

THE UNIVERSITY of EDINBURGH School of Engineering

A low-energy approach to process large scale airflow

Yimin SHAO¹, Yang BAI¹, Wei LI¹*, Renaud de RICHTER², Xianfeng FAN¹

¹ University of Edinburgh, UK; ² University of Montpellier, France Contact: <u>Wei.Li@ed.ac.uk</u>; <u>renaud.derichter@gmail.com</u>

Background / Motivation

- Greenhouse Gas Removal (GGR) at a large scale requires sufficient airflow [1], which is energy-intensive.
- □ Solar updraft devices (e.g. Trombe wall, double skin facade) as a simple building component, absorbing solar energy for heating or ventilation [2].
 - Simple construction

- Zero operation cost

Fig. 3 Monthly average solar radiation in south England, the highest solar radiation intensity is below 250 W/m² [3].

- Two models fit well with experimental data.
- A Trombe wall can generate 75.6 kg/hr airflow under 120 W/m² solar radiation.

Fig. 6. a) ΔT (air temperature); b) air Velocity; c) air Mass flow rate. **H** : Channel Height; **G**: Channel Gap; **V**: air velocity; **HT**: Heat Transfer

 \Box H \uparrow -> Area \uparrow -> Solar Flux \uparrow -> $\Delta T \uparrow$ -> Buoyancy \uparrow -> V \uparrow

Aims

- □ Investigate air flow of new Trombe wall under low solar radiation (from 100 W/m^2 to 600 W/m^2)
 - A fast-analytical math model & CFD simulation
 - Buildup test rig & data collection

Experimental setup / Data collection

Fig. 4. a) Test rig (2 x 0.5 x 0.12 m); b) Temperature and air velocity under 397 W/m2 solar intensity.

 $\Box G \downarrow -> HT$ distance $\downarrow -> \Delta T \uparrow ->$ Buoyancy $\uparrow -> V \uparrow$

 \Box H and G \uparrow -> volume \uparrow -> Mass flow rate \uparrow

Fig. 7. a) Velocity contour; b) ΔT contour under different solar intensity.

□ The air temperature and velocity are unevenly distributed. The air closer to the wall is more vulnerable to receive convective heat.

References, Funders and Collaborators

[1] Realmonte* et al. Nat. Commun. 2019, 10, 3277. [2] Harrison^{*}. et al. Renew. Energy 2014, 71, 333. [3] Saadatian*. et al. Renew. Sust. Energy Rev. 2012,16, 6340.

• Four sensors were fitted in the airflow channel to measure

airflow temperature and velocity.