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A B S T R A C T   

Cirques are glacially eroded, bowl-shaped depressions, characterised by steep headwalls and flat or over-
deepened floors. Given their association with past glaciers, cirques are sometimes used as proxies for palae-
oclimate. However, cirques are shaped over multiple glacial cycles, and their usefulness as palaeoclimate 
indicators therefore remains open to question. In this paper, we map 3984 glacier-free cirques across the 
Scandinavian Peninsula and analyse variations in cirque floor altitude (CFA). We explore the relationships be-
tween CFAs and cirque aspect, latitude, longitude, and distance to the coast. We test the validity of using CFAs as 
indicators of palaeoclimate through comparison with the equilibrium-line altitudes (ELAs) of 513 modern cirque 
glaciers. Results indicate that both CFAs and modern cirque-glacier ELAs decrease with latitude and vary with 
aspect, being generally lowest on east-facing slopes. However, the clearest and strongest trend in both CFAs and 
modern cirque glacier ELAs is an increase in elevation with distance from the modern coast (i.e., distance 
‘inland’). This likely indicates that similar climatic gradients, particularly an inland reduction in precipitation, 
acted to regulate former sites of glacier initiation (reflected by CFAs) and modern glacier ELAs. This would imply 
that CFAs are a useful proxy for palaeoclimate. However, we note that both CFAs and modern ELAs reflect the 
general topography of this region (with increasing elevations moving inland), and the glacial history of the area 
(indirectly linked to palaeoclimate) may have played a role in regulating where cirques have formed. For these 
reasons, we suggest that palaeoclimatic interpretations derived from CFAs should be treated with caution.   

1. Introduction 

The equilibrium-line altitude (ELA) is the elevation on a glacier 
surface where net annual accumulation and ablation are equal. There-
fore, the ELA is largely determined by regional climate (the dominant 
control on accumulation and ablation) (Nesje, 1992; Ohmura et al., 
1992; Ipsen et al., 2018; Ohmura and Boettcher, 2018), though other 
local topoclimatic factors (e.g. topographic shading, snow and ice 
redistribution and aspect) also contribute (Olyphant, 1977; Morris, 
1981; Torsnes et al., 1993; Coleman et al., 2009; Hughes, 2010; Křížek 
and Mida, 2013). Given this association, glacier ELAs are often used to 
infer spatial and temporal variations in climate and palaeoclimate (e.g. 
Sutherland, 1984; Caseldine and Stotter, 1993; Torsnes et al., 1993; 

Oien et al., 2020; Rea et al., 2020). Therefore, palaeo-ELAs are impor-
tant as palaeoclimatic indicators because they are the result of changed 
precipitation and temperature, which control glacial surface mass bal-
ance over time and cirques are one way of obtaining palaeo-ELAs (e.g. 
Torsnes et al., 1993; Bacon et al., 2010; Kern and László, 2010; Barr and 
Spagnolo, 2015a; Barr and Spagnolo, 2015b; Barr et al., 2017; Pearce 
et al., 2017; Ipsen et al., 2018; Wallick and Principato, 2020). 

The most robust way to estimate palaeo-ELAs is to generate 3D re-
constructions of former glaciers. However, a number of simpler methods 
are also used, particularly when considering ELAs across large and/or 
remote areas. One of the simplest ways is to map and measure cirque 
floor altitudes (CFAs) (e.g. Torsnes et al., 1993; Kern and László, 2010; 
Barr and Spagnolo, 2015a; Barr and Spagnolo, 2015b; Barr et al., 2017; 
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Pearce et al., 2017; Ipsen et al., 2018; Wallick and Principato, 2020). 
The premise behind this approach is that cirques (bowl-shaped de-
pressions, characterised by steep headwalls and flat or overdeepened 
floors sometimes occupied by small lakes; Evans and Cox, 1974; Vilborg, 
1977; Fredin, 2002) are formed where glaciers develop and erode their 
underlying bedrock. When these glaciers are relatively small and largely 
confined to the cirque (e.g., at the onset and termination of glacial cy-
cles), the CFA (i.e., the lowest point within a cirque) roughly approxi-
mates the glacier’s ELA. Though this approach only provides an 
approximation of the ELAs of former cirque glaciers, it has been widely 
used to investigate regional patterns in palaeo-ELAs, and sometimes to 
make associated inferences about palaeoclimate (e.g. Evans, 1999; Benn 
and Lehmkuhl, 2000; Barr and Spagnolo, 2015b). Despite this wide-
spread use, there are several caveats associated with using CFAs as in-
dicators of former cirque glacier ELAs. In particular, since cirque glaciers 
form at different times in different places, regional trends in CFA are 
unlikely to reflect palaeo-ELA trends at any single point in time. This 
raises questions about the usefulness of CFAs as proxies for 
palaeoclimate. 

In this study, we map the distribution of glacier-free cirques in the 
Scandinavian Mountains and analyse variations in the associated CFAs. 
We compare these patterns with the ELAs of modern cirque glaciers in 
the region (Oien et al., 2020). The aim is to establish how palaeoclimatic 
information can most efficiently be extracted from cirque floor elevation 
distributions, despite their potentially time-transgressive origins, evo-
lution and occupation (Rudberg, 1994; Evans, 1999; Barr and Spagnolo, 

2013). The Scandinavian Mountains are well suited to this study, as they 
lie on a passive margin, have a comparatively well-constrained glacial 
history, and both cirques and extant cirque glaciers are widespread. 

2. Study Area 

2.1. Geology and Geography 

The study area (Fig. 1) extends ~2000 km N-S along the Scandina-
vian Mountains, and up to 400 km W-E from the Norwegian Sea inland 
into Sweden. Topographic elevations typically increase inland, extend-
ing up to ~1500 m in the north and ~ 2400 m in the south. The geology 
is mostly a result of the Caledonian orogeny, from 400 to 700 Ma 
(Holtedahl, 1920; Stephens, 1988; Lidmar-Bergström et al., 2000), when 
collisions between orogenic belts and exotic terranes created a series of 
Precambrian and Palaeozoic crystalline metamorphic rocks (Pawlewicz 
et al., 2002; Etzelmüller et al., 2007). The closure of the Iapetus Ocean 
and collision with Laurentia caused crustal thickening, generating a 
stable crust that makes up the Fennoscandian Shield (Stephens, 1988). 
The majority of cirques in the south are located within areas classified as 
upland mountains with moderate slopes and alpine relief (Etzelmüller 
et al., 2007). This region is known for extensive plateaux steeply cut by 
glacial valleys (Etzelmüller et al., 2007). More recently, glacial isostatic 
adjustment due to the demise of the Fennoscandian ice sheet has 
resulted in an uplift of up to ~1 to 15 mm yr− 1 across the Scandinavian 
Peninsula (Lambeck et al., 1998a; Lambeck et al., 1998b; Steffen and 

Fig. 1. (a) Mean summer air temperature (JJA) and (b) total winter precipitation (DJF) patterns for present-day Scandinavia (NVE, 2017). Winter precipitation and 
summer temperatures are averaged over 30 years from 1971 to 2000 (NVE, 2017). 
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Kaufmann, 2005; Argus and Peltier, 2010). 

2.2. Glaciation 

Extensive glaciers and ice sheets have repeatedly occupied and 
shaped the Scandinavian landscape over multiple Quaternary (and pre- 
Quaternary) glacial cycles (e.g. Mangerud, 2008; Mangerud et al., 2011; 
Fredin, 2002; Olsen et al., 2013a; Olsen et al., 2013b; Hughes et al., 
2016; Stroeven et al., 2016). These glaciations have generated a wide 
range of erosional and depositional features, resulting in a dramatic 
landscape of elongated overdeepened basins (often occupied by lakes), 
fjords, glacial valleys, and cirques. At present, thousands of glaciers 
occupy the Scandinavian Mountains, ranging in size from small cirque 
glaciers to extensive ice caps (Nesje, 2009; NVE, 2017). 

2.3. Climate 

Climatic patterns across the Scandinavian Peninsula are heavily 
influenced by the North Atlantic Oscillation (NAO) and Arctic Oscilla-
tion (AO) (Nesje et al., 2008). These systems regulate pressure gradients, 
which control temperature, precipitation, and storms. The interplay of 
these pressure systems sometimes results in comparatively warm (be-
tween 0 and 2 ◦C) wet (up to 2000 mm/year in the southern coastal 
region) winters, or cold (between 0 and − 16 ◦C, particularly in the 
northern region) dry winters (Norwegian Meteorological Institute, 
2021). In the southern Scandinavian Mountains, precipitation is also 
regulated by the Jet Stream, with a dominant wind direction from the S/ 
SW, and can reach 6000 mm/year in coastal areas but decreases 
dramatically inland to 500–750 mm/year (Torsnes et al., 1993; Nesje 
et al., 2008; Nesje, 2009; Winsvold et al., 2014; Norwegian Meteoro-
logical Institute, 2021). Winter precipitation (Fig. 1b) and summer 
temperatures (Fig. 1a) are the main climatic controls on modern-glacier 
surface mass balance (Ohmura et al., 1992; NVE, 2017; Ohmura and 
Boettcher, 2018; Oien et al., 2020). 

3. Methods 

We mapped glacier-free cirques using a 10 × 10 m digital terrain 
model (DTM) with a vertical accuracy of ±1–6 m, overlain with 10 m 
contours from the Norwegian mapping authority (Kartverket; Hoyde-
data.no; Norwegian Mapping Authority, 2016) (Fig. 2). Most of the 
mapped cirques coincide with cirque locations identified by Rudberg 
(1994) and the definition of a cirque by Evans and Cox (1974) and 
Vilborg (1984). Once mapped, we divided cirques by latitude into 
southern <64◦N and northern >64◦N sub-populations (‘macro-re-
gions’), following Oien et al. (2020). The division is roughly based on 
climate, with the northern macro-region defined as ‘polar/subpolar’ due 
to its proximity to the polar front while the southern macro-region is 
‘temperate’ due to the influence of the North Atlantic Current (Tveito 
et al., 2000; Oien et al., 2020). 

Each cirque was mapped as a polygon (Fig. 2): we extracted the CFA 
as the single lowest elevation DTM grid cell contained within the poly-
gon (Fig. 3a). To assess possible controls on CFA, several other attributes 
were derived: cirque aspect was calculated using the GIS tool ACME 
(Spagnolo et al., 2017) (i.e. aspect is defined as the mean azimuth 
(0–360◦) determined from every pixel converted to radians and aver-
aged within the cirque) (Evans, 1977; Evans, 2006b; Barr and Spagnolo, 
2015a); cirque latitude and longitude were recorded using the centroid 
of each feature; and cirque distance from the modern coast, excluding 
fjords (Norwegian Sea, Fig. 3) was calculated in ArcGIS (following Oien 
et al., 2020). In addition to mapping cirques, the ELAs of 513 modern 
cirque glaciers (Fig. 3b) in the region were analysed, based on the 
dataset from Oien et al. (2020). 

4. Results 

4.1. Cirque-floor altitudes (CFAs) 

A total of 3984 glacier-free cirques were mapped throughout the 

Fig. 2. An example of two of the mapped glacier-free cirque outlines (in pink) overlayed in Google Earth, located at 62◦28′43.97”N 7◦57′41.59′′E. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Scandinavian Mountains: 2947 in the northern region, and 1037 in the 
southern region (Fig. 3). For the population as a whole, CFAs range from 
23 m to 2088 m (Table 1). In the northern region, the mean CFA (591 m) 
is notably lower than in the southern region (1195 m). Cirques in the 
northern region are also typically closer to the modern coastline (mean 
distance = 40.8 km) than those in the south (mean distance = 104.7 km) 
(Table 2). 

4.2. CFA variations with latitude and longitude 

For the population as a whole, CFAs show a statistically significant, p 
< 0.01, decline to the north and east (Fig. 4), although the linear 
regression between CFA and latitude is stronger (R2 = 0.441) than be-
tween CFA and longitude (R2 = 0.212). Despite these general trends, 
considerable variability is present between each (southern and north-
ern) region. For example, in the northern region, CFAs decline with 

Fig. 3. (a) Cirque floor altitudes and (b) modern-glacier ELAs. The dashed line separates regions termed in the text as the northern and southern regions.  

Table 1 
Cirque floor altitudes (cirques) and ELAs (modern mountain glaciers) across the Scandinavian Peninsula, subdivided by region.   

Total population 
(cirques) 

Northern region 
(cirques) 

Southern region 
(cirques) 

Total population 
(glaciers) 

Northern region 
(glaciers) 

Southern region 
(glaciers) 

Number 3984 2947 1037 513 258 255 
Min 

(m a.s. 
l.) 

23 23 287 495 495 788 

Max 
(m a.s. 
l.) 

2088 1610 2088 2027 1639 2027 

Mean 
(m a.s. 
l.) 

745 591 1195 1339 1151 1528 

Median 
(m a.s. 
l.) 

721 541 1166 1368 1158 1519 

Std. dev 
(m a.s. 
l.) 

422 333 311 303 245 229  
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latitude (Fig. 5; R2 = 0.113, panel a), but more weakly than for the entire 
cirque population. In the southern region, CFAs rise then fall with lati-
tude (Fig. 6; R2 = 0.114, panel a). Overall, it appears that the 
population-wide latitudinal trend in CFA is partly a reflection of dif-
ferences between the northern and southern regions (Fig. 4a). In both 
the northern and southern regions, CFAs show an eastward rise then fall 
with longitude (Fig. 5b, Fig. 6b). The ELAs of modern cirque glaciers in 

the region show broadly similar latitudinal and longitudinal trends to 
those highlighted for the CFA population (and sub-populations) but as 
expected, lie a few hundred metres above (Fig. 4a, b, 5a, b, 6a, b). 

4.3. CFA variations with aspect 

The mean vector aspect for the entire cirque population is 35.5◦, 
which compares with 40.7◦ for modern cirque glaciers. However, these 
values show some regional variation. In the northern region, the cirque 
and modern cirque glacier vector means are 36.5◦ and 42.8◦, respec-
tively. In the southern region, these values are 33.2◦ and 38.4◦, 
respectively (Fig. 7). However, overlapping 95% confidence intervals 
suggest that inter-regional differences in mean aspect (Fig. 7) are un-
likely to be statistically significant. CFAs and modern cirque glacier 
ELAs show some variability with aspect. For example, E-facing cirques 
typically have lower CFAs by ~150 m (median = 642 m) than those 
facing S/SW (median = 828 m) (Fig. 8), for the entire population. 
Fourier (harmonic) regression (Evans and Cox, 1974; Evans, 2006a) 
indicates that these relationships show no statistically significant overall 
trends, p > 0.05 (Table 3). Aspect vector strength for the entire cirque 
population is 29%, which compares to 69% for the modern cirque gla-
ciers. This difference likely stems from the entire cirque population 
reflecting conditions during multiple periods of past glaciation, whereas 
the distribution and aspect of modern cirque glaciers reflects conditions 
during a single ‘snapshot’ of marginal glaciation (i.e., the present) when 
topoclimatic factors (e.g. shading) play a strong role in regulating 
glacier location. This is consistent with the ‘law of decreasing glacial 
asymmetry with increasing glacier cover’ (Evans, 1977). 

4.4. CFA variations with distance to the coast 

The attribute most strongly related to CFA is the distance to the 

Table 2 
Summary statistics for the CFAs/ELAs and distance to the coast within the 
northern and southern regions for cirques and modern glaciers. All character-
istics were extracted using ACME (Spagnolo et al., 2017).   

Northern cirques (n = 2947) Northern modern glaciers (n =
258) 

Mean Median Std. 
deviation 

Mean Median Std. 
deviation 

CFA/ELA (m 
a.s.l.) 

591 541 333 1151 1158 245 

Distance to 
the coast 
(km) 

40.83 27.01 36.3 67.73 64.97 33.16    

Southern cirques (n = 1037) Southern modern glaciers (n =
255) 

Mean Median Std. 
deviation 

Mean Median Std. 
deviation 

CFA/ELA 
(m a.s.l.) 

1195 1166 311 1528 1519 229 

Distance to 
the coast 
(km) 

104.67 96.98 43.32 108.18 97.65 42.09  

Fig. 4. Variations in cirque floor altitudes and glacier ELAs, with: (a) latitude; (b) longitude; (c) aspect; and (d) distance to the modern coastline.  
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Fig. 5. Variations in cirque floor altitudes and glacier ELAs in the northern region with: (a) latitude; (b) longitude; (c) aspect; (d) distance to the modern coastline.  

Fig. 6. Variations in cirque floor altitudes and glacier ELAs in the southern region with: (a) latitude; (b) longitude; (c) aspect; (d) distance to the modern coastline.  
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Fig. 7. Rose diagrams (linear scale of frequency with equal bin widths) of mean vector aspect frequency and vector strength. (a) Entire cirque population, (b) entire 
modern cirque glacier population, (c) cirques in the northern region, (d) modern cirque glaciers in the northern region, (e) cirques in the southern region, (f) modern 
cirque glaciers in the southern region. In each Rose diagram, the line represents the vector mean and the bar (on the end of each line) shows the 95% confidence 
interval. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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modern coastline, with the population as a whole (7.7 m/km; R2 =

0.750; RMSE = 211; Fig. 4d) and northern (7.7 m/km; R2 = 0.701; 
RMSE = 182; Fig. 5d) and southern (4.9 m/km; R2 = 0.465; RMSE =
227; Fig. 6d) sub-regions showing a statistically significant increase 
inland, p < 0.01 (Table 3). This trend is also seen in modern cirque 
glacier ELAs as a whole (5.8 m/km; R2 = 0.668; RMSE = 177; Fig. 4d) 
and within the northern (6.1 m/km; R2 = 0.621; RMSE = 134; Fig. 5d) 
and southern (3.8 m/km; R2 = 0.548; RMSE = 155; Fig. 6d) regions. For 
both CFAs and modern cirque glacier ELAs, the relationship with dis-
tance to the coastline is stronger in the northern region (where cirques 
and glaciers are also typically closer to the coast) than in the southern 
region. The inland increase in CFAs and modern cirque glacier ELAs 
follows the overall topographic gradient of the Scandinavian Mountains, 
with elevations increasing inland. These data illustrate that in each re-
gion, distance from the modern coastline is the individual variable that 
shows the strongest relationship with CFA (as indicated by R2 and 
RMSE). In each region, multiple regression of CFA against latitude, 
longitude and distance from the modern coastline returns the highest R2 

and lowest RMSE. However, distance from the modern coastline domi-
nates these relationships (i.e. it is consistently the variable with the 
strongest t value), and they only differ slightly from those based on CFA 
and distance from the coastline alone (Table 3). 

5. Discussion 

Cirque morphology, aspect, and elevation, including CFAs, are 
thought to represent a time-transgressive record of climatic and glaci-
ological conditions during former periods when cirques were occupied 
periodically by erosive (warm-based) ice (Meierding, 1982; Barr and 
Spagnolo, 2013; Ipsen et al., 2018). These conditions occurred multiple 

times during the Quaternary (and pre-Quaternary) in Scandinavia, but 
usually towards the onset and termination of each glacial cycle. By 
contrast, modern cirque glacier ELAs only (or largely) reflect climatic 
conditions at a single period in time (i.e., the present), when glaciers are 
experiencing generalised retreat. Given this difference, here we discuss 
the factors that potentially control CFAs and modern cirque glacier ELAs 
and assess if, and how, these differ. From this, we consider what CFAs 
can tell us about palaeoclimate. 

5.1. Factors controlling CFAs and modern cirque glacier ELAs 

5.1.1. Climate 
Across the study region, the northward decline in CFAs and modern 

cirque glacier ELAs (Fig. 4a), although to some degree a function of the 
two sub-regions, suggests that a latitudinal decline in air temperatures 
played a role in regulating the altitude at which former mountain gla-
ciers were able to initiate (generating cirques) and regulates where 
cirque glaciers are currently able to exist (Renssen et al., 2001; Fredin, 
2002; Ipsen et al., 2018). However, since this latitudinal decline in CFAs 
is far less apparent when sub-populations (i.e., northern and southern) 
are considered (Fig. 5a & 6a), it is likely that this control mostly operates 
over large spatial scales (Bakke et al., 2008). More locally, there is ev-
idence that topographic sheltering and/or shading (as reflected by cir-
que and cirque glacier aspects) plays a role in regulating CFAs and 
modern ELAs, suggesting that glacier initiation and sustenance was/is 
promoted at lower altitudes on east-facing slopes (Fig. 8) (Olyphant, 
1977; Hassinen, 1998). 

Despite the evidence for air temperature and aspect-related controls, 
the strongest region-wide pattern in both CFAs and modern cirque 
glacier ELAs is an increase with distance inland, which corresponds to 

Fig. 8. Boxplots comparing the CFA or ELA with aspect for the (a) whole cirque dataset (b) modern cirque glaciers (c) northern cirque region (d) southern cirque 
region. The thick middle line indicates the median, the top and bottom of the box represent the 1st and 3rd quartiles and the edge of the whisker represent the range, 
maximum and minimum excluding outliers. Outliers (open circles) are defined as points which lie more than 1.5 box lengths beyond the interquartile range. The 
number of modern glaciers and cirques within each aspect group is shown in Table 4. 
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present-day prevailing wind direction (W/SW to E/NE). Similar inland 
trends are found in other regions and are thought primarily to reflect a 
limit to favourable glacial conditions, imposed by a gradual inland 
reduction in precipitation (Peterson and Robinson, 1969; Nesje et al., 
2008; Principato and Lee, 2014; Barr and Spagnolo, 2015a; Barr et al., 
2017; Ipsen et al., 2018; Wallick and Principato, 2020). In Scandinavia 
specifically, this logic implies that, exposure to moisture from the Nor-
wegian Sea is a key factor controlling former sites of glacier initiation 
and modern glacier ELAs (Bakke et al., 2008; Nesje et al., 2008; Evans, 
2011; Oien et al., 2020). Present-day precipitation shows a strong 
relationship with modern cirque glacier ELAs in Scandinavia (Winkler 
et al., 2009; Oien et al., 2020). Our CFA study suggests that palae-
oprecipitation gradients similar to present-day might have existed dur-
ing periods of the Quaternary (or earlier) when cirques formed and were 
subsequently re-occupied by cirque glaciers. This long-term stability of 
climatic gradients in the region has been suggested previously, as other 
palaeoclimatic proxies have shown, for example, that maritime wet 
conditions were recurrent throughout the Holocene in the coastal part of 

the southern region of Scandinavia (Seppä and Birks, 2001; Bjune et al., 
2005; Bakke et al., 2008). Furthermore, palaeoclimate models, extend-
ing through the last glaciation maximum and Younger Dryas, show an 
overall pattern of precipitation decreasing inland (e.g. Renssen et al., 
2001; Forsström, 2005; Rea et al., 2020). 

For the region as a whole, and the two sub-regions, the inland in-
crease in CFAs has a slightly steeper gradient than the increase in 
modern ELAs. Barr and Spagnolo (2015b) found a similar trend between 
CFAs and modern glacier ELAs in Kamchatka (Eastern Russia). They 
attributed this difference to the fact that CFAs reflect sites of former 
glacier initiation (largely controlled by snowfall), while modern glacier 
ELAs are also strongly regulated by the variety of topoclimatic factors 
which control ablation (i.e., the link to precipitation is weakened, and 
modern glaciers can survive even in regions with limited snowfall). This 
difference in the factors controlling CFAs and modern ELAs might also 
apply in Scandinavia. However, it is also possible that the steeper inland 
CFA gradient (when compared to modern glacier ELAs) in Scandinavia 
reflects the control of ice sheet growth on areas suitable for cirque for-
mation (see Section 5.1.3). 

5.1.2. Topography 
Topographic availability exerts a control on where glaciers can 

develop, e.g. high-altitude glaciers can only form where high-altitude 
topography exists. Therefore, regional trends in CFAs and modern 
glacier ELAs likely partly reflect topographic (i.e. mountain elevation) 
gradients. Oien et al. (2020) considered the potential role of topography 
in controlling modern cirque glacier ELAs across Scandinavia and found 
that mean topography and modern ELAs increase inland with similar 
gradients. Results from the present study reveal that CFAs also increase 
inland, with very similar (but slightly steeper) gradients. Studies in other 
regions globally have contemplated the possible role that topographic 
gradients play in regulating CFAs (e.g., Peterson and Robinson, 1969; 
Hassinen, 1998; Dahl and Nesje, 1992; Anders et al., 2010; Mitchell and 
Humphries, 2014; Barr and Spagnolo, 2015b; Barr et al., 2017; Wallick 
and Principato, 2020). Though these studies acknowledge the role of 
topography, most conclude by suggesting that palaeoprecipitation gra-
dients (as indicated by cirque distance from the coast) are likely the 
dominant control on CFAs. In Scandinavia specifically, Hassinen (1998), 
focusing on an area at the very north of our study, considered the inland 
increase in CFAs to reflect palaeoprecipitation gradients combined with 
topographic trends (i.e., mountain heights gradually increase to the east, 
but at a slower rate than CFAs). Similarly, Oien et al. (2020) concluded 
that inland precipitation reduction and topographic gradients likely act 
together to regulate modern cirque glacier ELAs in the Scandinavian 
Mountains. The results from the present study support the idea that, as 
with modern cirque glacier ELAs, trends in CFAs are, to some degree, 
dictated by topography. This is illustrated in Fig. 9, which suggests that 
neither ELA gradients nor topographic gradients alone can explain the 
inland cirque distribution observed in Scandinavia. The former fails to 
explain the absence of high-altitude cirques near the coast (Fig. 9a), and 
the latter fails to explain the absence of low-altitude cirques further 
inland (Fig. 9b). However, when both inland ELA gradients and topo-
graphic gradients are considered, observed CFA trends are understand-
able (Fig. 9c). 

5.1.3. Glacial history 
During glacial periods, large ice masses readily develop in the 

Scandinavian Mountains and coalesce to form an ice sheet (e.g. Man-
gerud, 2008; Mangerud et al., 2011; Fredin, 2002; Olsen et al., 2013a; 
Hughes et al., 2016). In Scandinavia, these large ice masses first occupy 
the highest mountains of the interior of the southern region, and grad-
ually advance and coalesce to cover the entire peninsula (Fredin, 2002; 
Kleman et al., 2008; Mangerud et al., 2011; Olsen et al., 2013a; Olsen 
et al., 2013b). Once a landscape is submerged by ice, ‘new’ cirques 
cannot form and existing cirques experience minimal modification. 
Thus, in interior locations (i.e., far from the coast), the formation of 

Table 3 
Regression of cirque floor altitude (CFA) against latitude (Lat), longitude (Lon), 
distance from the modern coastline (D), and aspect (α). Significant relationships 
(i.e., where p < 0.01*, p < 0.05**), other than those based on multiple regres-
sion, are shown in Figs. 3-5. For equations based on multiple regression, the 
coefficient and variable with the strongest t value are in bold.  

Region Variable Equation p-value R2 RMSE 
(m) 

Total Lat CFA = − 88.74Lat +
6659.64 

<0.01* 0.441 315  

Lon CFA = − 41.63Lon +
1356.03 

<0.01* 0.212 374  

Dist (D) CFA = 7.70D + 305.86 <0.01* 0.750 211  
Aspect (α) Not stat. Sig. 0.31 n/a n/a  
Lat, lon, 
dist (D) 

CFA = − 85.40Lat +
35.78Lon + 5.49D +
5598 

<0.01* 0.778 199 

Northern Lat CFA = − 9.60Lat2 +

1215.10Lat - 37,603 
<0.01* 0.113 314  

Lon CFA = − 8.95Lon2 +

342.36Lon - 2586 
<0.01* 0.086 319  

Dist (D) CFA = 7.69D + 277 <0.01* 0.701 182  
Aspect (α) CFA = − 23.90cosα 

− 1.24sinα + 596.45 
0.03** n/a n/a  

Lat, lon, 
dist (D) 

CFA = − 108.46Lat +
51.38Lon + 5.58D +
6902 

<0.01* 0.731 174 

Southern Lat CFA = − 135.14Lat2 +

16589Lat - 507,781 
<0.01* 0.114 293  

Lon CFA = − 53.38Lon2 +

1030.40Lon – 3489 
<0.01* 0.383 244  

Dist (D) CFA = 4.90D + 682 <0.01* 0.465 227  
Aspect (α) Not stat. Sig. 0.06 n/a n/a  
Lat, lon, 
dist (D) 

CFA = 121.92Lat – 
65.04Lon + 6.54D – 
6505 

<0.01* 0.503 219  

Table 4 
Number of modern glaciers and cirques within each aspect group. N, 
337.5–22.5◦; NE, 22.5–67.5◦; E, 67.5–112.5◦; SE, 112.5–157.5◦; S, 
157.5–202.5◦; SW, 202.5–247.5◦; W, 247.5–292.5◦; NW, 292.5–337.5.   

N NE E SE S SW W NW 

Modern glaciers 
(total) 

136 181 114 25 10 4 6 37 

Modern glaciers 
(North) 

67 88 64 13 4 2 1 19 

Modern glaciers 
(South) 

69 93 50 12 6 2 5 18 

Cirques (total) 742 779 629 477 263 233 316 545 
Cirques (North) 527 534 475 371 210 176 237 417 
Cirques (South) 215 245 154 106 53 57 79 128  
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‘new’, and modification of existing, cirques likely stop comparatively 
early during the onset of glacial periods (when the local ELA is still 
relatively high), since the landscape quickly becomes entirely sub-
merged by largely cold-based (i.e. non erosive) ice extending from local 
high-altitude regions of ice-sheet initiation. By contrast, in coastal lo-
cations the local ELA may drop close to sea level (as indicated by CFAs), 
before the landscape is submerged by an ice sheet (Rudberg, 1994; Dahl 
et al., 1997; Hassinen, 1998; Nesje, 2009). 

This means that in Scandinavia low-altitude cirques can only develop 
in coastal locations, and not in interior regions. It is reasonable to as-
sume that the lowest elevation cirques, particularly those along the 
modern-day coast in the northern region (Fig. 3a), would only be filled 
at times of extensive glaciation (Agrell, 1977; Olyphant, 1977; Dahl 
et al., 1997; Batchelor et al., 2019). This spatial difference in glacial 
history is likely to enhance the inland trend in CFAs (already dictated by 
climate and topography – see sections 5.1.1., and 5.1.2.) (Fig. 9d) and 
might help explain why inland gradients in CFAs are slightly steeper 
than modern ELA gradients. 

5.1.4. Additional factors 
In previous studies elsewhere, spatial variations in glacio-isostatic 

adjustment and former glacial erosion rates (linked to ice dynamics 
and subglacial geology) have been considered as possible explanations 
for region-wide trends in CFA (e.g., Bakke et al., 2005; Barr and Spag-
nolo, 2015b; Barr et al., 2017). However, in Scandinavia, there is little 
evidence to suggest that these factors control the trends in CFAs. For 
example, all the cirques analysed in this study are currently experiencing 
glacio-isostatic uplift (Rosentau et al., 2012), and those in interior re-
gions are experiencing more rapid and greater uplift than in coastal 
locations (Rosentau et al., 2012). This means that cirques in interior 
locations may be further below the altitude at which they formed than is 
the case for coastal cirques. If so, correcting CFAs for residual glacial 
isostatic adjustment would increase the inland gradient. In fact, glacial 
isostatic adjustment may help partly explain why the inland gradient in 
CFAs is steeper than for modern ELAs, since the former may have been 

affected by differential uplift since deglaciation, while the latter reflects 
the contemporary climate and is therefore independent of isostatic 
adjustment. 

While there is regional variability in cirque lithology, there are no 
broad-scale trends to suggest that bedrock resistance increases with 
distance from the coast, certainly not in any way that explains overall 
trends in CFAs (unlike Delmas et al., 2014; Delmas et al., 2015). Finally, 
the dynamics of former cirque glaciers may have varied regionally, and 
there is evidence to indicate that coastal glaciers may have been more 
dynamic (with higher mass turnover). Additionally, the coastal, low- 
elevation glaciers would have only been covered by the ice sheet at 
maximum extent, and may have experienced greater time of active 
cirque glacier occupation than those in the interior that would have been 
shielded by cold-based ice (Olsen et al., 2001; Bakke et al., 2005; 
Batchelor et al., 2019). Any spatial differences in glacier dynamics are 
likely to result in differences in CFAs on the order of tens of metres (e.g. 
Dahl et al., 1997; Barr et al., 2017), not the hundreds of metres differ-
ence between the coast and peak mountains as observed. 

5.2. Limitations of CFAs as palaeoclimate indicators 

As outlined above, when glaciers are small, and largely confined to 
their cirques (i.e., during periods of cirque glaciation), CFAs roughly 
approximate cirque glacier ELAs, and could therefore be used (with 
some caveats) as a source of quantitative palaeoclimate information 
(precipitation and/or temperature). However, this palaeoclimatic in-
formation only becomes useful when it can be assigned to a particular 
time period. This requires geochronometric dating to establish when 
cirque-confined glaciers last occupied a landscape. This is possible 
through surface exposure dating (e.g., Barth et al., 2016; Barth et al., 
2018), but it is expensive and impractical to apply to large populations, 
particularly when (as in the present study) thousands of cirques are 
considered. Without chronological information for many cirques, the 
palaeoclimatic inferences that can be drawn from populations are 
limited. Despite this caveat, trends in CFA may reflect general, long- 

Fig. 9. Schematic illustration of potential drivers of the inland increase in minimum, mean and maximum CFAs observed in the present study. (a) Climatic gradient 
alone (as indicated by variability in climatic ELA), (b) topographic gradient alone, (c) climatic and topographic gradients, (d) climatic and topographic gradients, 
combined with spatial variability in glacial history, with the top of the black margin representing the minimum CFA (i.e., the formation of ice sheets at inland 
locations) and the bottom the minimum ELA. This illustration indicates that only scenarios (c) and (d) produce CFA distributions comparable to that seen in Fig. 4d, 
despite the complex history of uplift in the Scandinavian Mountains (Nielsen et al., 2009; Steer et al., 2012; Pedersen et al., 2021). 

R.P. Oien et al.                                                                                                                                                                                                                                  



Palaeogeography, Palaeoclimatology, Palaeoecology 600 (2022) 111062

11

lasting or recurrent palaeoclimatic gradients – i.e. compound (palimp-
sest) gradients from the superimposition of several glacial phases. 
However, where CFAs track topography (as in the present study), 
isolating and quantifying the climatic component is difficult. Where CFA 
trends differ from modern ELA or climate trends, this might indicate 
changing climate (i.e., precipitation) patterns through time (e.g., Evans, 
1999). However, in almost all cases, trends in CFA generally track 
modern climate/ELA (Peterson and Robinson, 1969; Hassinen, 1998; 
Anders et al., 2010; Barr and Spagnolo, 2015b; Barr et al., 2017; Wallick 
and Principato, 2020), and obtaining any useful palaeoclimatic infor-
mation (beyond establishing that broad precipitation gradients have 
changed little through time – as observed in the present study) relies on 
interpreting differences between the two (e.g., Barr and Spagnolo, 
2015b). However, in Scandinavia, even extracting palaeoclimatic in-
formation in this way is complicated by the potential role that the glacial 
history has played in regulating CFAs (Section 5.1.3.). 

6. Conclusions 

In this study, 3984 cirque floor altitudes (CFAs) and 513 modern 
cirque glacier ELAs were analysed across the Scandinavian Peninsula. 
We investigated trends in these data to establish controls on past and 
present glaciers in the region, and to establish what palaeoclimatic in-
formation can be obtained from CFAs. The main study findings are:  

1. Latitudinal and aspect-related trends in CFA and modern glacier 
ELAs suggest that air temperatures and local shading played, and 
continue to play, a role in regulating sites of mountain glaciation 
across the Scandinavian Peninsula.  

2. The dominant trend in CFAs and modern glacier ELAs across the 
region is an increase inland i.e., increasing with distance from the 
coast. These trends likely reflect the combined influence of climatic 
gradients (controlling past and present ELAs), and topographic gra-
dients (restricting where glaciers and cirques can form). In the case 
of CFAs, unravelling controls on the increase inland is further 
complicated by spatial differences in glacial history (in particular, ice 
sheet growth in the interior during glacial periods, preventing the 
formation of low altitude cirques).  

3. Results from the present study, supported by other studies, suggest 
that individual CFAs can yield useful (quantitative), but limited, 
palaeoclimate information. However, given the potential role of 
climate, topography, and glacial history (and the difficulties with 
disentangling these controls), palaeoclimatic interpretations derived 
from cirque populations and/or CFA trends should be treated with 
caution. 
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