

Adsorption and Diffusion of CH₄, N₂ and their Mixture in MIL-101(Cr): A Molecular Simulation Study

Yimin Shao Supervised by Dr. Wei Li

Content

- 1. Background
- 2. Results and Discussion
- 3. Conclusion
- 4. Ongoing Work

THE UNIVERSITY of EDINBURGH

1. Background

1.1 Methane Facts

The global warming potential (GWP) of human-generated greenhouse gases is a measure of how much heat each gas traps in the atmosphere, relative to carbon dioxide.

1.4 MIL-101 Adsorbent

How is the adsorption behavior of single-component CH₄ and N₂ in MIL-101?
 How is the adsorption behavior of two-component CH₄ and N₂ in MIL-101?
 Are the one-component and two-component adsorption behaviors related?

2. Results and Discussion

2.1 Simulation Validation

- Pure gases

4.0 CH₄ Sim 0 0.5 CH₄ Exp 3.5 excess adsorption (mmole/g) .0 .0 .0 .0 .0 .0 .0 .1 ... $\mathrm{N}_2~\mathrm{Sim}$ $N_2 Exp$ 3.0-1.0 Sim CH₄/N₂(0.3:0.7) 0 0.5-Exp $CH_4/N_2(0.3:0.7)$ 0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.3 0.4 0.5 0.6 0.70.8 0.9 1.0 1.1 Pressure (Bar) Pressure (Bar)

- Binary Mixture

2.2 CH₄ RDF

 \Box C=C double bond in MIL-101 plays a dominant role in the adsorption of CH₄.

 \Box Cr and O atoms have obvious adsorption effects on CH₄.

2.2 N₂ RDF

- RDF spectra of Cr, O, C and
 F for N₂ are very similar
 to that for CH₄.
- This suggests that the
 adsorption behavior of N₂
 and CH₄ is influenced by
 similar atomic sites within
 the MIL-101.
- The peaks of each atom for CH_4 are higher than those for N₂.

- CH₄ - O3

- N₂ - O3

10

CH₄ - C3

 $N_2 - C3$

10

2.3 2D Density Distribution Profile (CH₄)

 \Box CH₄ is mainly distributed in pentagonal windows and the large and medium cages.

 \Box The place with the highest density of CH₄ is on the edges of the pentagonal window connecting the large and medium cages.

2.3 2D Density Distribution Profile (N₂)

N₂ molecules are relatively uniformly distributed on the edges of the pentagonal and triangle windows and the small cages of the tetrahedron.

2.6 2D Density Distribution Profile (Binary Mixture)

50 N₂ density Profile

(e) 200 CH₄ density Profile

1.0

0.8

0.6

0.4

0.2

0.0

0.0

0.2

0.4

0.6

0.8

600 N₂ density Profile

0.8

1.0

0.0594

0.0528

0.0462

0.0396

0.0330

0.0264

0.0198

0.0132

0.0066

0.0000

50 <mark>N</mark>2, 200 **CH₄**

- □ The increase in N₂ molecules does not affect the distribution of CH₄ molecules.
- □ CH₄ molecules are agglomerated in large and mediumsized cages.
- N₂ molecules tend to distribute on the edges of large and medium-sized cages and windows, and also appear in the small cavity.

THE UNIVERSITY of EDINBURGH

3. Conclusion

CH₄ and N₂ Adsorption Mechanism

Ongoing Work

Thank you

Yimin Shao Y.Shao-20@sms.ed.ac.uk Project PI: Dr Wei Li wei.li@ed.ac.uk

This project has received funding form the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 871998.

SJTU-UoE Seed Fund

