. Hence, all investigated tracers
when co-injected with CO2 could potentially act as early warning tracers of CO2 arrival, though we find that Kr,
Xe and SF6 will provide the most robust advance warning. Analysis of our experimental results shows that they
cannot be explained by a simple one dimensional flow model through a porous medium. We outline a conceptual
model that incorporates different preferential flow paths depending on flow velocities of individual gas streams.
This model can explain the observed dataset and shows that the flow of noble gases and SF6 tracers is influenced
by pore-scale heterogeneity.

1. Introduction

Increases in the atmospheric concentration of greenhouse gases and
aerosols alter the energy balance of the climate system (IPCC, 2015).
CO2 is the second most abundant greenhouse gas in the Earth's atmo-
sphere after H2O and a major contributor to radiative forcing. The
primary source of the increased atmospheric concentration of CO2 since
the preindustrial period is from the combustion of fossil fuels, a sig-
nificant source of global energy for decades to come (Haszeldine,
2009). Thus it is imperative that the levels of CO2 emitted from fossil
fuel combustion are significantly reduced, an essential goal to limit the
increase in global average temperature to below 2 °C above pre-in-
dustrial levels (UNFCCC, 2015).

Carbon Capture and Storage (CCS) is the only currently available
technology that can directly reduce the emissions from power

generation and industrial point sources. Combined with biomass com-
bustion (BECCS) it also offers the potential of net removal of CO2 from
the atmosphere (Azar et al., 2010). Industrial scale carbon capture and
storage technologies rely on the secure long term storage of CO2 in the
subsurface (Miocic et al., 2016). The engineering, long-term safety and
social licence to operate a geological storage site is critically dependent
on how secure CO2 retention is assessed and communicated. Hence,
there is a need for robust monitoring regimes, which can detect any
unplanned migration of CO2 during storage. The unplanned migration
of CO2 does not necessarily imply that the storage site has failed, thus
there is a difference between migration and leakage. Leakage implies
that during migration, the CO2 enters environmentally sensitive regions
(e.g. groundwater aquifers, or escaping to the surface) where it may
result in damage to the environment, human health or release back into
the atmosphere. Migration means the movement of CO2 out of the
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intended subsurface storage site, but that CO2 is still retained in the
subsurface and does not leak to the surface. Monitoring a CO2 storage
site before, during and after injection is crucial part of the regulatory
framework for CCS. Continuous monitoring of a site and the sur-
rounding environment minimises the potential risk of leakage of CO2,
as well as improving the opportunity to mitigate any changes that may
occur over time, helping with the social licence to operate the storage
site (Haszeldine, 2009; Scott et al., 2013).

The term ‘chemical monitoring’ in application to CO2 storage refers
specifically to a substance (solid, liquid or gas) that can be measured to
characterise it before, during and after the monitoring process. A che-
mical tracer can be any substance used to understand the physical
movements of fluid through a system. It has been shown that chemical
tracers can be complementary to physical monitoring methods (Myers
et al., 2013). The majority of tracer applications within CCS are related
to either understanding the subsurface, quantifying the trapping capa-
city or determining containment and leakage rates for monitoring
(Myers et al., 2012). The main advantages of chemical tracers are that
they can be used to make measurements that are difficult to access
physically and can cover large scales. Monitoring injected CO2 can be
challenging, as it is a reactive compound, highly soluble and its prop-
erties are dependent on the pressure and temperature of the system.
Thus, the use of non-reactive conservative chemical tracers that have
limited interactions with the injection fluids and surrounding reservoir,
enable the tracking of fluid pathways. Such tracers include synthetic
chemicals such as SF6 and perfluorocarbon tracers (PFTs), isotopic la-
belled gases and noble gases. Such tracers have been used to track the
movement and fate of injected CO2 in a variety of CO2 injection ex-
periments, injecting Frio, Otway and Cranfield (McCallum et al., 2005;
Jenkins et al., 2012; Lu et al., 2012).

Noble gases (He, Ne, Ar, Kr and Xe) exist in trace amounts in geo-
logical environments and they can be used as tracers within natural CO2

reservoirs (Gilfillan et al., 2008; Gilfillan et al., 2009; Zhou et al., 2012;
Sathaye et al., 2014) and for CO2 used in EOR projects (Nimz and
Hudson, 2005; Györe et al., 2015; Györe et al., 2017). As such, small
amounts of noble gas blends can also be intentionally added to the CO2

being injected for storage or be measured in the captured CO2 stream
and used as tracers to monitor CO2 movement (Hovorka et al., 2013;
Flude et al., 2016; Flude et al., 2017). This distinct mixture of noble gas
isotopic compositions can be identified during monitoring as being
associated with the injected CO2. To investigate the potential role of
noble gases as tracers for CO2 storage the physical behaviours of noble
gases and CO2 within the porous media needs to be fully understood.

Furthermore, recent work on the flow of N2 and brine through a
permeable sandstone at subsurface reservoir conditions has shown that
Darcy flow conditions are not maintained and instead the flow under-
goes ‘dynamic connectivity’ (Reynolds et al., 2017) emphasising that
we do not yet fully understand the complexity of fluid flow through
‘real world’ heterogeneous porous media.

A common method to observe the behaviour of fluids under

laboratory conditions is to carry out one dimensional flow through
column experiments; these columns can be built from cores of natural
rock or artificially constructed using materials such as packed silica
beads (Edlmann et al., 2013; Liu et al., 2014). In this study a specially
constructed flow cell was designed and built to investigate how noble
gases could be used as tracers for CO2 migration in storage sites. From
this equipment, experimental breakthrough curves for noble gases
travelling through a sample of porous sandstone in relation to CO2 over
pressure gradients of 10, 20, 30, 40 and 50 kPa were generated
(10–50 kPag upstream to ambient pressure downstream) at laboratory
temperature. For comparative purposes the same experiments were
conducted for SF6, another popular fluid tracer. Here, we present the
results from these experiments, which were then modelled using a one
dimensional advective dispersion transport equation. The outcome of
these results is then explained in terms of a preferential pathway
system, where the relative contribution of the flow paths depend on
comparative flow velocity differences.

2. Experimental methods

2.1. Sample characterisation

A representative sample of porous media was required to char-
acterise the transport behaviours of noble gases, SF6 and CO2 under the
same experimental conditions. A sample of sandstone was then se-
lected. The sample was quarried at South Charlton, near Alnwick in
Northumberland and is commercially referred to as the Hazeldean
sandstone (Hutton Stone Co. Ltd., 2013). The sandstone is part of the
Fell Formation that is Chadian to Holkerian (Carboniferous) in age
(British Geological Survey, 2016). The sandstone is massive and it was
selected due to its high quartz content (~95%) and the low carbonate
content (trace amounts).

The Fell sandstone sample was subjected to analysis prior to the
commencement of experiments. When the trace minerals were dis-
counted, XRD results indicate that the Fell sandstone is mostly com-
prised of quartz (95%), with minor feldspar and clay minerals and is a
quartz arenite, as previously classified (Bell, 1978). A 3.8 cm × 7 cm
cylindrical plug was used to identify the porosity and permeability of
the sandstone. The porosity was determined using a helium gas ex-
pansion porosimeter. The permeability was determined using a ni-
trogen gas permeameter. Initial laboratory testing of the sandstone
provided a porosity of 20.3% and a permeability of 221.33 mD.

Understanding the pore network of the Fell sandstone is advanta-
geous when evaluating the mechanisms involved in the transport of
noble gases, SF6 and CO2 tracers. Hence, extensive mapping of the pore
network connectivity of the sample from images was conducted. The
pore network, distribution and interactions within the rock were in-
vestigated using image analysis (via ImageJ at https://imagej.nih.gov/
ij/index.html).

Data from four thin sections are presented using this image

Nomenclature

μ dynamic viscosity of the fluid
A pore area
D pore diffusion coefficient
Dx longitudinal apparent diffusion constant
gf density of the fluid
i hydraulic head/gradient
K hydraulic conductivity
k intrinsic permeability
L characteristic length
M0 mass injected
P pore perimeter

ne effective porosity
q specific discharge
Re Reynolds number
t time
v advective velocity
vf velocity of the fluid
x flow path length
α dispersivity
α* non-linear flow parameter (Forchheimer equation)
β turbulence factor (Forchheimer coefficient)
γ pore geometry
ρ fluid density
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processing programme: two optical microscope (OM) sections and two
backscatter sections (BS) were used. The two OM sections were scaled
at 1000 μm; the BS images used were 500 μm and 200 μm. The different
image sources were chosen to identify any changes in pore network
with scale.

For this research the relation between pore length and pore area is
simplified by defining the pore length as the square root of the pore
area. Consequently, the pore area value measured by the image analysis
programme can be converted to a pore length value. Based on existing
literature, pore shape analysis was completed on the images obtained
from the OM and BS images (Anselmetti et al., 1998):

=γ P
πA2 (1)

γ is a dimensional value that represents the pore geometry. A
spherical pore is seen as a circle in a 2D image and would have a γ value
equal to one. Pore spaces will become more complex and diverging as
the γ value increases. The input P is part of the results produced during
the particle analysis.

For this analysis twenty pores with the largest areas from each of the
images were measured. Fig. 1 shows the calculated pore size diameter
measured against γ. The dotted line represents the median value taken
for each pore space range and shows that the smaller pores have lower γ
values. These median values suggest that the smaller pores are simple
and well-rounded but become more complex with increasing size
(Anselmetti et al., 1998). These results suggest there are some simple
pores present as well as some highly branching pathways.

2.2. Equipment design and method

A flow cell was designed and constructed to determine the break-
through curves of tracers in the gaseous phase over a range of low
pressure gradients through the Fell sandstone. A schematic diagram of
the experiment apparatus is shown in Fig. 2. The apparatus was con-
structed from of a series of 1/16″ stainless steel pipe, which allows a
pulse of tracer gas to be loaded and released at a determined time
through a feeder gas. This gas travels through the core where it is
sampled downstream by a Hiden quadrupole mass spectrometer (QMS).
The entire system is subdivided into a sample tracer loop section, a
feeder gas section, a purging section and a flow cell/end plate design

that contains the porous media.
This experimental set up was used to complete a series of pulse

release experiments using noble gases and SF6 tracers using CO2 as a
carrier gas over a range of five low pressures gradients within the core
(10–50 kPag upstream to ambient pressure downstream). For com-
parative purposes, experiments were also carried out under the same
experimental conditions for CO2 using N2 as a carrier gas. Each of the
pulse release experiments were repeated five times for each of the
sampling pressures. From these repeat experiments a representative
breakthrough curve was produced for each of the gases.

The sandstone used in the flow cell was allowed to naturally air-dry
before its construction. Prior to each experiment commencement, the
system was flushed using the feeder gas. The system purge time was
based on the estimated pore volume of the core and the flow rate of
0.2 SL min−1, such that the core was replaced with a new volume of
purging gas every minute. This is carried out for 30 min prior to every
experiment to ensure that any gas that may be trapped in pore end
space was also purged. The QMS was used to confirm the removal of
any other gases except for the feeder gas. During the experiment, the
upstream pressure gradient is monitored and maintained using digital
pressure gauges (accuracy± 0.25% full scale).

2.3. Further analysis of the porosity and permeability of the system

Using experimental outputs, permeability values were measured
for the flow cell sample. Permeability was calculated using the in-
compressible flow equation assuming linear Darcy flow (Carman,
1956). Flow rates were measured using a Cole-Parmer acrylic flow-
meter kit. Table 1 shows the permeability range calculated from the
pressure end-members during the experiments.

Further permeability and porosity values were estimated using the
BS images and the generated 3D pore network image are compared to
the ImageJ output in Table 2. The PAM results provided much lower
permeability values than the plug and experimentally derived values.
These major differences found in the permeability values are most
likely the result of scale and relative sample sizes. The PAM images
were produced using BS images and compared to the scale of the ex-
periments (~1 m length), and could miss the larger pores that behave
as preferential flow paths. It is also possible that the permeability values
are lower due to the use of a single binaries image to construct the PAM.
Ideally, three orthogonal images would preserve the directionality of
the model (van der Land et al., 2013) and this could have affected the

Fig. 1. Plot of pore shape parameter (γ) with the macro pore space (> 10 μm) for in-
dividual pores of the Fell sandstone. The plot presents the image analysis of four images
taken at three magnifications (1000, 500 and 200 μm). The 20 largest area pores spaces
were chosen from each of the four images. The dotted line represents the median value
taken for each pore space range (2.59 for 10–100 μm and 3.51 for 100–1000 μm). The
median values suggest that the smaller pores are simple and well rounded; but become
more complex and branched with an increase in size (Anselmetti et al., 1998).

Table 1
Calculated permeability values for the Fell sandstone core under experimental conditions
using incompressible flow (Carman, 1956). The accuracy of this flowmeter was± 5% full
scale (± 0.05 SL min−1).

Pressure Permeability (k) Flow Rate (Q) Error (Q)

(kPa) (m2) (mD) (m3 s−1) (m3 s−1)

50 9.31 × 10−13 943.71 3.33 × 10−6 ± 8.33 × 10−7

10 1.16 × 10−12 1179.63 8.33 × 10−7

Table 2
Results of permeability and porosity values generated from PAM analysis (by the Institute
of Petroleum Engineering, Heriot-Watt University). For comparison, the ImageJ values for
the same field of view and the plug results (Plug) have been included.

Sample
(μm)

Permeability (k)
(mD)

Porosity (ne)
(%)

PAM Plug PAM Image Plug ImageJ

500 34.61 221.33 14.49 16.34 20.3 14.65
200 4.43 221.33 15.28 15.28 20.3 19.78

R. Kilgallon et al. Chemical Geology xxx (xxxx) xxx–xxx

3



permeability results. Additionally, the binarisation of the BS images can
be a source of error as highlighted with the ImageJ analysis, which may
reduce the connectivity of pores.

The porosity estimations obtained from the images using ImageJ are
a close comparison to those estimated by PAM images and the slight
differences can be attributed to the different techniques that set the
detection thresholds.

3. Results

3.1. Experimental results

Pulse release experiments were carried out over five low pressures
gradients within the core (10–50 kPag upstream to ambient pressure
downstream). At each pressure value, the experimental procedure was
repeated 5 times. From these repeat experiments a representative
breakthrough curve was produced. To compare the results across the
experiments, it was necessary to normalise all the values. Prior to pulse
release, baseline values were recorded from background readings for
each experiment. These values were deducted from the output values
from each experiment. The corrected curves were plotted using C/Cmax,
with C/Cmax being the current value (or concentration) of the gas at a
given time over the peak value obtained during the experiment.
Plotting all results as C/Cmax, allows for direct comparison of the result
profiles for each of the gases investigated. The following results are
fitted using a smooth line function from the C/Cmax plots for each of the

five repeat experiments. Figs. 3 and 4 show the noble gases, SF6 and
comparative CO2 experiments for sandstone flow cell. The five repeated
experiments for each pressure are represented as scatter plots. The
smooth line functions for each of the pressures are depicted as a solid
line.

Table 3 shows the peak breakthrough value of the smooth line
functions for each of the tracer pressures. Table 4 shows the mean
(including standard deviation) of the five experiments run at each
pressure for each tracer mixture. Several consistent trends can be ob-
served when comparing the results of the tracer gas flow through ex-
periments. He is the last of the noble gases to reach Cmax for all the
pressure ranges and has the narrowest peak shape showing that it is the
quickest tracer to cease detection. Ne shows a faster pre-peak con-
centration arrival but exhibits similar post-peak drop off as He. Ar, Kr
and Xe show similar C/Cmax timings at lower pressure gradients. As
sampling pressures decreases, Kr and Xe continue to have similar pre-
peak, Cmax and post-peak timings. At all sampling pressures, SF6 is the
fastest to reach Cmax and has a broader peak than any of the noble gases,
hence taking the longest time to complete flow through the core. CO2

behaves very differently compared to the noble gases and SF6. The CO2

values never drop close to 0.0 when plotted as C/Cmax and take nearly
twice as long as the noble gases to reach the Cmax. The results show that
despite purging the system (all the experiments followed the same
procedure), there is a degree of CO2 retardation. The level of CO2 does
not drop below ‘baseline’ levels and the retardation processes mask the
initial detection breakthrough curves.

Fig. 2. Schematic diagram of the layout of experimental equipment used for tracer flow experiments.
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3.2. Modelling results

Models describing the transport of a tracer in homogeneous porous
media can be formulated using a one dimensional advection dispersion
transport equation with distance or time dependent transport coeffi-
cients. To understand the variables that are involved in the transport of
noble gases, SF6 and CO2 through the Fell sandstone, a one dimensional

model was applied to the experimental results. The solution of the basic
advective dispersion equation used for modelling comparison of the
experimental results is:

⎜ ⎟= × ⎡
⎣⎢

−⎛
⎝

− ⎞
⎠

⎤
⎦⎥

C x t M
πD t

exp x vt
D t

( , )
2

( )
4x x

0
2

(2)

Fig. 3. Scatterplots of flow experiments of He, Ne, Ar, Kr,
Xe and SF6 as discrete gas pulses into CO2 carrier stream
through the flow cell. Smooth lines have been plotted for
the gas concentrations (C/Cmax) over time (s) as an average
of the five experiments.

Fig. 4. Results of flow experiments of CO2 as a discrete gas
pulse into N2 carrier stream through the flow cell. Results
are plotted as scatter plots. Smooth lines have been plotted
for the gas concentrations (C/Cmax) over time (s) as an
average of the five experiments.
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(e.g. Kinzelbach, 1992).
The modelling of the system was conducted using two complimen-

tary approaches: statistical and analytical using this equation. Table 5 is
a summary of the experimental inputs used to construct the modelled
breakthrough curves.

3.2.1. Statistically derived transport model
In order to analyse the experimental data and appropriately fit a

curve to the results, it is necessary to transform the basic advective
dispersion equation into a format that can be easily used to derive
values. The advection dispersion equation can be expanded to a linear
function with the basic rules of logarithms. The obtained coefficients
can be used to determine the advective velocity and dispersion for each
example.

The values for permeability were within the expected range for a
sample such as sandstone, but the spread of dispersion values is not
(Fig. 5, Table 6 and Table 7). Advection is the transport of fluids due to
the fluid's bulk motion. In a one dimensional context, it has no effect on
the shape of a breakthrough curve. Advection will shift the tracer plume
in time by a distance. Dispersion is scale dependent and is the spatial
separation of a solute within the matrix (m). Dispersion values are so-
lute and matrix dependent. The cores initial input parameters identified
it as a homogenous system with one permeability value associated with
it. As such, the dispersivity value (α) should remain the same regardless
of the pressure gradient in place as mechanical dispersion is propor-
tional to the magnitude of the advective velocity.

3.2.2. Analytically derived transport model
Based on the output values from the statistical model, an average

permeability was identified of 1.01 × 10−12 m2

(± 2.91 × 10−14 m2). This value is an average of all the permeability
values for each of the gases and pressures (using CO2 with sorption and
excluding Ne due to a poor fit to the modelling results). Porosity was
then amended to an average of 17.85%, incorporating both the original
experimental derived porosity and the OM images. A singular modelled
curve was unable to match the experimental results for all the pressures
using a singular dispersivity value. To successfully model the break-
through curves using the analytical solution, a two-part flow model
system was proposed. Although it is possible to propose further com-
plexity, a two-pathway flow model was sufficient for this study.

Previous studies of sub-core scale permeability distributions have
identified heterogeneity within core samples with similar properties to
the Fell sandstone (Krause et al., 2013).

The term ‘pathway’ was chosen to describe the allocation of the
different transport values. However, these two pathways are not in-
dependent of one another. Hence, in this context ‘pathway’ refers to the
regions of the pore space matrix that are accessed depending on the
pressure gradient applied. Using the statistically derived permeability
value of 1.01 × 10−12 m2 (± 2.91 × 10−14 m2), the two pathways
were designated as ‘fast’ and ‘slow’, which are the end members of the
permeability range using the deviations values. Based on the relation-
ship between the permeability and the tortuosity of a system, the dis-
persivity value for pathway one was set to be lower than that of
pathway two (Nolen-Hoeksema, 2014). The dispersivity values were
identified for each of the gases at 10 kPa and 50 kPa. These values were
used as end members to present the generic model for preferential flow
channels according to their flow conditions. The simplified relative
contribution for each of the pathways as they change flow conditions
for all the gases were set the same for each of the pressure gradients
(Table 8).

As the advective velocity was determined from the statistical model,
this limited the number of variables to the dispersivity values and the
relative contribution of the two pathways. To determine the values of
the dispersivity, a fixed value was selected that best matched the 50 kPa
curve and a different value was selected for the 10 kPa curve as these
were the end member gradients (Fig. 6).

The analysis of the breakthrough curves for the tracers implies that
all of the tracers have the same advective velocity values over each of
the sampling pressures. Therefore, the difference in the width of the
breakthrough curves is due to hydrodynamic dispersion, which must
differ for each tracer. With the noble gases, He exhibits the least amount
of spreading over time and as the atomic radius gets larger towards Xe
the width of the flow curve profile increases. Since the calculated values
for molecular diffusion are small, mechanical dispersion must be the
dominant factor in curve shape. This suggests that there is a higher
degree of dispersion with an increase in atomic size, which is confirmed
by the modelling results in this study and previous work (Warr et al.,
2015).

Table 4
Time (s) of peak breakthrough value using C/Cmax for all gases. This value was obtained from the average of the five replications of each experiment.

Pressure (kPa) Peak arrival time (s)

He Ne Ar Kr Xe SF6 CO2

50 54 ± 3 42 ± 2 45 ± 1 40 ± 1 40 ± 2 38 ± 2 82 ± 4
40 63 ± 4 54 ± 5 55 ± 2 52 ± 2 53 ± 1 49 ± 2 110 ± 6
30 87 ± 7 67 ± 6 76 ± 3 73 ± 1 75 ± 3 69 ± 2 150 ± 9
20 129 ± 5 109 ± 1 112 ± 7 113 ± 4 115 ± 2 109 ± 3 239 ± 20
10 242 ± 13 234 ± 8 225 ± 3 233 ± 9 240 ± 15 236 ± 16 485 ± 32

Table 3
Time (s) of peak breakthrough value using C/Cmax for all gases. This value was obtained
from the smoothed line fitting to a scatter plot of the five replications of each experiment.

Pressure (kPa) Peak arrival time (s)

He Ne Ar Kr Xe SF6 CO2

50 53 40 45 40 40 38 79
40 65 55 55 51 53 49 112
30 88 70 75 73 75 69 150
20 126 120 113 113 113 108 237
10 247 234 226 230 243 237 483

Table 5
Initial modelling inputs for mass transport equation.

Initial modelling inputs

Average bulk density 2063 kg m3

Cross sectional area of rock ~0.001 m2

Dynamic viscosity (CO2) 1.48 × 10−5 Pa s−1

Dynamic viscosity (N2) 1.75 × 10−5 Pa s−1

Flow path length (core) 0.96 m
Temperature (average) 293.15 K
Porosity 17.85%
Pressure 10–50 kPag upstream

Ambient pressure downstream
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4. Discussion

4.1. A proposed transport model for the experimental system

SEM images were used in a digital rock reconstruction methodology
to generate a 3D model of the rock and infer the pore space using the
pore architecture modelling (PAM) as developed by Wu et al. (2006).
3D models generated by this technique can be used in a multiphase flow
simulator to determine the multiphase flow dynamics as well as

understand the geometry and topological properties of the pore system.
For this research, a PAM can be used to further understand the varia-
tions in fluid pathways occurring with a change in image/model scale.

The sample was considered as internally uniform, so a single image
was used to generate a PAM. Two BS images at different magnifications
of 200 μm and 500 μm (with resolutions of 1.005 μm/pixel and
2.05 μm/pixel) were selected and used to generate two individual 3D
PAMs (Fig. 7). A digital pore network was extracted from each model
before flow simulation was performed (Wu et al., 2006). Primary
drainage was assessed through the injection of oil into an initially
water-saturated medium and Fig. 7 shows the extracted pore network
from each model after undergoing primary drainage. Here, the blue
nodes and bonds are water saturated and the red nodes and bonds are
oil saturated. From the visualisation of these flow simulations, differ-
ences in the pore network and fluid flow properties can be observed. In
the lower resolution model (2.05 μm/pixel), it is apparent that the in-
jected oil does not equally invade all the pore spaces, suggesting that
there may be preferential pathways. These preferential pathways ap-
pear to have some tortuous behaviour associated with them. With an
increase in resolution (1.005 μm/pixel), it is apparent that the oil in-
jection can become impeded and trapped between grains. A potential
reason for this is the oil is unable to overcome the capillary threshold
pressure. In order to access additional pore spaces during fluid trans-
port, an increase in pressure to overcome the increased capillary
threshold is required to enter these pathways.

Using the observed breakthrough curves for the sampling system
along with the modelled transport values, it is clear that a simple single
pathway model is not sufficient to describe the flow behaviour of the
tracers. Based on the two-end member pathway concept that allows
resolution of an analytical output to match the data, we now present a
discussion of what these findings implicate for a supposed simple
homogenous system.

The pathways may be summarised as:
Pathway one, the ‘fast pathway’. It has a higher permeability value

of 1.04 × 10−12 m2 with a porosity of 17.85%. However, the dis-
persivity value for the pathway is always lower than that of the second
proposed pathway. Pathway one is the dominant pathway when the
pressure gradient is low.

Pathway two, the ‘slow pathway’. It has a lower permeability value
of 9.77 × 10−13 m2 with a porosity of 17.85%. The dispersivity value
of this pathway is higher and is the dominant pathway for the higher
pressure gradient.

Darcy's law describes the flow of fluid through a porous medium. It
is the proportional relationship between flow rate, viscosity and
changes in pressure over a given distance. Linear flow paths are as-
sumed in Darcy's Law – a flow regime characterised by parallel flow
lines within a system. Linear flow is plotted as a positive ½ slope when
time is calculated against pressure (log-log). With Darcy's flow it is

Fig. 5. Combined results for the calculated permeability of the flow cell. Due to its poorly related raw outputs, the values for Ne were not included when calculating the average
permeability value.

Table 6
Dispersivity values (m) for all the noble gases and SF6 at each of the sampling pressures.
Dispersivity is calculated where Dx = neD + α|v| using the FSG method to determine
molecular diffusion (Lyman, 1982).

Pressure (kPa) Dispersivity (m)

He Ne Ar Kr Xe SF6

50 0.06 0.48 0.17 0.22 0.18 0.17
40 0.05 0.24 0.15 0.12 0.15 0.13
30 0.04 0.19 0.11 0.14 0.14 0.16
20 0.03 0.08 0.08 0.06 0.10 0.11
10 0.03 0.10 0.05 0.06 0.06 0.10

Table 7
Dispersivity values (m) for each of the repeated CO2 experiments at the different sampling
pressures. Each experiment has been modelled individually due to variance in output
profiles. Dispersivity is calculated where Dx = neD+ α|v| using the FSG method to de-
termine molecular diffusion (Lyman, 1982).

Pressure (kPa) Dispersivity (m)

(1) (2) (3) (4) (5)

50 0.21 0.22 0.19 0.22 0.21
40 0.17 0.18 0.14 0.21 0.18
30 0.13 0.09 0.16 0.14 0.14
20 0.06 0.11 0.11 0.09 0.10
10 0.06 0.07 0.08 0.07 0.06

Table 8
Summary of relative contribution of the two pathways
depending on the experimental pressure gradient.

Weighting Pressure (kPa)

≤1:99 ± 50
10:90 40
30:70 30
50:50 20
90:10 10
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Fig. 6. Using the statistically derived permeability value of
1.01 × 10−12 m2 (± 2.91 × 10−14 m2), the two path-
ways were designated as ‘fast’ and ‘slow’ so that they are
the end members of the permeability range using the de-
viations values. The dispersion values estimated for path-
ways with permeability 1 (1.04 × 10−12 m2) and perme-
ability 2 (9.77 × 10−13 m2) for each of the tracers are
shown here.

Fig. 7. Results from pore architecture modelling using two
BS images to generate digital reconstructions. Each column
represents a separate original image and final model. (A)
Original BS images used to generate the PAMs. (B) 3D
model generated using the BS images. (C) Drainage simu-
lation within the pore network extracted from each PAM.
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assumed that the flow is inertialess. Thus, Darcy flow is described as
linear, where it accounts for creeping flow and viscous forces prevail
over inertial forces.

The Reynolds number (Re) can be used to predict similar flow
patterns in different flow scenarios. The dimensionless number can be
described as the ratio of inertial forces to viscous forces and be pre-
sented as:

=Re
g v L

μ
f f

(3)

A departure from Darcy regime occurs at order unity (Re≫ 1)
(Dukhan et al., 2014; Kolditz, 2001). The order of critical Reynolds
numbers, when non-linear effects become evident is 1–10 based on
previously conducted experiments (Barenblatt et al., 1990). According
to Scheidegger (1963), there appear to be two critical Reynolds num-
bers at which the flow regime changes. The first indicates when the
flow conditions are affected by inertia effects and the second when true
turbulence flow sets in (Dullien, 2012).

Before a flow becomes turbulent, non-linear laminar effects occur
and flow deviates from a Darcy regime (Kolditz, 2001) (Fig. 8). Non-
linear laminar flow becomes the dominant method of flow as inertial
effects become important. Causes of non-linear effects can be high ad-
vective velocity, molecular/ionic effects, non-Newtonian behaviour of
the fluid itself as well as pore geometry (Kolditz, 2001; Dullien, 2012;
Scheidegger, 1963). Forchheimer's Law includes the inertial effect as a
function of the kinetic energy in the relationship between the pressure
gradient and the flow velocity such that:

− = +dP
dx

μ
k

v βρv2
(4)

As flow velocity increases, the kinetic energy term becomes more
important and the linear relationship breaks down. The determination
of the Forchheimer coefficient tends to be calculated using the best-fit
information from experimental data. The Forchheimer coefficient is
strongly dependent on the internal structure of the porous medium
(Dukhan et al., 2014). Previous work has shown that for the same
porous medium, different values of permeability exist in different flow
regimes (Dukhan et al., 2014).

Using the Forchheimer equation, Kolditz (1997, 2001) represents
this breakdown of linear behaviour as:

= ∆ =−q K i K K| | *α
rel

( 1)
0 (5)

To fully understand the implications of our results we now focus on
the pathway functions and contributions at each pressure gradient.
Table 9 shows the estimated Re values for the Fell sandstone system.
Values were calculated using the average advective velocity for the
system over the sampling pressure gradients. The characteristic length
scale for porous media is based on grain boundary diameters. Re
numbers were calculated for two pore space diameters (450 and
150 μm derived from ImageJ analysis). Pathway one was allocated the
maximum detected pore diameter range of 450 μm due to the higher
permeability value and lower dispersivity trend – permeability is di-
rectly related to pore space/grain size. Similarly, pathway two was
allocated diameter value of 150 μm as this was calculated as the most
dominant size for diameter. For comparative purposes, the relative
contribution allocated to both pathways during modelling are included.

Any flow with a Re approaching 1 suggests a transition into non-
linear laminar flow. Reynolds numbers for turbulent flow are much
higher than anything that are produced during the experimental con-
ditions.

a) Low pressure (10 kPa)

At low sampling pressure gradients, the flow contribution is pri-
marily via pathway one. The flow passes through the higher perme-
ability portions of the system with greater ease and these are the areas

of higher pore diameter. At the low sampling pressure gradient, the Re
values suggest that the flow is following the Darcy regime and as such is
pure linear laminar flow. At this pressure gradient level, there appears
to be little or no contribution flow through the higher dispersivity
routes (pathway two).

b) Medium pressure (20–30 kPa)

With an increase in pressure gradient, there is a distinct increase in
Re numbers for pathway one and approaches the value of unity. The
contribution from both pathways has become 50:50 at 20 kPa. Within
the 30 kPa pressure gradient, pathway one approaches non-linear la-
minar flow. Pathway two remains within the region of linear laminar
flow. As such, the medium pressure gradient range is a transition of
areas with linear and non-linear laminar flow.

c) High pressure (40 kPa to 50 kPa)

When the pressure gradient reaches 40 kPa, the contribution of flow
is predominately through pathway two. The lower permeability
pathway two is providing 90% of the tracer route contribution through
a more dispersive manner, reducing the contribution from the higher
permeability regions. By 50 kPa, the contribution of the pathway one
has drastically reduced and according to the Re is well into the non-
linear laminar flow region. At this pressure, the linear flow is ap-
proaching unity but accounts for 90% of the flow.

As suggested in Dukhan et al. (2014) permeability within a Darcy
regime is considered constant, while in the Forchheimer regime, it
decreases with increasing velocity. This observation agrees with the
modelling output descriptions when compared to the Re numbers of
those areas. Thus, it appears that within this Fell sandstone core, the
transition from linear to non-linear flow on the micro-scale (no turbu-
lent regions), is the reason for identifying multiple pathways or routes
that are taken by the tracer as the velocity increases. Fig. 9 summarises
the different areas of the flow cell, which are accessed depending on the
advective velocity. These areas have been classified as pathway one and
two but these regions are not isolated as depicted in Fig. 9.

4.2. Implications for using tracers to track CO2 migration

The main advantages of chemical tracers are that they can be used
to make measurements in natural field settings that are impossible to
access physically and can cover large scales. Monitoring injected CO2

can be challenging, as it is a reactive compound, highly soluble and
subject to multiple phases depending on pressure and temperature
changes. Thus, the use of chemical tracers that have limited interactions
with the injection fluids and surrounding reservoir are the dominant
choice; they track fluid pathways of migration but should do so

Fig. 8. Not-to-scale illustration representing the different flow regimes found as a re-
lationship between pressure (ΔP) and flow rate (q), using the non-linear flow parameter
(α*).
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conservatively. The timing of the tracers should be predictable to the
point that a clear pattern emerges in relation to the migration of CO2.
This research investigated the possibility of fractionation of tracers
through natural processes, leading to some tracers being detectable
very early in the release of CO2, and others being delayed.

4.2.1. Noble gases as early warning tracers for CO2 migration
As such, there are two approaches to deciding how these tracers

could be used as an early warning tracer for CO2 migration. Firstly,
using these timings, it is evident that all the noble gases and SF6 reach
Cmax before CO2 does. This suggests that all the noble gases and SF6 can
be successful tracers for identifying the early migration of CO2 under
the experimental conditions.

Alternatively, when a baseline has been identified prior to injection,
the initial arrival of certain tracers could be used as early warning in-
dicators for possible CO2 migration. From this approach, it is apparent
that He, Ne and Ar may not be suitable as early warning tracers for CO2

migration. Kr and Xe arrival times are significantly ahead of CO2 and
hence could be used as an early warning means of detecting CO2 mi-
gration. The results suggest that SF6 is the fastest travelling tracer for
pre-peak concentration values.

4.2.2. Noble gases as a method of fingerprinting CO2 storage sites
While He, Ne and Ar appear to be unsuitable as early warning tra-

cers for initial detection of CO2, our findings suggest that they can be

Table 9
Reynolds number for CO2 transport through the Fell sandstone under experimental
conditions. For comparative purposes, the relative contribution allocated to both path-
ways during modelling are included.

Pressure gradient
(kPa)

Pathway
one (%)

Pathway
one (Re)

Pathway
two (%)

Pathway two
(Re)

High Pressure 50 ≤1 1.92 99 ± 0.64
40 10 1.27 90 0.42

Medium
Pressure

30 30 0.94 70 0.31
20 50 0.52 50 0.17

Low Pressure 10 90 0.26 10 0.09

Fig. 9. Schematic diagram illustrating the different con-
tributing areas of the flow cell, as there is an increase in
flow velocity. The blue areas represent linear laminar flow,
the purple areas represent a transition to non-linear laminar
flow and the red areas are non-linear laminar flow. (For
interpretation of the references to colour in this figure le-
gend, the reader is referred to the web version of this ar-
ticle.)
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used as part of mixture to fingerprint individual CO2 storage sites that
may be in close proximity to one another. Noble gases and their iso-
topes are able to provide unique constraints on certain geological
processes (Gilfillan et al., 2014; Burnard et al., 2013; Holland and
Gilfillan, 2012; Wilkinson et al., 2010; Gilfillan et al., 2008; Gilfillan
et al., 2017). Understanding their predicted arrival times in relation to
each other can help determine ownership of CO2 storage sites and thus
the party responsible to rectify any unplanned effects.

4.2.3. How do these results compare to reservoir scale test sites?
The fundamental aim of the project was to understand the me-

chanisms involved for the transport of tracers in porous media. We have
uncovered that there are considerable differences in the behaviour of
‘conservative’ noble gases as tracers and contributed to the under-
standing of transport at the micro-pore scale. The experiments for this
research were carried out under a low range of pressure gradients,
single-phase conditions and through an air-dried sample. Upscaling
these conditions directly to real world environments where CO2 storage
is carried out in underground environments with multiphase flow and
high-pressure conditions needs further investigation. However, by
identifying any similarities in the results from this research to real
world environments, it can help answer some of the uncertainties raised
in the larger scale experiments.

The research of Carrigan et al. (1996) presented the transport of 3He
and SF6 tracer gas flow along faults and fractures, following their re-
lease underground at a depth of 400 m, resulting from barometric
pressure variations. These fractures may be considered as preferential
pathways during transport. From these results, SF6 arrived at the
monitoring stations at the surface after 50 days, with 3He taking
375 days, though the initial detection location was the same for both
tracers. In a diffusively dominated transport environment, the 3He
should have arrived before the SF6 based on atomic size. Carrigan et al.
(1996) suggests that the speed of transport along the fractures is much
greater than the diffusion rate driven by deeper ‘low’ barometric
pressure variations. They also suggest that the high diffusion coefficient
of He compared to SF6 actually impedes its transport along a fracture by
allowing it to diffuse out of the main flow path more effectively than
SF6. This observation is analogous to our findings and potentially helps
to explain why He is the slowest tracers to arrive during all pressure
gradients and also how it is the quickest to drop below detection levels
following post-peak concentration, with matrix diffusion acting in the
same way as grain sorption would.

The choice of using Kr with SF6 has proven to be popular for
monitoring CO2 pathways. The Cranfield Enhanced Oil Recovery field
in Mississippi is home to a large-scale CO2 injection and observation
survey from a natural source (Jackson Dome), which has been used
for data collection and monitoring (Hovorka et al., 2013). Lu et al.
(2012) carried out CO2 and tracer fluid sampling in two observation
wells, located 100 and 200 ft. horizontally from the CO2 injection
well in the same reservoir formation. This was undertaken in the
water leg of an isolated down-dip portion of the reservoir during CO2

injection in 2009 and 2010. SF6 and Kr were added to the injected
CO2 and the breakthrough of the CO2, SF6 and Kr was recorded via
intensive sampling of the reservoir fluids through a down-hole U-tube
sampling system in December 2009 and in April 2010. In the first
tracer injection, SF6 arrived before Kr at both observation wells. In
the December 2009 test, the tracers arrived at the well nearest to the
CO2 injection well first. An increase in injection rate led to a second
pulse of Kr arriving but not SF6 – perhaps the result of their physical
or chemical properties. During the second injection of tracer fol-
lowing an increase in both injection rate and fluid flow velocity, the
SF6 arrived at the more-distant observation well earlier than the
closer one. These results highlight the possibility of separate flow
pathways existing between wells and that travel time is not propor-
tional to the distance between the wells, with fluid velocities being
variable along different flow pathways.

There are a number of similarities between the result from these full
scale experiments in Cranfield and our laboratory scale results. In terms
of peak concentration, Kr arrives later than the SF6 at the sampling
pressure gradients and also ceases detection before SF6, which is similar
to the observations at Cranfield during the December 2009 tracer ex-
periments. In both experiments it is clear that the flow velocities of each
tracer depends non-linearly on the density/viscosity and hence imply
that preferential flow paths can exist. Although in the case of Cranfield,
they consider these paths as separate and distinct, most likely due to the
larger scale of the system.

5. Conclusions

Tracers mixed with injected CO2 could act as fingerprints for own-
ership resolution, and as early warnings of migration into receptor
wells, ahead of CO2. This study involved experiments that injected in-
dividual noble gases, and the benchmark tracer SF6, through a core of
sandstone saturated with gaseous CO2. Concentrations of the tracers
were measured through time at the downstream end of the core.
Imposed pressure gradients were 10–50 kPa m−1. Although noble gases
are described as conservative tracers, comparing the breakthrough
curves over a range of pressure gradients show that they do not behave
as simply as previously assumed. The arrival times of Kr and Xe were
similar to SF6 indicating that it could be substituted for future tracer
applications. Smaller molecules of He are diverted into disconnected
and dead-end pores, which are avoided by larger molecules.
Importantly, we have successfully modelled the experimental results
using a one dimensional advection dispersion model. With these results,
a conceptual model has been constrained for the experimental system
whereby preferential paths exist depending on the flow velocity. At the
low pressure gradient, the system follows a Darcy flow regime and
tracers travel preferentially along a higher permeability route. With an
increase in pressure, Re values suggest a partial migration from a linear
to a non-linear regime at the pore diameter scale. By 50 kPa gradient,
higher permeability pathways are experiencing non-linear laminar flow
but contribute significantly less to the overall route. The low perme-
ability regimes with a higher dispersivity are the dominant pathway.
This suggests that an increase in Re number leads to a non-linear la-
minar flow, which is ‘slower’ to contribute than a true linear laminar
flow to the Fell sandstone system. These results can be used to explain
patterns observed with tracers in large-scale reservoirs.
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