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Abstract

Radar sounding is a powerful geophysical approach for characterizing the subsurface conditions
of terrestrial and planetary ice masses at local to global scales. As a result, a wide array of orbital,
airborne, ground-based, and in situ instruments, platforms and data analysis approaches for
radioglaciology have been developed, applied or proposed. Terrestrially, airborne radar sounding
has been used in glaciology to observe ice thickness, basal topography and englacial layers for five
decades. More recently, radar sounding data have also been exploited to estimate the extent and
configuration of subglacial water, the geometry of subglacial bedforms and the subglacial and
englacial thermal states of ice sheets. Planetary radar sounders have observed, or are planned
to observe, the subsurfaces and near-surfaces of Mars, Earth’s Moon, comets and the icy
moons of Jupiter. In this review paper, and the thematic issue of the Annals of Glaciology on
‘Five decades of radioglaciology’ to which it belongs, we present recent advances in the fields
of radar systems, missions, signal processing, data analysis, modeling and scientific interpretation.
Our review presents progress in these fields since the last radio-glaciological Annals of Glaciology
issue of 2014, the context of their history and future prospects.

Introduction

Five decades of radioglaciology (the use of radio waves to investigate ice masses of all types)
since the first data were published have seen a progression of instruments and platforms, as
well as data processing and analysis approaches applied to a growing data archive
(e.g. Stern, 1930; Steenson, 1951; Robin, 1975; Gogineni and others, 1998; Dowdeswell and
Evans, 2004; Allen, 2008; Turchetti and others, 2008). Radar-sounding (also known as ice-
penetrating radar) data have been used to observe ice thickness, basal topography and englacial
layers across Antarctica and Greenland, as well as many ice caps and glaciers. Major data-
collection efforts started in the late 1960s and early 1970s, including a collaboration between
the Technical University of Denmark, Scott Polar Research Institute, and National Science
Foundation (TUD-SPRI-NSF) to map the bed of Antarctica. Other early surveys were also
led by Russia, Germany, Iceland, Italy, China, and Canada (among others) across
Antarctica and Greenland, as well as Iceland, Arctic Ice Caps, and mountain glaciers
(e.g. Drewry, 1983; Bingham and Siegert, 2007; Björnsson, 2020; Popov, 2020). Planetary
radar sounders have also been used, or are planned, to observe the subsurface and near-surface
conditions of Mars, Earth’s moon, comets and the icy moons of Jupiter (e.g. Seu and others,
2007; Jordan and others, 2009; Kofman and others, 2010; Bruzzone and others, 2013; Kofman
and others, 2015; Patterson and others, 2017; Blankenship and others, 2018). Fully exploiting
the valuable information from these data, such as ice-sheet bed topography, the distribution of
subglacial water, the spatial variation of basal melt, the transition between frozen and thawed
bed conditions, englacial temperature, histories of accumulation, flow, and the distribution of
age in ice masses remains an active area of international research. In this review paper, and the
thematic issue of the Annals of Glaciology on ‘Five decades of radioglaciology’ to which it
belongs, we present recent advances in the field in the context of their history and future pro-
spects. We include papers published in this issue, topics presented at an International
Glaciological Society Symposium on the same theme hosted at Stanford University during
the summer of 2019, and work added to the published literature since the last thematic
Symposium and Annals issue focused on radioglaciology in 2014.

Data

The data collected by radar surveys in the last five decades have transformed our appreciation
of glacier and ice-sheet beds and how ice flows over them. Prior to this era, such information
was gained from seismic data, taking orders of magnitude longer to acquire. Early radar
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surveys witnessed significant improvements in survey design,
instrument capability (e.g. the Technical University of Denmark
System), platforms (e.g. the US Hercules LC-130) and coastal air-
strips, leading to systematic surveys of the Greenland and
Antarcticice sheets (Sorge, 1933; Robin, 1958; Gudmandsen,
1975; Drewry, 1983). In the case of Antarctica, the
TUD-SPRI-NSF collaboration collected over 400 000 line-km of
data during the 1970s and, in some regions, these data provide
the only measurements ever taken. By the early 1980s, those
first long-range airborne radar surveys had ended, giving way to
regional studies collected by, for example, Russian and German
programs and the US Support Office for Aerogeophysical
Research (SOAR) in Antarctica (Blankenship and others, 1993;
Behrendt and others, 1994; Bell and others, 1998; Hempel and
others, 2000; Masolov and others, 2006; Dean and others, 2008;
Turchetti and others, 2008). Other examples include surveys of
glaciers and ice caps in Iceland, Alpine glaciers, Svalbard and
the Russian and Canadian Arctic (e.g. Dowdeswell and others,
1986, 2002, 2004; Björnsson and others, 1996; Fürst and others,
2018; Pritchard and others, 2020).

In the early 2000s, the Bedmap Consortium produced a new
compilation of radar data from Antarctica for which the
TUD-NSF-SPRI data still formed by far the most significant con-
tribution, with dozens of other regional-scale surveys that form a
patchwork coverage of parts of the ice sheet while other regions
remained completely free of data (Lythe and Vaughan, 2001).
Bedmap2 followed a decade later, including additional regional sur-
veys as well as long- and medium-range airborne studies returned
in 2008 by the US–UK–Australia–China–French ICECAP project
and NASA’s Operation IceBridge (OIB) (Holt and others, 2006;
Vaughan and others, 2006; Bell and others, 2011; Young and
others, 2011; Ross and others, 2012; Fretwell and others, 2013).
However, several regions remained free of data (Pritchard, 2014).
Other compilations are now due that will incorporate new data
that have been acquired to fill many of Bedmap2’s gaps, including,
for example, across Marie Byrd Land, West Antarctica, the
Recovery Basin/South Pole, the Dome F region and Princess
Elisabeth Land, as well as newly remastered TUD-NSF-SPRI film
data and updated thickness measurements for the Ross Ice Shelf
(Tang and others, 2016; Young and others, 2016; Popov, 2017;
Humbert and others, 2018; Jordan and others, 2018a; Karlsson
and others, 2018; Morlighem and others, 2019; Paxman and others,
2019; Schroeder and others, 2019; Tinto and others, 2019).
Compared to Antarctica, surveys of Greenland starting in the
1990s by the University of Kansas as part of NASA’s Program
for Arctic Regional Climate Assessment (PARCA) and later OIB
have led to relatively abundant and mutually interpretable observa-
tions of the ice-sheet bed and englacial properties (Bamber and
others, 2013; Gogineni and others, 2014; MacGregor and others,
2015a; Morlighem and others, 2017).

In addition to the collection of radar sounding profiles, inter-
polation is a critical component of producing bed topography
maps. Previous approaches focused on grid interpolation techni-
ques such as spline interpolation or kriging (e.g. Fretwell and
others, 2013). However, in many regions, this gridded topography
falls short of capturing topography at the scales most critical for
resolving ice-flow processes (Durand and others, 2011; King
and others, 2016; Bingham and others, 2017; Kyrke-Smith and
others, 2018). For this reason, other approaches, such as mass-
conservation modeling or geostatistical approaches, which can
provide multiple observation-consistent realizations, provide
improved interpolations of bed topography (e.g. Rasmussen,
1988; Warner and Budd, 2000; Goff and others, 2014;
Morlighem and others, 2017; MacKie and others, 2019).

Future surveys are unlikely to resemble those conducted previ-
ously since ice-sheet models require that data are collected with

strategies optimized for their purpose, including flowlines for pro-
cess interpretation, ground-based time-series for local process
monitoring, and repeat flights (Kingslake and others, 2014;
Nicholls and others, 2015; Chu and others, 2016; Khazendar
and others, 2016; Holschuh and others, 2017; Davies and others,
2018; Schroeder and others, 2018; Young and others, 2018;
Bartlett and others, 2020). These process- and site-specific surveys
can also take advantage of systems with wider bandwidths and
larger antenna arrays that provide enhanced performance, but
with more limited range (e.g. Rodriguez-Morales and others,
2013; Kjær and others, 2018). Ultimately, new platforms, such
as rovers, drones and satellites stand to transform the way radar-
sounding observations are made (Jezek and others, 2006; Koh and
others, 2010; Arcone and others, 2016; Freeman and others, 2017;
Dall and others, 2018; Carrer and others, 2018; Gogineni and others,
2018; Culberg and Schroeder, 2019; Arnold and others, 2020).

Systems

Early radar sounding systems spanned a range of frequency,
bandwidth, power and array configurations including both short
mono-pulse and chirped-waveform systems (Allen, 2008;
Gärtner-Roer and others, 2014). However, until the 1990s (and
the availability of faster and lower-cost electronics) the data
recorded remained ‘incoherent’, limiting the azimuth resolution
and processing gain below that achievable with phase-coherent
stacking and Synthetic Aperture Radar (SAR) processing (Musil
and Doake, 1987; Hamran and Aarholt, 1993; Leuschen and
others, 2000; Legarsky and others, 2001; Hélière and others,
2007; Peters and others, 2007). For stationary ground-based sys-
tems, a similar gain in the achievable post-processing signal
tonoise ratio (SNR) and range-estimate precision has been
achieved by coherent ‘phase-sensitive’ frequency-modulated con-
tinuous wave (FMCW) radars (Nicholls and others, 2015).

Just as coherent radar sounders enabled improved along-track
resolution and processing gain, the development of systems with
multi-channel cross-track arrays improved cross-track resolution,
processing gain, clutter discrimination and swath mapping
(Gogineni and others, 1998; Paden and others, 2010; Wu and others,
2011; Rodriguez-Morales and others, 2013; Castelletti and others,
2017; Holschuh and others, 2020; Scanlan and others, 2020). This
is also true for ground-based multiple input, multipleoutputimple-
mentations of the ‘phase-sensitive’ FMCW radars mentioned
above (Young and others, 2018). While these multi-channel soun-
ders do achieve some diversity in viewing angle and englacial propa-
gation, true bistatic observations and tomographic inversions can be
exploited to provide much richer constraints on subsurface proper-
ties including, for example, using commercial pulsed ground-
penetrating radar (GPR) systems in common mid-pointor borehole
configurations to achieve wider (though coherence-limited) off-
sets (e.g. Kofman and others, 2015; Holschuhand others, 2016;
Patterson and others, 2017; Church and others, 2019).

The evolution of distinct radar sounding systems has resulted
in a diversity of frequencies, spanning HF (3–30 MHz), VHF (30–
300 MHz), UHF (300 MHz–3 GHz) and higher frequency bands
(Gudmandsen, 1975; Paden and others, 2005; Hélière and others,
2007; Peters and others, 2007; Allen, 2008; Shi and others, 2010;
Hindmarsh and others, 2011; Rignot and others, 2013;
Rodriguez-Morales and others, 2013; Dall and others, 2018; Yan
and others, 2018). Although, this diversity can make it challen-
ging to compare or combine distinct datasets, it also offers the
opportunity to probe the radio-frequency responseof the ice
sheet to constrain conditions and processes with greater fidelity
(e.g. Carrer and Bruzzone, 2017; Winter and others, 2017).

In addition to systems capable of recording amplitude, phase
and channel information, radar sounder development has also
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included systems that record multiple polarizations (e.g. Vaughan
and others, 2006; Dall and others, 2010). These systems allow for
the analysis of crystal-fabric orientation from polarization infor-
mation (Doake and others, 2002; Fujita and others, 2003;
Matsuoka and others, 2003; Eisen and others, 2007; Drews and
others, 2012; Li and others, 2018; Wang and others, 2018;
Jordan and others, 2019). This information can be used to con-
strain the depth distribution of the crystal orientation fabric
along survey lines, enabling the investigation of processes occurring
in ice masses, comparison to ice-dynamic models, and interpret-
ation of particle-astrophysical observations (e.g. Jordan and others,
2019, 2020a,b; Shoemaker and others, 2020).

Technical advances in available hardware have also allowed the
development of stationary systems designed for long-term (several
months to years) autonomous operation with repeated observa-
tions over cycles ranging from minutes to days, targeting the tem-
poral evolution of a particular site (Nicholls and others, 2015;
Kendrick and others, 2018; Mingo and others, 2020; Vankova
and others, 2020). To further address the power demands of gen-
erating an active radar signal (particularly in the extreme resource
constraints of planetary missions) passive radar sounding is also
being developed as a new radioglaciological technique to exploit
Jovian radio noise, or that from the Sun, as sources for radio
echo detection, with the promise to enable pervasive monitoring
of subsurface conditions by low-cost, low-power sensor networks
(Romero-Wolf and others, 2015, 2016; Schroeder and others,
2016b; Peters and others, 2018).

Processing

Processing radar-sounding data turns low-SNR, low-resolution,
high-clutter raw data into usable radargrams. With the exception
of a subset of short-pulse systems such as commercial GPRs and
some legacy sounders still in use today nearly all radar sounder
processing begins with pulse-compression of a chirped waveform
using some windowing function for range-sidelobe suppression,
some amount of on-board pre-summing to increase SNR and
moderate data-rates, and filtering (e.g. Peters and others, 2007;
Booth and others, 2010; Lilien and others, 2020; Wang and
others, 2020). For coherent radar-sounding data, along-track
SAR focusing is also nearly ubiquitous to improve the SNR, signal
to clutter ratio and azimuth resolution (Legarsky and others,
2001; Hélière and others, 2007; Peters and others, 2007).
Additionally, azimuth processing that evaluates along-track
coherence, multiple apertures, large coherent apertures, layer-
specific phase histories, or squinted processing, enhance layer
resolution or provide information about the scattering function
and fine-scale geometry of the bed (e.g. Oswald and Gogineni,
2008; Schroeder and others, 2014a; Heister and Scheiber, 2018;
Castelletti and others, 2019; Ferro, 2019). For multi-channel
sounders, cross-track processing can considerably increase the
level of resolution, with large benefits for tomographic swath
imaging of the ice bottom and internal structure, in particular
of irregular disturbances of basal ice, such as folds or entrained
matter (e.g. Paden and others, 2010; Wu and others, 2011;
Rodriguez-Morales and others, 2013; Castelletti and others,
2017; Young and others, 2018).

In addition to the instantaneous or single-survey coherence
required for focusing and array processing, modern high-stability
and low-noise systems make it feasible to perform repeat-pass
interferometric analysis on sounding data from ground-based
platforms (Kingslake and others, 2014; Nicholls and others,
2015). While point-based observations of phase changes over time
periods, ranging from months to years, are now widespread, for
example, to deduce basal melt rates of ice shelves and vertical veloci-
ties in ice sheets, its spatial application to large airborne surveys is

relatively recent and, as yet, rarely applied (e.g. Corr and others,
2002; Castelletti and Schroeder, 2017; Stewart and others, 2019).

Another critical area of innovation in radioglaciological data
processing and analysis is automatic methods for radargram
image interpretation. These include algorithms for layer tracking,
bed and surface mapping and basal feature categorization (Sime
and others, 2011; Crandall and others, 2012; Ferro and
Bruzzone, 2012; Ilisei and Bruzzone, 2015; Panton and
Karlsson, 2015; Carrer and Bruzzone, 2016; Rahnemoonfar
and others, 2017; Berger and others, 2018; Donini and others,
2019). Success of these approaches is a prerequisite to be able
to cope efficiently with the data volume of future surveys and
effectively exploit their information content.

Ice sheet and glacier bed conditions

Five decades of radioglaciology have produced a diverse array of
information pertaining to subglacial conditions. The vast majority
of surveys have been motivated by the primary imperative of
locating the bed reflector either to estimate the total volume
and sea-level potential of the major ice sheets or to map basal top-
ography (e.g. Bailey and others, 1964; Gudmandsen, 1969;
Bamber and others, 2013; Fretwell and others, 2013). In the last
two decades, the emphasis has expanded to the investigation of
the geometric, thermal and material properties of the basal inter-
face, by using the sounder-appropriate radar equation to solve for
either basal reflectivity or echo character (Peters and others, 2005;
Oswald and Gogineni, 2008; Schroeder and others, 2013; Grima
and others, 2014b; Haynes and others, 2018b; Haynes, 2020).

Radar sounding data encode a range of information about the
roughness of the basal interface. The most common glaciological
definition of roughness is the extent to which terrain varies verti-
cally over a given horizontal distance (Rippin and others, 2014).
As mapped across a number of regions of Antarctica and
Greenland, roughness variations at the multi-kilometer scale
inform us about present and past ice-stream and ice-stream tribu-
tary locations (Siegert and others, 2004; Bingham and Siegert,
2007, 2009; Rippin and others, 2014; Frank and others, 2020).
Additionally, basal roughness at the wavelength-scale can affect
the character of the reflected echo including its specularity (or
spread in Doppler), waveform abruptness, statistical distribution of
echo amplitudes, as well as the radar-derived topography itself
(Goff and others, 2014; Grima and others, 2014a; Rippin and others,
2014; Schroeder and others, 2014a; Jordan and others, 2017; Heister
and Scheiber, 2018; Eisen and others, 2020; Franke and others, 2020;
King, 2020). Principles from these studies have also been translated
to paleoglacial landscapes and have also been compared to contem-
porary bed morphology and lithology (Gudlaugsson and others, 2013;
Schroeder and others, 2014c; Falcini and others, 2018; Cooper and
others, 2019; Muto and others, 2019; Holschuh and others, 2020).

In radioglaciology, although reflectivity is used as an umbrella
term encompassing all methods used to interrogate variations in
the magnitude of the bed echo, it most commonly and appropri-
ately refers to changes in the material properties (and therefore
Fresnel reflection coefficient) of the ice–bed interface (Peters
and others, 2005). While there are challenges in correcting or con-
straining attenuation or surface roughness losses, the basal ther-
mal state (frozen or thawed and the presence or absence of
water) fundamentally affects the reflection coefficient (Peters
and others, 2005; Matsuoka, 2011; Schroeder and others,
2016a). The reflection coefficient can provide a constraint on
where the bed is frozen or thawed, the reach and character of
ocean water at the grounding line, and basal conditions of ice
streams (Peters and others, 2005; Jacobel and others, 2009;
Ashmore and others, 2014; Christianson and others, 2016). The
presence and volume of inferred basal water bodies have also
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been used to place constraints on the basal thermal state and/or
geothermal flux, while layer drawdown has also been used to con-
strain basal melt rates and geothermal flux (Fahnestock and others,
2001; Catania and others, 2006; Buchardt and Dahl-Jensen, 2007;
Schroeder and others, 2014b; Rezvanbehbahani and others, 2017,
2019; Seroussi and others, 2017; Jordan and others, 2018a,b).

Perhaps the most widely and successfully studied basal feature
with radar sounding data has been subglacial water bodies, par-
ticularly subglacial lakes in Antarctica using the principle that
subglacial water results in reflections brighter than surrounding
bed echoes in radar data (Oswald and Robin, 1973; Peters and
others, 2005; Wright and Siegert, 2012). Because of the coherent
specular character of subglacial water, small fractional areas can
dominate the echo both in terms of reflectivity and geometric
spreading (Haynes and others, 2018b). This has been exploited
to automatically detect lakes in radar sounding data (Carter and
others, 2007; Ilisei and others, 2018). Additionally, lake-bottom
echoes have been used to probe water thickness and conductivity
(Gorman and Siegert, 1999). Surface altimetry data have also been
used to infer active lakes around Antarctica where the ice surface
has been observed to rise and fall, yet, surprisingly, these lakes
typically do not have higher reflectivities than their surroundings
in radar data, showing that we still have much to learn about
Antarctic subglacial lakes (Carter and others, 2007; Smith and
others, 2009; Siegfried and others, 2016; Carter and others,
2017; Siegert, 2018). This is also emphasized by different observa-
tions with different systems of the same regions, leading to con-
trasting interpretations (e.g. Bell and others, 2007; Humbert and
others, 2018). Recent advances in the analysis of subglacial hydrol-
ogy from radar sounding data has focused on subglacial water sys-
tems beyond Antarctic subglacial lakes (e.g. Young and others,
2016). This includes utilizing bed-echo strength and character to
investigate water body geometry and dynamic configuration,
catchment-scale drainage systems and grounding zones
(Schroeder and others, 2013, 2014a; Ashmore and Bingham,
2014; Christianson and others, 2016). In Greenland, a range of
studies has investigated the distribution of subglacial water, includ-
ing lakes, topographically controlled seasonal storage and gradients
in water near the onset of fast flow (Oswald and Gogineni, 2008;
Palmer and others, 2013; Chu and others, 2016, 2018b; Jordan
and others, 2018b; Oswald and others, 2018; Bowling and others,
2019). Hypersaline lakes have also been identified beneath Devon
Ice Cap in Arctic Canada (Rutishauser and others, 2018).

Radio-wave attenuation

Laboratory analyses of radio-wave absorption in ice, as well as
radar sounding data from the field, have revealed that while rela-
tively homogeneous ice is a very low-loss medium for radio-waves
at VHF frequencies, there is a loss of returned power englacially due
to dielectric absorption of radiowaves in ice. Dielectric absorption is
proportional to the electrical conductivity of the ice, which is related
to ice temperature and the presence of impurities (Glen and Paren,
1975; Johari and Charette, 1975; Moore and Fujita, 1993; Stillman
and others, 2013; Pettinelli and others, 2015). Without sufficiently
distinct basal echo signals (e.g. relative changes that delineate
sharp boundaries, such as ice stream shear margins) or sufficiently
effective corrections, uncertainty in englacial attenuation can obfus-
cate the interpretation of basal reflectivities (Matsuoka, 2011;
Siegert and others, 2016; Schroeder and others, 2016a).

Empirical methods for estimating englacial attenuation using
bed echoes range from simple linear fitting to adaptive or
model-informed fitting (Jacobel and others, 2009; Wolovick and
others, 2013; Ashmore and others, 2014; Jordan and others,
2016; Schroeder and others, 2016c). Englacial layers themselves
have also been used to derive attenuation (Matsuoka and others,

2010; MacGregor and others, 2015b). These approaches can also
be intercompared or combined (e.g. Hills and others, 2020; Jeofry
and others, 2020). Additionally, investigating attenuation with
variable offset can constrain englacial, attenuation, though there
is a limit on the maximum offset achievable with commercial
GPR systems (Holschuhand others, 2016). These empirical
attenuation values can either be used to correct losses to enable
reflectivity interpretation or interpreted themselves as a proxy
for englacial temperature.

In addition to applying empirical methods that estimate and
correct for attenuation, attenuation rate can also be modeled
(Matsuoka and others, 2012). This approach can be used when
correcting attenuation effects or constraining the bed conditions
using layer power (MacGregor and others, 2015b; Chu and others,
2018b). Modeled attenuation can be compared to observations to
constrain englacial temperature, parameterize basal conditions to
match surface velocities or to quantify englacial water from persist-
ent firn aquifers (Forster and others, 2014; Schroeder and others,
2016c; Chu and others, 2018a; Holschuh and others, 2019).

Englacial structure

The study of radar-derived englacial properties dates back almost
to the beginning of radioglaciology (e.g. Harrison, 1973;
Gudmandsen, 1975; Paren and Robin, 1975). The englacial infor-
mation that radar data contain has the potential to provide
insights into ice-flow processes as well as climatic forcings. The
layers have thus been widely used with models for ice-core site
selection, stratigraphic control and inferring accumulation histor-
ies (see below) (e.g. Jacobel and Hodge, 1995; Cavitte and others,
2016; Parrenin and others, 2017). In recent years, the radioglacio-
logical community has seen an increase in the retrieval of such
information from radar data although barriers remain to the
widespread usage of englacial stratigraphy. This is due to the
fact that a substantial amount of manual work is generally needed
to convert the stratigraphic information into, for example, dated
isochrone surfaces that can readily be used by ice-flow models.
Attempts to overcome this obstacle include methodologies focus-
ing on quantifying the slope of the stratigraphy and extracting
information from slopes instead (Panton and Karlsson, 2015;
Holschuh and others, 2017; Castelletti and others, 2019).
Studies focusing on the reorganization of ice flow often avoid tra-
cing isochrones and take a qualitative approach. For example,
imprints of shear margin migration or change in flow direction
are typically identified based on the amount of stratigraphic dis-
ruption. Examples include studies showing changes in ice-flow
structure or folded stratigraphy in Greenland and entrained debris
in a glacier in Patriot Hills, West Antarctica (Catania and others,
2006; Martín and others, 2009; Dahl-Jensen and others, 2013; Bell
and others, 2014; Bingham and others, 2015; Kingslake and
others, 2016; Winter and others, 2019; Ross and Siegert, 2020).
Advances in processing radargrams to extract ice-sheet structure
make it possible to interpret these features in regions of complex
flow (Elsworth and others, 2020).

The tracing of englacial isochrones in the radar data acquired
over Greenland between 1993 and 2013 by the University of
Kansas Center for Remote Sensing of Ice Sheets and OIBis a
vital step forward in the efforts to make englacial stratigraphic
information readily available (Gogineni and others, 1998, 2001;
MacGregor and others, 2015a; Arnold and others, 2018). The
resulting data archive has increased the availability of traced iso-
chrones by orders of magnitude. Derived results include evidence
of Holocene deceleration of the Greenland ice sheet, and
improved constraints on its internal temperature (MacGregor
and others, 2015b, 2016). In Antarctica, no such large-scale syn-
thesis has been undertaken, but the SCAR AntArchitecture
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project has the potential to address this critical gap. Several stud-
ies have successfully linked isochrones between deep ice-core sites:
the interior Antarctic ice-core sites are now linked from Dome
Concordia through Vostok to Dome Argus, and Dome Fuji has
been linked to the EPICA-DML (European Project for Ice
Coring in Antarctica Dronning Maud Land) ice-core site
(Cavitte and others, 2016; Winter and others, 2019). These efforts
will play a key role in identifying optimal drill sites for the Oldest
Ice (ice older than 1.5 million years, Fischer and others, 2013).

Other important derived products from traced isochrones are
the past accumulation rates and patterns (e.g. Eisen, 2008).
Recent work in this area has been carried out on time-scales ran-
ging from annual to centennial to millennial (Eisen and others,
2008; Medley and others, 2014; Nielsen and others, 2015; Grima
and others, 2016; Karlsson and others, 2016; Koenig and others,
2016; Koutnik and others, 2016; MacGregor and others, 2016;
Lewis and others, 2017; Cavitte and others, 2018; Karlsson and
others, 2020; Montgomery and others, 2020). Efforts to automate
layer tracing continue, which include methodologies that use seed
points to initiate semi-automatic tracing routines as well as fully
automatic schemes. In parallel, the extra-terrestrial radar commu-
nity has been working toward automatically extracting layer infor-
mation from the Martian orbital radar sounders (Ferro and
Bruzzone, 2012; Onana and others, 2015; Xiong and others,
2018; Xiong and Muller, 2019). Delf and others (2020) (this
issue) present some strategies for assessing automated algorithms
inherited from both terrestrial and planetary work.

Interpretation

The history and dynamics of glaciers and ice sheets are written into
radar-sensitive properties of these ice masses. Interpretation of
radar data may be qualitative or quantitative, with the latter facili-
tated by process-based models in particular. In its most common
form, however, interaction between radioglaciology and models is
often limited and one-directional: radio-echo sounding of ice
depth furnishes the basal boundary condition for ice-flow models
(e.g. Fretwell and others, 2013). While gaps in our knowledge of
basal topography have spurred model development, radar studies
have produced a trove of other data and discoveries, including,
for example, evidence of retreat, past flow, basal accretion,
firn-aquifers and ice-shelf conduits, that remain under-exploited
by theory and models (Conway and others, 1999; Siegert and
others, 2004; Bingham and Siegert, 2007; Bell and others, 2011;
Morlighem and others, 2011; Forster and others, 2014; Bons and
others, 2016; Drews and others, 2017; Jordan and others, 2018a;
Leysinger Vieli and others, 2018; Holschuh and others, 2019;
Langhammer and others, 2019).

Theoretical work has established relationships between the
architecture of internal layers and ice-sheet accumulation, topog-
raphy, rheology and dynamics (e.g. Nereson and Waddington,
2002; Siegert, 2003; Hindmarsh and others, 2006; Parrenin and
others, 2006; Martín and others, 2009; Felix and King, 2011).
Internal layers have been integrated with models to determine
ice rheology and to understand flow history, including migration
of ice streams, divides and domes (e.g. Nereson and Raymond,
2001; Ng and Conway, 2004; Catania and others, 2006;
Gillet-Chaulet and others, 2011; Pettit and others, 2011; Drews
and others, 2015; MacGregor and others, 2016). The discovery
of deep internal structures that do not conform to the bed has
prompted new model exploration of englacial and basal processes
including interpretation of their radar scattering character, with
implications for interpreting ice-sheet dynamics and the climate
archive (e.g. Bell and others, 2011, 2014; Dahl-Jensen and others,
2013; Wolovick and others, 2013; Wrona and others, 2017; Kjær
and others, 2018; Goldberg and others, 2020).

In addition to englacial layers, radar sounding data have been
used to detect channels under ice shelves that have also been the
focus of a suite of model investigations (e.g. Jenkins, 2011; Le
Brocq and others, 2013; Sergienko, 2013; Drews, 2015; Alley
and others, 2016). Theory and observation are yielding new
insight into ice–ocean interactions and real-time geomorphic pro-
cesses in grounding zones, the influence of topography on chan-
nel position and formation, and the uncertain relationship
between channels and ice-shelf stability (e.g. Gladish and others,
2012; Greenbaum and others, 2015; Khazendar and others, 2016;
Drews and others, 2017; Gourmelen and others, 2017; Jeofry and
others, 2018).

With so much radioglaciological data, the advent of resources
such as ice-sheet-wide radiostratigraphic archives should help
operationalize data–model integration (MacGregor and others,
2015a). But how are such archives best exploited? Inverse meth-
ods present a natural approach, although the persistent problem
of non-uniqueness demands care in defining the problem, choos-
ing the tools and incorporating constraints (e.g. Waddington and
others, 2007; Eisen, 2008; Gudmundsson, 2011; Koutnik and
Waddington, 2012; Nielsen and others, 2015; Koutnik and others,
2016). Computational costs of large-scale models further demand
attention to efficiency, for example, by the use of adjoint methods
(e.g. Hascoët and Morlighem, 2018). Consideration should also be
given to the information content of different variables, including
those sensitive to basal processes, as well as to the limitations of
rendering 3-D effects in 2-D data (Leysinger-Vieli and others,
2007; Holschuh and others, 2017; Young and others, 2018).
While we must devise modeling strategies to make best use of
the data, this is far from a case of models simply lagging observa-
tions. Challenges remain in combining disparate datasets, condi-
tioning data for comparison with modeling and utilizing
radiometric, interferometric and polarimetric information in
modeling (e.g. Hindmarsh and others, 2009; Schroeder and
others, 2016c; Castelletti and others, 2017, 2019; Winter and
others, 2017, 2019; Chu and others, 2018b; Jordan and others,
2019). Finally, data–model interaction is a two-way street: testable
hypotheses produced by theory and models may suggest new
observational targets or provide new reasons to tap the rich radio-
glaciological archive (e.g. Raymond, 1983; Arthern and others,
2015).

Planetary radioglaciology

The bulk of extra-terrestrial ice-sounding data stems from the pla-
net Mars, specifically from the two orbital radar sounders:
MARSIS (Mars Advanced Radar for Subsurface and
Ionospheric Sounding) onboard the European Space Agency’s
Mars Express, and SHARAD onboard the Mars Reconnaissance
Orbiter launched by NASA (National Aeronautics and Space
Administration, USA) (SHAllow RADar, Seu and others, 2007;
Jordan and others, 2009). The difference in frequency between
the two sounders allowed for different penetration depths and
thereby different insights into the planet’s ice bodies (MARSIS
operated at 1.3–5.5 MHz in its subsurface sounding mode while
SHARAD used 15–25 MHz). Although both instruments are
now inactive, analysis of the data is ongoing and continues to con-
tribute to our understanding of water ice on Mars. The results
from the radar sounders documented the high water content of
the Martian water-ice reservoirs (e.g. Grima and others, 2009).
These have now been supplemented by more detailed studies of
the composition of the polar ice bodies, the immediate subsurface
of the north pole, and the mid-latitude water ice reservoirs
(Guallini and others, 2018; Mirino and others, 2018; Petersen
and others, 2018; Putzig and others, 2018; Nerozzi and Holt,
2019). In addition, the radar sounding has confirmed areas on
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the planet also contains significant volumes of buried water ice
(Bramson and others, 2015; Stuurman and others, 2016). One of
the most prominent findings is the discovery of a signal that shares
similarities with those of a liquid water body (Orosei and others,
2018). In the MARSIS data, this proposed ‘subglacial lake’ has char-
acteristically bright and specular reflections and was found 1.8 km
below the South Polar Layered Deposits. The salt content and/or
heat flux necessary to form and sustain such a lake is, however,
still debated (Sori and Bramson, 2019). In addition to these find-
ings, the radar data have successfully been utilized to gain insights
into the glaciological and climatological processes on the planet,
including the deformational properties of Martian water ice, and
the past climate history and accumulation patterns of both the
North Polar Layered Deposits and the South Polar Layered
Deposits (Karlsson and others, 2015; Parsons and Holt, 2016;
Smith and others, 2016; Whitten and others, 2017; Nerozzi and
Holt, 2018; Lalich and others, 2019; Schmidt and others, 2019).
The radar data have also been used to reconcile observations
from visual imagery with the radar-imaged englacial stratigraphy
(Christian and others, 2013; Lalich and Holt, 2017).

Moving further afield, two radar sounders are now under prep-
aration to probe the subsurface of the Jovian system. Two instru-
ments have been selected for upcoming missions to Ganymede
and Europa: the 9 MHz frequency Radar for Icy Moons
Exploration (RIME) instrument on board the European Space
Agency’s Jupiter Icy Moons Explorer (JUICE) and the 9 and
60 MHz frequency Radar for Europa Assessment and Sounding:
Ocean to Near-surface (REASON) instrument on board
NASA’s Europa Clipper (Bruzzone and others, 2013;
Pappalardo and others, 2015; Lorente and others, 2017;
Blankenship and others, 2018). These sounders are designed to
probe the moons’ interiors and have penetration depths which
are functions of surface roughness, volume scattering, ice-shell
thermal structure, chemistry and the character of the ice/water
interface (Moore, 2000; McKinnon, 2005; Blankenship and
others, 2009; Bruzzone and others, 2011; Schmidt and others,
2011; Berquin and others, 2013; Grima and others, 2014b;
Pettinelli and others, 2015; Di Paolo and others, 2016; Grima
and others, 2016; Aglyamov and others, 2017; Heggy and others,
2017; Kalousová and others, 2017; Campbell and others, 2018;
Gerekos and others, 2018; Michaelides and Schroeder, 2019;
Culha and others, 2020). The addition of a dual-channel VHF
band on REASON also allows for characterization of the
European ionosphere, altimetric investigation of Europa’s shell
and tides, and dual-frequency or interferometric clutter discrim-
ination (Grima and others, 2015; Carrer and Bruzzone, 2017;
Castelletti and others, 2017; Haynes and others, 2018a;
Steinbrügge and others, 2018; Scanlan and others, 2019). Finally,
the ability of both instruments to record strong Jovian emissions
raises the possibility of using those emissions to probe the ice
shell using passive radio sounding (Romero-Wolf and others,
2015; Schroeder and others, 2016b; Peters and others, 2018).

In addition to Mars and the icy Jovian Moons, radar sounding is
also being deployed to investigate ice on other planetary bodies. For
example, NASA’s Lunar Reconnaissance Orbiter was equipped with
a radar sounder in the gigahertz frequency range in order to search
for water ice on Earth’s moon (Nozette and others, 2010). The data
reveal the existence of large deposits of relatively clean ice in the
polar regions (Spudis and others, 2013). Unfortunately, measure-
ments temporarily discontinued after an instrument failure in
2011, but have resumed in a bi-static configuration (Patterson
and others, 2017). Additionally ESA’s Rosetta mission included
the bistatic CONSERT experiment (COmet Nucleus Sounding
Experiment by Radiowave Transmission), which performed the
first tomographic imaging of the interior of a comet (Glassmeier
and others, 2007; Kofman and others, 2015).

Conclusions

More than 50 years after the first collection of radioglaciological
observations, radar-sounding data are being acquired over ice
sheets, glaciers, ice shelves and ice shells across the solar system
at unprecedented scales and rates. Terrestrially, this ever growing
data volume, along with re-mastery of archival data, is enabling
multi-temporal investigations of subglacial and englacial processes
at the spatial and temporal scales relevant to ice-sheet and sea-
level change. Recent advances in radar-sounder systems now
allow for the acquisition of multi-frequency, multi-offset, polari-
metric and interferometric data that can provide rich new infor-
mation about conditions within and beneath the ice. At the
same time, advances in data analysis, interpretation and modeling
have paved the way for using that rich new information to inves-
tigate the fundamental physical processes that control the past,
present and future evolution of ice masses. Additionally, recent
progress in sensor and platform technologies is making it possible
to move from mapping to monitoring approaches in radar-
sounding surveys by exploiting low-cost radar-sounder sensor
networks, autonomous rovers and drones, or even orbital sound-
ing. Finally, planetary ice/water systems are only growing in their
appeal and feasibility as targets of radio-echo sounding. After half
a century, radioglaciology may just be entering its golden age.
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