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Abstract This paper presents new methods of estimating the aerodynamic roughness (z0) of glacier ice
directly from three-dimensional point clouds and digital elevation models (DEMs), examines temporal
variability of z0, and presents the first fully distributed map of z0 estimates across the ablation zone of an
Arctic glacier. The aerodynamic roughness of glacier ice surfaces is an important component of energy
balance models and meltwater runoff estimates through its influence on turbulent fluxes of latent and
sensible heat. In a warming climate these fluxes are predicted to become more significant in contributing to
overall melt volumes. Ice z0 is commonly estimated from measurements of ice surface microtopography,
typically from topographic profiles taken perpendicular to the prevailing wind direction. Recent advances in
surveying permit rapid acquisition of high-resolution topographic data allowing revision of assumptions
underlying conventional z0 measurement. Using Structure from Motion (SfM) photogrammetry with
Multi-View Stereo (MVS) to survey ice surfaces with millimeter-scale accuracy, z0 variation over 3 orders of
magnitude was observed. Different surface types demonstrated different temporal trajectories in z0 through
3 days of intense melt. A glacier-scale 2m resolution DEM was obtained through terrestrial laser scanning
(TLS), and subgrid roughness was significantly related to plot-scale z0. Thus, we show for the first time that
glacier-scale TLS or SfM-MVS surveys can characterize z0 variability over a glacier surface potentially leading
to distributed representations of z0 in surface energy balance models.

1. Introduction

In glacier surface energy balance models, turbulent fluxes of sensible and latent heat are generally consid-
ered to be secondary to radiative heat fluxes [Hock, 2005]. However, they become increasingly influential
(up to 80%) in overcast and windy conditions [Holmgren, 1971; Marcus et al., 1984; Giesen et al., 2014] and
for glacierized regions characterized by maritime climates [Hay and Fitzharris, 1988; Ishikawa et al., 1992].
Critically, their relative contribution to overall ice surface mass loss is predicted to become more significant
in a warming climate [Braithwaite and Olesen, 1990], making it imperative that the key influences on turbulent
fluxes are better understood. One of the most important of these influences is the aerodynamic roughness
height z0, which is related to ice surface topographic roughness, in a complex way. Improved characterization
of z0 on glacier ice surfaces forms the focus of this paper.

All ice melt models which aim explicitly to incorporate turbulent fluxes, in some way incorporate a value,
or range of values, for aerodynamic roughness height, z0. This is because, in the absence of direct eddy
correlation measurements (which are difficult to obtain in the field [Greuell and Genthon, 2004]), aerody-
namic roughness height underpins the derivation of exchange coefficients for potential temperature and
specific humidity in the surface boundary layer. These coefficients are often used to approximate turbu-
lent fluxes using the bulk aerodynamic method [Hock, 2005; Brock et al., 2010]. However, z0 is difficult to
measure directly, and a range of different approximations are used. For example, spatially distributed
surface energy balance models assume a uniform and constant value of z0 [Arnold et al., 2006] and z0 is
also used as an optimized parameter in the fitting of model output to observations of glacier melt
[Hock and Holmgren, 2005].

Uncertainty in z0 values presents a serious challenge in the calculation of ice ablation with an order of
magnitude change in z0 leading to a factor of 2 change in estimated turbulent fluxes [Munro, 1989;
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Hock and Holmgren, 1996; Brock et al., 2010]. Yet field studies have highlighted the variability of z0 over
ice surfaces in both space and time. Brock et al. [2006] summarize z0 values for ice in the published
literature, from 0.007mm for Antarctic blue ice [Bintanja and van den Broeke, 1994, 1995] to 80mm
for very rough glacier ice [Smeets et al., 1999]. While values over smooth ice are ~ 0.1mm, the majority
of glacier ice z0 values are in the range of 1–5mm [Brock et al., 2006]. Ablation zones of glaciers can
exhibit a large range of ice surface roughness features; however, attempts to model variations in z0
over single valley glaciers to inform upscaling have proven unsuccessful [Brock et al., 2006].
Considering temporal variability of z0, systematic increases in z0 through the ablation season are
observed on snow surfaces [Arnold and Rees, 2003; Brock et al., 2006; Fassnacht et al., 2009b].
However, such systematic increase is less pronounced on glacier ice which exhibits greater temporal
variability in z0 [Müller and Keeler, 1969; Smeets et al., 1999; Denby and Smeets, 2000; Greuell and
Smeets, 2001; Brock et al., 2006; Smeets and van den Broeke, 2008]. Such temporal variability remains
poorly quantified or constrained.

The calculation of z0 from ice surface topography has retained assumptions put in place under conditions of
limited topographic data and computational power. The aim of this paper is to address this shortcoming
through application of recent advances in high-resolution surveying to estimate z0 from ice surface topogra-
phy. Specifically, we aim to (1) describe novel parameterizations of surface roughness to represent z0 that
utilize greater availability of high-resolution survey data; (2) examine the spatial variability of ice z0 over
the ablation zone of a small Arctic glacier using Structure from Motion; (3) investigate the possibility of
upscaling microtopographic z0 measurements to the glacier scale using Terrestrial Laser Scanning; and (4)
characterize the temporal variability of z0 as ice melt takes place over several days.

2. Meaning and Measurement of z0
Aerodynamic roughness height, z0, is defined herein as a length scale that characterizes the loss of wind
momentum attributable to surface roughness [Chappell and Heritage, 2007], i.e., the height above the ground
surface at which the extrapolated horizontal wind velocity drops to 0. The term arises as a constant of inte-
gration from the fitting of logarithmic profiles to velocity data as specified by boundary layer theory
[Prandtl, 1926;Millikan, 1938] and is estimated for both water and air flows over a wide range of surface types
[Smith, 2014]. Thus, under some (rough) flow conditions z0 is a function of both surface and flow properties as
indicated by wind tunnel experiments observing an increase of z0 with free-stream velocity (or shear velocity)
over the same gravel surface where faster aerodynamically rough flows transfer more momentum to the near
surface [Dong et al., 2002]. In practice, z0 is at least weakly related to surface properties, and relationships
between z0 and microtopography are exploited frequently to obtain z0 values.

With z0 defined as a property of the air flow, velocity-profile-based measurement would seem preferable;
however, there are a number of inherent difficulties in adopting this approach. Detailed wind velocity profile
measurements over sufficient durations are not always available [e.g., Brock et al., 2006; Rees and Arnold,
2006]. Data requirements are certainly too onerous for distributed measurement of z0 in this way.
Moreover, z0 values derived from least squares model fit to velocity measurements are sensitive to
instrumental errors [Sicart et al., 2014]. On glaciers, temperature inversions and katabatic winds often result
in a wind speed maximum several meters above the surface [e.g., Wallén, 1948; Denby and Greuell, 2000;
Giesen et al., 2014; Sicart et al., 2014] and thus deviate from the theoretical profile. Wind velocity profiles need
to be adjusted for surface layer stability, and definition of the surface height above which velocity profiles are
measured is not straightforward, particularly over rough surfaces [Sullivan and Greeley, 1993; Smeets et al.,
1999; Sicart et al., 2014]. Displacement heights are often defined to account for mutual sheltering through
addition of a height adjustment to velocity profiles that represents a uniform distribution of the aggregate
volume of roughness elements and their wakes [Smith, 2014]. However, there is some uncertainty as to the
appropriate level of the zero-reference plane [Munro, 1989; Andreas, 2002].

Estimations of z0 from surface microtopography show good agreement with velocity-profile-derived z0
values [MacKinnon et al., 2004]. From wind tunnel experiments on sand surfaces, grain size approaches have
been developed [Bagnold, 1941] where z0 is quantified as 1/30 of a grain diameter. This classic approach is
inappropriate for complex ice and snow surfaces that are not composed of individual grains and exhibit
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multiple scales of topographic variability. An equation developed by Lettau [1969] is used more frequently in
studies on ice surfaces, where z0 is quantified as

z0 ¼ 0:5h�
s
S

� �
; (1)

where h* represents the average vertical extent of microtopographic variations (i.e., effective obstacle height,
m), s is the silhouette area facing upwind (i.e., the roughness frontal area, m2), and S is the unit ground area
occupied by each element (i.e., the “lot” area, m2). The drag coefficient is represented by an “average” drag
coefficient of 0.5. The Lettau equation was developed from experiments placing several hundred bushel
baskets in a field upwind of an anemometer mast. With such isolated and well-defined roughness elements,
specification of each term in (1) is relatively straightforward and results agreed with velocity-profile-based z0
values to ± 25%. However, on ice surfaces, both velocity profiles and surface roughness are more difficult to
measure. Good agreement among eddy covariance, wind velocity profile, and microtopographic measure-
ment techniques over ice is often reported [e.g., Brock et al., 2006], though differences are also apparent.
For example, van den Broeke [1996] observed little agreement between the velocity profile and microtopo-
graphic methods, calculating a z0 of 0.8mm from wind velocity profiles and 120mm using the Lettau
equation (the latter of which was more realistic for the energy balance [Hock, 2005]).

Alternatives to (1) do exist; for example, Sellers [1965] estimates z0 from h* alone, calibrating a power-law
relationship empirically. Meanwhile, Counihan [1971] and Fryrear [1985] use the plan area of roughness
elements in place of the frontal area, and Theurer [1973] developed an equation that uses both metrics.
Banke and Smith [1973] and Andreas [2011] integrate the Fourier transform of elevations for wavelengths
<13m to relate ice roughness to z0. A common simplification of the Lettau equation for complex roughness
fields encountered on ice was developed by Munro [1989] (section 3.4) and applied to topographic profiles
perpendicular to the wind direction. However, sheltering effects from upwind are not taken into account
and the ability of single profiles to represent roughness accurately is questionable.

High-resolution topographic data of glacier surfaces are increasingly available [e.g., Nield et al., 2012]. From
a digital elevation model (DEM) the variability of z0 for different profiles within the DEM can be reported
[Irvine-Fynn et al., 2014]. Yet with advances in surveying techniques and computational power, the
advantages of theMunro [1989] method in terms of minimal data requirements and computational efficiency
have become less relevant. Indeed, estimation of z0 using profile-based methods results in much of the
potentially useful topographic data in three-dimensional point clouds of ice surfaces being discarded and
does not make full use of this rich topographic data source [Passalacqua et al., 2015]. It is this shortcoming
that we seek to address, through the analysis of multiple point clouds derived from Kårsaglaciären, a small
glacier in northern Sweden.

3. Methods and Field Site
3.1. Field Site

Kårsaglaciären (68.358739°N, 18.323593°E) is a small (~1 km2) mountain glacier located in the Vuoittasrita
massif, part of the Abisko mountains, on the border between arctic Sweden and Norway. It presently
terminates at ~ 900m above sea level into a small ice-marginal lake that is developing as the ice margin
retreats from a bedrock ridge. Since around 1912 the glacier has been in a state of near-constant retreat
but with some isolated areas of minor advance noted [Karlén, 1973; Bodin, 1993]. Since the early 1940s the
glacier has been included in the Swedish national mass balance program [Ahlmann and Tryselius, 1929;
Wallén, 1948, 1949, 1959; Karlén, 1973; Bodin, 1993]. Climatic conditions at Kårsa are split between maritime
(winter) and continental (summer), and dominant winds are katabatic (ice flow parallel). Wallén [1948, 1949]
estimated that turbulent fluxes were responsible for ~40% of ablation at Kårsa.

3.2. Field Data Collection
3.2.1. Large-Scale DEMs From Terrestrial Laser Scanning
The ablation zone of Kårsaglaciären was surveyed in July 2013 using a RIEGL VZ-1000 terrestrial laser scanner
(TLS). While the maximum range of the instrument is stated to be 1400m [RIEGL, 2012], absorbance of the
narrow class 1 infrared laser beam over the wet ice surface reduced the observed maximum range here to
~ 400m on wet ice surfaces. The theoretical data acquisition rate was 100,000 points per second, but again
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this was reduced with lower point recovery on ice surfaces because of the lower reflectivity of ice at infrared
wavelengths. The manufacturer-stated precision and accuracy is 0.005m and 0.008m, respectively [RIEGL,
2012]. A nominal spatial resolution of 0.1m at 450m range was applied resulting in an angular increment
of 0.012°. At large ranges, the laser beam divergence (stated as 0.003mmm�1) is typically the largest source
of error [Carrivick et al., 2015] with beam widths of 0.015m at 500m range. The relative orientation of the
surface would also have influenced the laser beam footprint through determining the angle of incidence.

Four TLS surveys of Kårsaglaciären were undertaken between 22 and 24 July 2013 from scan positions
surrounding the ~1 km2 lower glacier (Figure 1a). There was little overlap between the scans on the glacier
ice itself, and so gaps in coverage resulted from occlusions behind obstacles or negligible returns from wet
ice surfaces oblique to the TLS survey sites (Figure 1b). The first three scan positions were repeated after
an interval of 3 days (25 and 26 July) to yield a second topographic model of the glacier. Accessibility and
laser absorbance by snow precluded the acquisition of topographic data from the accumulation zone of
the glacier. For survey control, a network of six tripod-mounted static targets was established surrounding
the survey area utilizing bedrock outcrops and sites clearly visible throughout the survey area (Figure 1a).
Using a minimum of four targets visible from each scan position, the TLS surveys were coregistered into a
single local coordinate system. The standard deviations (or 3-D error) of the coregistrations were between
4.5mm and 13.8mm. The two merged scans of the lower glacier contained 15 × 106 and 9 × 106 points.

The open-source topographic point cloud analysis toolkit (ToPCAT) [Brasington et al., 2012] was used to unify
point densities and create two glacier DEMs. A DEM resolution of 2m was specified, and cells containing
fewer than four points were discarded (~20% of total cells). The mean cell elevation was applied to represent
the glacier surface elevation, and the detrended standard deviation of elevations was used to represent
subgrid roughness [Vericat et al., 2014; Smith and Vericat, 2015]. The grids of the two DEMs were aligned to
enable a DEM of Difference (DoD) to be calculated. The DoD represents changes on the glacier over a
3 day interval; however, the exact days over which this interval spans are not identical for each scan owing
to different days of occupation.
3.2.2. Plot-Scale Topography From Structure From Motion Multi-View Stereo (SfM-MVS)
To characterize finer-scale topographic variability, 31 plots were surveyed using Structure from Motion
Multi-View Stereo (SfM-MVS) photogrammetric techniques. The scale dependence of z0 calculation is an
important consideration [Arnold and Rees, 2003; Fassnacht et al., 2009a]. Rees and Arnold [2006] observed
two scale-free domains (<0.1m and >~1m), suggesting that the intermediate region is characterized by a

Figure 1. Study site. (a) Scan positions, targets, and plot locations overlaid onto an orthophotograph of lower
Kårsaglaciären generated from glacier-scale SfM-MVS (not contemporaneous with plot surveys and used to generate an
orthophotograph only). See Table S1 for plot descriptions. Note the location of Scan 2 varied slightly between the two
surveys; (b) oblique viewpoint of TLS point cloud of the lower Kårsaglaciären rendered by return reflectance (dB) displaying
areas of wet ice oblique to the TLS that exhibited low point density (in black); (c) example SfM-MVS plot dense point cloud
viewed obliquely (Plot A, supraglacial channels, approximately 2 × 2m).
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definite scale. They suggest that topographic data of sampling interval of < 0.1m and length of > 1m with
millimetric vertical accuracy is required to best represent z0. Thus, plots were approximately 2m×2m in size
and 20 digital photographs of 6 megapixels were taken of each plot with a Canon PowerShot G11 digital SLR
camera. Images surrounding each plot were taken from 2m above ground with angular changes of < 20°
between adjacent camera locations to facilitate identification of correct keypoint correspondence [Moreels
and Perona, 2007; Bemis et al., 2014]. Oblique convergent images were captured to avoid the doming effect
observed when exclusively vertical images are used [James and Robson, 2014; Smith and Vericat, 2015].
Plots were distributed on the glacier surface to incorporate the greatest possible range of surface type
and topographic variability and to ensure, as far as possible, good spatial coverage of the lower glacier surface
(Figure 1a). Glacier surface types were classified into qualitative categories including smooth/superimposed
ice, runnels, cryoconite, sun cups, blocky crystalline ice, supraglacial channels, dirty ice, light/medium/dense
scree, shallow/deep crevasses, and snow (Table S1in the supporting information).

Groups of photographs pertaining to each plot were imported into Agisoft Photoscan Professional 1.1.6 and
SfM algorithms implemented, to estimate simultaneously camera positions, camera intrinsic parameters, and
scene geometry (see James and Robson [2012] and Smith et al. [2015] for further details). Georeferencing of
the SfM point cloud was performed using control points surveyed with a TLS. Five reflective disk targets
(50mm diameter) were fixed into the ice in the plot corners and plot center and directed to face the nearest
TLS scan position. The targets were identified in additional TLS surveys undertaken from each scan position
that was focused on each plot. The 3-D coordinates of each target (referenced to the same local coordinate
system as the TLS surveys) were imported and a linear similarity transformation performed to scale and
georeference each SfM point cloud. Average georeferencing errors were subcentimeter (see supporting
information Table S1). Using these coordinates, the intrinsic camera parameters and scene geometry were
refined and the bundle adjustment rerun to optimize the image alignment by minimizing the sum of the
reprojection error and the georeferencing error. Both original and optimized point clouds were calculated
and MVS image-matching algorithms performed to produce final dense point clouds (Figure 1c). Average
point density of the final plot point clouds was >300,000 pointsm�2. ToPCAT was applied to the plot-scale
SfM-MVS surveys for the generation of a DEM of 5mm resolution. While TLS surveys of each plot were
performed as part of the georeferencing, the absorbance of the near-infrared laser by ice and snow was such
that relatively few TLS points were observed within each plot (typically 500 pointsm�2), but this was
sufficient to validate the SfM-MVS point clouds.

To analyze the temporal variability of ice surface roughness, of the 31 plots 9 were revisited after 3 days (Plots
A–C, E, F, H, and S–V; Figure 1a). TLS targets were replaced and resurveyed as described above. Additionally,
three of these nine plots (A, B, and F) were resurveyed again a few hours afterward.

To facilitate upscaling, the extent of each plot was mapped onto the glacier-scale TLS-derived DEM. Plot
extents and DEM cells did not align perfectly owing to the variability of plot spacing, so the mean subgrid
roughness value of all cells containing at least part of each plot was calculated to compare plot-scale and
glacier-scale models. The DEM surveyed on the same day as the plot was used in each case.
3.2.3. Meteorological Data
Meteorological data were recorded during the survey interval to explain the surface-lowering rates observed.
Air temperature was monitored every 30min throughout the field campaign at an automatic weather station
(AWS) located ~500m down valley of the glacier terminus. The AWS comprised a Campbell Scientific CR200
data logger connected to air pressure, air temperature, relative humidity, wind speed, and wind direction
sensors. This AWS has been in operation since 2007, andmean July temperatures have been 8.6°C, compared
to �10.6°C in February.

3.3. Validation of Structure From Motion Multi-View Stereo Surveys

TLS data coincident and contemporaneous with each SfM-MVS plot survey were used to validate both
nonoptimized and optimized SfM-MVS dense point clouds. Cloud-to-cloud comparisons were conducted
in CloudCompare [CloudCompare, 2016]. The 3-D distance between each TLS point and its nearest neighbor
in the dense SfM-MVS cloud was computed and split into X, Y, and Z components. Where either the X or Y
components were >0.02m, the validation point was discarded. The mean and median Z distances were
calculated alongside the standard deviation and root-mean-square error (RMSE) for each plot. Beam
divergence and laser footprint long axis were calculated [after Schürch et al., 2011] to estimate the error of
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the TLS validation data. While only negligible differences between RMSE values for optimized and nonopti-
mized SfM-MVS point clouds were observed (typically ~ 1mm), for each plot the point cloud with the lowest
RMSE was used for analysis.

3.4. z0 Calculation

Each plot-scale point cloud was rotated to be aligned with the prevailing wind direction, observed to be
predominantly down glacier. Point clouds were cropped to ensure an approximately equal number of rows
and columns. We undertook three different approaches, described in sequence below, to estimate z0 from
the microtopographic roughness data acquired. The first follows the method of Munro [1989] for the
purposes of comparison with previous studies; the remaining two present new methods which utilize the
greater volume of roughness information that can be gathered using raw and gridded TLS and SfM-MVS data
sets. Differences between the three methods are summarized in Table 1.
3.4.1. Profile-Based Approach
To estimate z0 following Munro [1989], we simplify the Lettau equation (1) by assuming that h* can be
represented by twice the standard deviation of elevations of the detrended profile (2σd, m), with the mean
elevation set to 0 (Figure 2a) (similar to the “random roughness” metric commonly applied to soil and snow
surfaces [e.g., Kuipers, 1957; Fassnacht et al., 2009a]). Roughness elements are modeled by calculating the
number of upcrossings above the mean elevation (f) in any profile of length X (m). The frontal silhouette area
of roughness elements in the profile is then estimated as

s ¼ 2σdX
2f

; (2)

and the ground area occupied by each roughness element (so-called lot area), S (m2), is approximated as

S ¼ X
f

� �2

: (3)

Thus, the aerodynamic roughness length for a given profile becomes

z0 ¼ f
X

σdð Þ2: (4)

As demonstrated in Figure 2a, (4) makes the assumption of uniformly distributed roughness elements of
equal height along the profile. Despite this, Munro [1989] found that it performed well as an approximation
of z0 differing by only 12% from the true z0 value (though note the later reanalysis of Andreas [2002] which
questioned height corrections to velocity profiles implemented by Munro [1989]). Using this method, z0
was calculated for every profile (n≈ 400) in both orthogonal directions for each plot. Since profiles should
be taken perpendicular to the wind direction, to avoid confusion, we state consistently wind direction when
describing the z0 value. Following normality tests, the probability distribution of profile-based z0 values was
characterized by the mean and standard deviation of values in each orthogonal direction.
3.4.2. DEM-Based Approach
Profile-based simplifications, while computationally efficient, discard large volumes of potentially useful
topographic data. Such simplifications are more appropriate for the situation faced by Munro [1989] where,
prior to the widespread application of TLS or SfM-MVS, limited manually measured point data were available
(~30 points) and more demanding z0 calculation methods cannot be supported. With a DEM-based
approach, the following assumptions of the profile approach can be relaxed:

1. All roughness elements are of equal height.
2. All roughness elements are equally spaced.
3. No sheltering of roughness elements occurs.
4. The frontal area of roughness elements is equal for opposing wind directions (isotropy).

Considering the Lettau [1969] equation, a DEM-based approach enables the roughness frontal area s to be
calculated directly (Figure 2b) for each cardinal wind direction, thereby relaxing assumptions (1), (2), and
(4). Sheltering (assumption (3)) is implicitly represented by including only frontal areas above the detrended
zero plane. Calculating the combined roughness frontal area across the plot, the planar plot area is then used
as the ground area S (since the lot area per roughness element as specified by Lettau [1969] incorporates both
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the ground area of the roughness element and the surrounding plot area). Specifying the effective obstacle
height h* is more problematic, and the rationale for the use of 2σd by Munro [1989] is unclear. Considering
assumption (3), only points that are above the detrended plane are considered and h* is instead calculated
as the mean deviation above this plane. Any single summary of obstacle height will be somewhat arbitrary;
however, the mean deviation above this plane is perhaps most meaningful on an irregular ice surface. This
DEM-based approach results in four z0 values are generated for each plot, one for each cardinal direction.
3.4.3. Point Cloud-Based Approach
High-resolution surveying techniques produce dense point clouds containing rich information that require
summary even for DEM construction. Using several simplifying assumptions, the dense point clouds were
employed here directly, for a further method of z0 calculation as follows.

Raw point clouds are not of a uniform density as the feature matching process as part of the SfM-MVS work-
flow may oversample more visible local topographic highs owing to their greater visibility in the raw images
and higher density of successful matches [Smith et al., 2015]. To yield a uniform point density, the plot-scale
point clouds were subsampled after detrending using an octree filter (a tree-based method of point cloud
partitioning) [Meagher, 1982]. Normal vectors for each point were computed using triangulation (Figure 2
c), and the number of normal vectors facing each cardinal direction (i.e., within a 90° bin centered on the
cardinal direction) was counted to represent s in each cardinal direction under the assumption that each
point represents a comparable surface area following octree subsampling. Points below the detrended plane
and “flat” surfaces defined as having a normal vector greater than 80° from horizontal were not used in the
estimation of s. The plot area S was approximated by the total number of points in the cloud (approximating
the 3-D surface area). Finally, the effective obstacle height was calculated as the mean height above the
detrended plane of all points above that plane.

4. Results
4.1. Validation of Structure From Motion Multi-View Stereo

Quantitative comparison of SfM-MVS points with TLS survey points demonstrated good agreement between
the two data sets. In four plots TLS surveys showed insufficient points for comparison with SfM-MVS owing to
the poor reflectance of wet ice at the instrument wavelength. Across the remaining 27 plots for which valida-
tion data were available, the average mean absolute error (MAE) for nonoptimized point cloudes was
8.47mm. Optimized SfM-MVSmodels performed slightly better (8.14mm), though there was little observable
difference between them (full details in Tables S1 and S2). However, MAE values were an order of magnitude
below the mean of the estimated maximum error in the TLS points (69.66mm) owing to the sometimes long
survey ranges and beam divergence. Restricting analysis to situations wheremodeled TLS error was<10mm,
nonoptimized and optimized MAE values were 6.02 and 5.55mm, respectively. Given the much shorter

Table 1. Summary of z0 Calculations

Quantity Profile Based DEM Based Cloud Based

Drag coefficient 0.5
Effective obstacle
height h* (m)

2 × detrended standard
deviation of profile

perpendicular to wind

Mean height of all points above the detrended plane

Ground area S (m2) For each “roughness element”
separately: (X/f)2

Full plot planar area Full plot 3-D surface area
approximated by number
of points after octree
subsampling. No units

Silhouette area s (m2) Uniform roughness
elements approximated.
Frontal area of a “typical”

roughness element
calculated using
equation (2)

(see Figure 2a)

Exposed frontal area for
each cardinal direction
calculated across whole
DEM. Only includes areas
above detrended plane

Surface area facing each
cardinal direction

estimated by counting number
of points with normal vector

45° either side of that direction.
Only points above detrended

plane where normal
vector is <80° from
horizontal. No units
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survey range for SfM-MVS than TLS, it is reasonable to assume that expected errors are lower from plot-scale
SfM-MVS than for glacier-scale TLS and are millimeter scale [see Smith and Vericat, 2015].

4.2. Spatial Variability in Ice z0
4.2.1. Comparison of z0 Calculations
Table 2 shows the results for z0 calculation from the three different methods. Using the concordance correla-
tion [Lin, 1989, 2000] which measures agreement of variables rather than linearity, we found that when aver-
aged in all directions, the strongest agreement was between DEM-based and point-cloud-based z0
calculations (ρc = 0.973), with lower agreement between profile-based z0 values and both DEM-based
(0.730) and cloud-based (0.620) values. Separating the values into orthogonal components showed weaker
agreement but a similar pattern (Figure S1). In general, point-cloud-based z0 values were the highest (and
had the lowest interquartile range) and DEM-based values the lowest, though differences between all three
calculation methods were relatively minor with a range in overall average z0 values of just 0.247mm (Table 2).
4.2.2. Variability of z0 Between Plots
A wide range of z0 values was observed across the 31 plots on the ablation zone of Kårsaglaciären (Figure 3a).
Summary statistics are separated out by direction in Table 2, and values for each plot are provided in Table S3.
All z0 values were > 0.05mm, and the majority were < 3mm. All plots containing deep crevasses and one
containing shallow crevasses yielded values> 10mm, comparable with those reported on very rough glacier
ice [Smeets et al., 1999]. Plots traversed by supraglacial channels exhibited consistently high z0 values
(>1mm), while plots containing dirt cones on the ice surface also yielded locally high values. The presence
of scree distributed over the ice surface also produces a high z0 (~1mm); however, the extent of debris cover
is important with lower areal concentrations exhibiting a lower z0 (particularly for the DEM-based approach).

Figure 2. Schematic illustrations of z0 calculations. (a) Conventional profile-based approach (shown for Plot N). Upcrossings
are defined as points where the profile crosses the detrended mean moving from below the mean to above the mean. (b)
DEM-based approach highlighting frontal area for two orthogonal wind directions. (c) Demonstration of normal vectors on
a triangulated wireframe mesh of a point cloud (Plot N, for illustration only).
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Table 2. Summary of z0 Values for All 31 Plotsa

Direction (Wind)

z0 Method Up Glacier Down Glacier Glacier Flow-Parallel Average True Left True Right Glacier Flow-Perpendicular Average Overall Average

Profile
Median (mm) 1.216 0.760 1.019
IQR (mm) 1.044 1.778 1.340

DEM
Median (mm) 0.741 1.026 0.883 0.772 0.843 0.757 0.820
IQR (mm) 0.953 1.015 1.392 0.980 0.938 0.877 1.110

Point cloud
Median (mm) 1.071 0.941 0.998 1.227 1.222 1.269 1.067
IQR (mm) 1.160 0.883 1.009 0.977 1.081 1.029 0.947

aThe wind direction is given (i.e., wind blowing from “up glacier” or from the “true left,” etc.). Thus, “glacier flow-parallel” profile-based values are for profiles
orientated across the glacier surface (i.e., perpendicular to the wind direction). Robust metrics are provided owing to the nonnormality of the data set (see outliers
in Figure 2a, right). IQR = interquartile range.

Figure 3. (a) Variability of z0 between plot surfaces (ordered by z0 DEM). See Table S3 for values. Plot IDs provided in
parentheses (see Figure 1a for locations). Directionally averaged z0 values are presented for each plot. (b) Relationship
between mean and standard deviation of profile-based z0 values presented separately for each orthogonal direction. Note
log-log scale.
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The lowest z0 values were for surfaces classified as “smooth,” “slushy,” or “superimposed” ice (<0.3mm).
Intermediate values were observed for patches of snow cover, sun cups, runnels, and patches classified as
“dirty ice” (with z0 typically between 0.5 and 1mm).
4.2.3. Variability of Profile Values Within a Plot
DEMand cloud-basedmethods generate a single value for the plot (for each cardinal direction), whereas extrac-
tion of profile-based z0 values from a DEM enables multiple values to be compared for a single plot. Skewness-
kurtosis tests confirmed normality of all sets of profiles; only one plot was not normal at P< 0.01, and all plots
were normal at P< 0.05. With over 400 profile-based z0 measurements in each direction per plot, analysis of the
standard deviation of these values is informative (Figures 3b and S2). Mean values are consistently in line with
DEM-based and cloud-based values; however, the variability about that mean is substantial. For two plots, the
standard deviation of z0 is greater than the mean. In all cases the high standard deviation of>20% of themean
z0 value presents an important sampling issue for conventional topographic profiles.
4.2.4. Anisotropy
In Table 2, the largest differences between z0 calculation methods emerge when the directionality of surface
roughness is considered. Following Smith et al. [2006], an anisotropy ratio (Ω) is calculated for comparison of
surface roughness in wind-parallel (z0ǁ) and wind-perpendicular (z0⊥) directions.

Ω ¼ z0∥ � z0⊥
z0∥ þ z0⊥

: (5)

This ratio tends toward 1 when z0ǁ dominates, toward�1 when z0⊥ dominates, and 0 when roughness is isotro-
pic. Setting the down-glacier direction as parallel to the prevailing wind, Figure 4 summarizes the variation of
anisotropy values between z0 calculations. Profile-basedmetrics indicate greater z0 for glacier flow-parallel winds
and exhibit the largest range, DEM-based metrics suggest generally isotropic surfaces and have the smallest
range of values, whereas cloud-based metrics highlight greater z0 for winds blowing across the glacier.
Detection of anisotropy thus appears to be an important discriminant of the metrics examined here.

A breakdown by plot is provided in Table S3 and Figure S3. The most extreme anisotropy ratio values (and the
biggest differences between metrics) are observed in plots containing large surface features, such as crevasses
or supraglacial channels. The specific values are sensitive to the orientation of the channel within the plot.
However, no significant relationship was observed between anisotropy and z0. The presence of debris often
resulted in positive anisotropy ratios.

While profile-based approaches only separate orthogonal components, DEM-based analyses produced a z0
value for each cardinal direction, and point-cloud-based metrics can yield a z0 value for any given wind direc-
tion, though here, for comparability, only values for cardinal directions have been calculated. The difference
between z0 for two opposing wind directions is summarized as a percentage of the average z0 value (for both
directions). The DEM-based z0 values exhibit greater variability for opposing wind directions (32% and 22%
for glacier flow-parallel and glacier flow-perpendicular components, respectively) than cloud-based z0 values
(9% and 12%, respectively).

4.3. Modeling Surface Roughness at the Glacier Scale

Statistical relationships were explored between plot-scale z0 and glacier-scale variables to provide a basis for
upscaling z0 beyond the plot (Figures 5a–5c). Large values of z0 associated with crevasses had a significant

Figure 4. Summary of anisotropy ratio values for each method of z0 calculation.
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leverage over such statistical relationships. Thus, the four plots that comprise Figure 3a-ii were excluded from
upscaling analysis [Helsel and Hirsch, 1992]. A further plot, located in the accumulation area, was excluded as
there were insufficient coincident TLS data.

No statistically significant relationships were observed between z0 and plot mean elevation, plot distance
from glacier terminus, or plot mean slope. However, a significant relationship was observed between subgrid
TLS roughness and all three z0 values; the relationship was strongest for DEM-based z0 values (Figure 5b). This

Figure 5. (a–c) Relationships between directionally averaged z0 values and subgrid TLS roughness (represented by the
detrended standard deviation of elevations). Model fits correspond to the regression parameters indicated (excludes Plots
F, H, I, and Y). (d) Map of modeled glacier z0 using TLS-derived subgrid roughness to upscale DEM-based z0 (2m resolution).
Gaps relate to areas with insufficient TLS data to compute subgrid roughness or areas where predicted z0 is > 3mm and
beyond the range of the relationship demonstrated in Figure 5b. The distribution of modeled z0 values is shown (inset).
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relationship presented the possibility of upscaling z0 estimates beyond the plot to represent z0 variability
over the majority of the lower glacier (where data are available), though since differences in absolute z0
values betweenmethods were smaller than the natural variability of z0 on a single glacier, all three calculation
methods are likely to be equally suitable in this regard. The relationship for DEM-based z0 values was used to
provide such a glacier-scale z0 map in Figure 5d using the first TLS survey as a basis for upscaling. As plot data
were only reliable where z0< 3mm, only cells in this range were included.

Across the glacier, areas of relatively high z0 values were found to be associatedwith crevasse features (Figure 5d)
and the medial moraine running through the center of the glacier. Considering only the 0.14 km2 area of the
ablation area of Kårsaglaciären for which sufficient TLS data were available to estimate z0, the mean modeled
z0 was 0.99mm, the median value was 0.85mm, and the standard deviation was 0.61mm. This is likely to be
an underestimate of z0 as some notable areas of high subgrid roughness were not able to be included (e.g., close
to the glacier terminus).

4.4. Temporal Changes in z0
4.4.1. Glacier-Scale Changes
Over the 3 day TLS survey interval, a substantial amount of ice surface lowering was observed throughout the
ablation zone (Figure 6a). To demonstrate that the observed lowering is not a survey artifact, the change
detected in two bedrock areas was compared with that seen on the ice surface (Figures 6b and 6c). The
two distributions are statistically different. Median change observed by TLS over bedrock was 7.28mm (over

Figure 6. (a) DEM of difference from repeat TLS over a 3 day interval. Bedrock areas are outlined in black. The waterfall
supplying a subglacial stream is indicated with a white arrow. Frequency histogram of observed topographic changes
(b) for ice surfaces and (c) for rock and proglacial debris surfaces. Only changes ±0.5m shown for clarity. (d) Example of
lowering observed from repeat SfM-MVS dense point clouds (“Dirty Ice” Plot E over a 3 day interval showing an average
surface elevation change of 0.23m); (e) 30min smoothed temperature data recorded at the AWS over the survey interval.
Mean daily temperatures reported for each day. A data gap spanning 24 and 25 July has been interpolated (dashed line).
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7,532m2 outlined in bold in Figure 6a), whereas that observed on ice surfaces was �206.99mm (over
0.12 km2). At higher elevations within the survey area, surface lowering rates (~150mm) are slightly less than
at the glacier margins and across the lower parts of the glacier (~200mm). Relatively high rates of lowering
(~280mm) were observed on the true right of the glacier which corresponds to the entry point of a stream
running under the ice along the glacier margin, fed by a waterfall indicated in the lower left of Figure 6a. A
large area at the true left margin of the glacier close to the south facing bedrock outcrop also showed higher
than average lowering (~250–300mm). Large elevation changes (>2m) were also observed at the terminus
where Kårsaglaciären calves into a small proglacial lake. Glacier advances and calving events can be clearly
observed from the DoD at the terminus (Figure 6a) and represent the biggest elevation changes over the
3 day survey interval.
4.4.2. Plot-Scale Changes
The change in z0 observed over the nine resurveyed plots is summarized in Figure 7. Plots were resurveyed
after an interval of 0.5, 3, and/or 3.5 days resulting in a maximum of four time periods for a single plot. Values
for all three z0 calculation metrics are presented, incorporating averaged values for all directions and values
separated into both down-glacier and across-glacier averages. Analysis of the AWS record revealed that the
period following 23 July 2013 (Figure 6e) was considerably warmer than any time previously in the melt sea-
son of 2013 when average daily temperatures rarely rose above 10°C.

Despite high rates of surface lowering (e.g., Figure 6d), estimated z0 values (Figure 7) remained relatively constant
for three plots containing surface meltwater features (supraglacial channels or runnels). Decreases in z0 were
observed for plots where surface debris was observed (dirty ice or debris band) or which contained minor stress
features (a shallow crevasse or crevasse traces), while increases in z0 were observedwhere the ice was very smooth
and on a plot pocked with cryoconite. All three z0 values were well correlated, and, as reported in section 4.2.1,
point-cloud-based z0 values were typically highest while profile-based z0 values had the highest variability.

Over 3 days, observed surface lowering was typically ~0.2m; however, three plots exhibited much higher
values >0.45m. These rapidly lowering plots covered a wide range of z0 values, including the more deeply

Figure 7. Plot-scale changes in z0 values with surface lowering over several days of intense melting (Figure 6e). Note dif-
ferent scales on z0 axes for improved clarity of changes within each plot. Plot IDs are indicated in the top right corner of
each panel and relate to Figure 1a. Survey intervals were not exactly contemporaneous with the DoD in Figure 6a.
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incised of the two supraglacial channels and crevasse traces and smooth ice, all of which were located in the
upper ablation zone toward the true left margin of the glacier. Overall, observed surface lowering was
positively correlated with degree days (r= 0.87, n=24, P< 0.0001). The three rapidly lowering plots
experienced surface lowering rates between 10.2 and 11.1mmK�1 day�1, while other plots were between
4.2 and 7.0mmK�1 day�1.

5. Discussion
5.1. Methods for Calculating z0 From Topographic Data

Previously, collection of topographic data suitable for z0 calculation required either laborious and time-
consuming measurement or the construction of bespoke equipment [e.g., Herzfeld et al., 2000]. Recent advances
in the acquisition of high-resolution topography have revolutionized the study of Earth surface processes
[Passalacqua et al., 2015], yet the calculation of z0 from ice surface topography has typically retained assumptions
put in place under conditions of limited topographic data and computational power. With these restrictions
lifted, the DEM-based analysis presented herein permits frontal area exposed to a prevailing wind direction to
be calculated explicitly over an ice (or snow) surface. Furthermore, with alternative approximations, z0 can be
rapidly estimated directly from point clouds.

Overall differences among profile, raster, and cloud-based z0 measurements were relatively minor (Table 2).
More detailed comparison of calculation methods reveals three weaknesses in the conventional topographic
profile-based approach. First, calculating z0 from a single topographic profile presents a sampling issue given
the variability of topographic profile-based values within a single plot (Figure 3b). Similar z0 variability was also
reported by Irvine-Fynn et al. [2014]. Second, while orthogonal profiles are often computed, the different frontal
areas from two opposing wind directions cannot be resolved. DEM-based z0 values for opposing wind directions
differed by > 20% meaning conventional approaches may not be appropriate for anisotropic surfaces. Third,
topographic profile-based z0 values do not account for sheltering of an obstacle. With many ice surface features
streamlined by either wind or water flows having continuous topographic expressions for tens of meters or
more (sastrugi, for example [Jackson and Carroll, 1978]), such an assumption is limiting for glacier surfaces.
This important weakness is revealed when z0 values are separated into orthogonal directions (Figure 4).

In the extreme case where a crevasse or supraglacial channel is aligned perpendicular to the prevailing wind
direction (Figure 8a) a detrended topographic profile will not detect this feature even if located within the cre-
vasse or channel andwould yield a relatively low z0 value. Conversely, if the plot were rotated by 90° (Figure 8b),
a detrended topographic profile perpendicular to the wind direction would yield a relatively high z0 value.
However, visual examination of the two plot surfaces in Figure 8 reveals that the plot in Figure 8a has a greater
frontal area exposed to the prevailing wind, whereas the plot in Figure 8b is relatively streamlined to the wind
direction. In this case computing z0 using frontal area calculated from a DEM or approximated from a point
cloud results in a higher z0 for Plot 8A, the opposite of profile-based z0 values. Such differences are not seen
when uniform arrays of discrete roughness elements are present (from which the Lettau [1969] equation was
derived) and are only significant where natural streamlined surfaces are the focus of study.

5.2. Spatial Variability of z0 and Potential for Upscaling

A wide range of z0 values for ice surfaces is reported in the literature; yet in this study a similar range of z0
values was observed over a single glacier ablation area. Our mean z0 value of ~ 1mm reflects the typical
values reported in the literature [Brock et al., 2006]. Indeed, the “typical” ice roughness value of 0.66mm that
is applied in the glacier-scale distributed surface energy balance model of Arnold et al. [2006] is similar to our
median modeled value of 0.85mm (Figure 5d). However, considering DEM-based z0 values in this study,
variation over 3 orders of magnitude was detected from 0.05mm on superimposed ice to 22mm for a deep
crevasse. It is clear that a single z0 value cannot accurately represent the important contribution of z0 to
glacier melt. Prominent surface features (e.g., crevasses) result in locally high z0 values. Scale dependency
of z0 values requires further investigation; however, the sampling method used here captures the length
scales identified by Rees and Arnold [2006].

The significance of the relationship between z0 calculated from plot-scale SfM-MVS and glacier-scale TLS rough-
ness suggests that the relevant components of topographic variability influencing z0 can be approximated at the
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glacier scale. The modeled z0 map pre-
sented in Figure 5d contains substantial
data gaps, though these could be filled
with a dense network of survey stations.
However, caution is required since
approximation of z0 with a simple metric
of subgrid roughness is a considerable
simplification and does not capture the
directional variability observed with the
more sophisticated metrics we investi-
gated at the plot scale. Nevertheless,
the relationships in Figure 5 suggest
that a reasonable approximation of
glacier-scale z0 variability can be made
using topographic data products that
are increasingly available. Indeed,
with the increased ease of data acquisi-
tion, upscaling z0 to represent the varia-
bility over the glacier scale becomes a
distinct possibility. Existing large-scale
TLS [e.g., Kerr et al., 2009; Nield et al.,
2012] and SfM-MVS [e.g., Immerzeel
et al., 2014; Ryan et al., 2015] survey
campaigns demonstrate this enhanced
capability clearly.

Glacier surface energy balance calcula-
tions require estimates of turbulent
fluxes of sensible and latent heat, and
these are typically derived from high-

resolution meteorological observations alongside a single z0 value to represent the ice surface [e.g., Arnold
et al., 2006]. However, as this study has shown, an assumption of homogeneous z0 values over entire glacier
surfaces is questionable. Derivation of a distributed z0 map such as is presented in Figure 5d therefore opens
up several key possibilities for those interested in modeling glacier surface energy balance. First, it allows the
modeler to compare z0 acquired at a point with a range of values across a whole glacier and thus assess how
representative it is. Second, it permits analyses of scale dependence. Since velocity profile measurements of
z0 reflect not just the surface in the immediate vicinity of the velocity profile but are the aggregate effect of
surface obstacles distributed over a larger fetch area, a z0 value for a single 4m2 cell in Figure 5d cannot be
directly compared with velocity-profile-derived z0 values at that same point. Rather, aggregation of
heterogeneous z0 values over areas representing an estimated fetch of the wind enables comparison with
wind-profile-derived values [Panofsky, 1984]. The distributed nature of z0 in Figure 5d will also assist with
future calculations of varying z0 values with varying wind direction. Finally, given that many inputs to surface
energy balancemodels are gridded data sets, the inclusion of a dynamic and distributed z0 map, rather than a
single assumed value, is a logical next step.

5.3. Temporal Variability of z0

Our observations of temporal variability in ice surface roughness with surface melt were acquired on
Kårsaglaciären during a short period of relatively high air temperatures and agree with previously reported
findings [e.g., Brock et al., 2000, 2006; Smeets and van den Broeke, 2008]. Ice with surface debris or small
amounts of dirt on the surface tended to become smoother, as did surfaces exhibiting small crevasse features
suggesting preferential melting out of protruding roughness. Supraglacial channels did not exhibit such a
decline in roughness possibly as down cutting kept pace with preferential melting. This variable response
contrasts with the systematic increase in roughness observed on melting snow surfaces [Fassnacht
et al., 2009b].

Figure 8. Demonstration of differences between z0 anisotropy ratios for
different calculation methods. The plot surface in Figure 8a is rotated
through 90° in Figure 8b, while the prevailing wind direction remains
constant. (a) A greater frontal area is exposed to the prevailing wind;
however, (b) a profile perpendicular to the wind direction shows greater
topographic variability.
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Substantial surface melt was recorded over just 4 days (Figures 6 and 7). Average surface lowering was 0.2m
and showed a similar association between surface lowering rates and degree days as reported for Norwegian
glaciers by Laumann and Reeh [1993] (5.5–7.5mmK�1 day�1), and rates are similar to the maximum values
reported in Wallén [1948]. Three plots showed substantially higher surface lowering rates; these could
not be discriminated by surface roughness or other features and instead appeared to reflect variation in
incoming radiation being relatively flat plots positioned close to a south facing slope. Although surface
lowering rates were rapid, the monitoring interval of just 4 days is insufficient to quantify the full range of
ice roughness variability through the melt season. With a longer monitoring period over seasonal timescales,
a wider range of roughness values is likely to be observed.

5.4. Further Work

The alternative z0 calculation methods introduced here require validation using velocity profile or eddy
correlation data [Nield et al., 2013]. Similarly, modeled z0 variability at the glacier scale requires validation
both through finer scale measurements and through incorporation into spatially distributed surface energy
balance models that are in turn validated against proglacial stream discharge measurements. Velocity profile
data are needed alongside the distributed z0 map of Figure 5d andmap of glacier surface change in Figure 6a
to validate the novel approach of z0 estimation outlined herein and to examine the relevant scales at which to
aggregate microtopography-derived z0 estimates. With glacier-scale topography acquired through TLS or
SfM-MVS, distributed energy balance models have the potential to incorporate sophisticated models of
insolation by calculating shading from valley topography directly. Orthophotograph mosaics are a further
output of plot-scale SfM-MVS that could be used to estimate surface albedo directly [Dumont et al., 2011;
Rippin et al., 2015]. In addition, glacier-scale surveys may be able to bridge the gap betweenmicrotopography
and satellite remote sensing of glacier surfaces for a more extensive upscaling of z0 as demonstrated by
Blumberg and Greeley [1993] and investigated on glacier surfaces by Rees and Arnold [2006].

Conventional methods of estimating z0 from topographic profiles make several assumptions about the
nature of the surface which is typically simplified as a regular array of uniform roughness elements (e.g.,
Figure 2a). Here we have presented a novel method of calculating z0 directly from high-resolution DEMs that
does not rely upon such simplifying assumptions. However, further investigation as to the specific
parameters used in z0 calculation (detailed in Table 1) is required, particularly the representation of effective
obstacle height.

Sheltering of surfaces has been studied in detail in the atmospheric sciences and in investigations of aeolian
erosion [e.g., Garratt, 1992; Bottema, 1996; Chappell and Heritage, 2007]. While Garratt [1992] suggested a
displacement height of 0.7 h* for most natural surfaces, the assumption made in Table 1 (for DEM-based
and cloud-based z0 calculations) was that frontal areas below the detrended plane level would be effectively
sheltered. For the ice surfaces investigated herein, roughness element density (i.e., frontal area divided by
surface area [Wooding et al., 1973]) was <0.13 in all plots aside from one deeply crevassed plot and thus
still within the range for which the Lettau [1969] equation holds. Certainly, more sophisticated sheltering
parameterizations should be investigated [see Raupach, 1992; Chappell et al., 2010] and the availability of
high-resolution topographic data facilitates more direct inclusion of mutual sheltering of roughness elements
[see Smith, 2014]. Similarly, the average drag coefficient of 0.5 used here is likely to be an overestimate
for many glacier surfaces which tend to be streamlined [Wieringa, 1993; Smeets et al., 1999] in at least one
direction and would thus exhibit a much lower drag coefficient [Powell, 2014]. As demonstrated in Figure 8,
the degree of streamlining and hence the drag coefficient may be dependent on the wind direction.

6. Conclusions

Through direct representation of the surface area of roughness elements, more sophisticated parameteriza-
tions of z0 from ice surface topography can be realized from high-resolution three-dimensional survey data.
Properties of surface roughness that best represent the process of momentum transfer from air flows to the
ice surface can be quantified directly, enabling calculation of z0 from topographic data to better reflect the
underlying theoretical equations. When averaged over all cardinal wind directions, there is little difference
between the novel DEM-based z0 values and values calculated from profiles using assumptions on the form
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of surface roughness. However, large differences emerge when z0 is calculated separately for each wind
direction, particularly where surface roughness is anisotropic.

The aerodynamic roughness of ice surfaces can be estimated at the glacier scale using a relationship established
between z0 and subgrid roughness of topographic models gridding at the meter scale. Such upscaling is impor-
tant considering (i) the wide variability of z0 over 3 orders of magnitude over a relatively small glacier ablation
zone; (ii) the lack of a statistical relationship between z0 andmore general topographic variables such as elevation
and slope; and (iii) the relatively large effect that z0 variability has on estimations of turbulent heat fluxes and
glacier icemelt, particularly in the context of future climate warming. With increased availability of high-resolution
topographic data at the glacier scale, surface energy balance models can incorporate distributed z0 parameteriza-
tions and better predict rates of ice loss under climate change scenarios.
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Figure S1. Comparison of z0 values for each plot. Average z0 represents the 
average for all directions, while down and across glacier averages are computed 
separately. Concordance values represent the concordance correlation between 
the two variables (as per Lin, 1989; 2000). Note the log-log scale. 
 

 
Figure S2. Standard deviation of profile z0 values for each plot and each 

orthogonal direction. 
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Figure S3. Anisotropy ratio values for each plot and for each z0 calculation method 

(plots ordered by DEM-based z0 values). 
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Plot 
ID 

Description Point 
Density 
(m-2) 

3D Georeferencing error 
(mm) 

TLS validation MAE 
(mm) 

 Non-
optimized 

Optimized Non-
optimized 

Optimized

A Supraglacial channel 282862 8.405 0.379 6.668 8.925
B Runnels 275281 14.935 10.971 5.501 4.266
C Snow 289410 15.471 3.301 5.105 4.786
D Blocky crystalline 375784 16.705 0.037 4.801 6.559
E Dirty Ice 312401 11.087 11.223 6.173 5.643
F Shallow crevasses  225663 8.093 7.707   
G Slushy ice 358993 6.5 6.341 6.587 6.56
H Deep crevasses 230771 13.128 14.352 8.893 8.258
I Deep crevasses 322504 9.812 10.562   
J Shallow crevasse 396341 8.22 8.22 7.315 5.972

K Supraglacial channel 295873 9.585 8.812 11.246 10.04
L Clean ice wasting 300303 9.454 10.136 10.233 9.85

M Dirty Ice 317497 15.474 0.857 6.644 8.212
N Rotten surface ice 360942 5.413 0.08  
O Light scree 355890 6.085 5.884 18.437 15.815
P Medium scree 324199 17.89 0.472 9.051 7.951
Q Dense scree 321946 17.104 17.878 13.675 15.453
R Superimposed ice 391402 8.646 9.898   
S Cryoconite pocked 408713 8.406 8.581 3.751 4.647
T Debris band 319151 12.587 0.45 4.838 3.439
U Smooth ice 355523 11.784 1.31 10.613 8.025
V Crevasse traces 380704 12.227 0.452 7.067 5.333
W Supraglacial channel 289100 8.613 9.651 6.554 6.677
X Minor crevasse 324340 15.223 15.637 11.176 11.093
Y Deep crevasses 28691 10.091 0.396 6.457 6.765
Z Sun cups 339996 15.738 15.27 11.301 12.426
1 Cryocinite 368547 13.102 1.491 9.753 7.835
2 Heavy debris 325594 12.358 13.536 10.387 11.924
3 Dirt cone 320133 11.913 0.774 12.777 8.977
4 Dirty Ice 348169 10.179 0.331 5.993 5.084
5 Light debris 337123 7.97 0.193 9.158 11.045

 
Table S1.Summary of errors associated with each SfM plot survey (see Figure 1A for 

plot locations). TLS data were unavailable for four plots. Note that TLS validation data is 
not necessarily more accurate than SfM data given the respective survey ranges. 
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n = 27 MAE 
(mm) 

SDE 
(mm) 

RMSE 
(mm) 

Non-Optimized 8.467   7.018   12.79 
Optimized 8.138 7.323 12.85 

 
Table S2. Mean error metrics for optimized and non-optimized SfM-MVS point clouds 
across 27 plots (four plots contained insufficient TLS validation points). Mean Absolute 
Error (MAE), Standard Deviation of Error (SDE) and Root Mean Square Error (RMSE) 

are presented. 
 

Description z0 (mm) Anisotropy Ratio 
Profile DEM Cloud Profile DEM Cloud 

Supraglacial channel 1.673 1.180 1.678 0.409 0.048 -0.249
Runnels 1.019 0.629 0.929 0.287 -0.046 -0.261

Snow 0.625 0.561 0.925 0.109 0.132 0.029
Dirty Ice 1.419 1.092 1.597 0.255 -0.025 -0.169

Shallow crevasses 15.788 6.650 7.282 0.822 -0.166 -0.653
Deep crevasses 46.823 21.766 12.194 -0.513 -0.044 -0.037

Rotten surface ice 0.863 0.513 0.818 0.281 -0.026 -0.188
Light scree 0.803 0.500 0.684 0.246 0.075 -0.108

Medium scree 1.434 1.375 1.254 0.177 0.013 -0.103
Dense scree 0.947 1.243 1.511 0.178 0.013 -0.082

Crevasse traces 2.325 1.990 1.676 -0.114 0.026 -0.002
Supraglacial channel 5.704 2.685 4.222 0.493 -0.013 -0.199

Debris band 0.549 0.400 0.600 0.245 0.055 -0.151
Cryoconite pocked 0.491 0.321 0.602 0.183 0.011 -0.134

Smooth ice 0.331 0.352 0.449 0.234 0.142 0.007
Superimposed ice 0.068 0.053 0.118 0.125 0.138 0.031

Deep crevasses 3.852 2.656 4.696 -0.566 -0.223 0.080
Sun cups 1.240 0.739 0.961 0.308 0.011 -0.176

Cryocinite 1.595 1.077 0.884 0.060 0.103 -0.061
Heavy debris 0.687 0.820 1.204 0.337 0.077 -0.105
Light debris 0.326 0.242 0.440 0.068 0.087 -0.040

Minor crevasse 1.965 1.332 1.698 -0.145 0.063 0.051
Dirt cone 1.459 1.623 1.425 -0.252 0.189 0.088
Dirty Ice 0.570 0.547 0.674 0.050 0.123 0.003

Slushy ice 0.605 0.337 0.731 0.219 -0.070 -0.146
Blocky crystalline 0.638 0.714 1.067 0.196 0.040 -0.065

Deep crevasses 19.909 9.346 14.175 0.886 -0.247 -0.482
Shallow crevasse 2.597 1.919 2.353 -0.089 0.071 -0.046

Supraglacial channel 1.053 1.129 1.456 0.479 0.082 -0.102
Dirty Ice 0.717 0.565 1.044 0.696 -0.015 -0.216

Clean ice wasting 0.977 0.669 0.829 0.222 0.005 -0.135
 

Table S3. Summary of directionally-averaged z0 values and anisotropy ratios for each 
plot and each calculation method. 
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