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ABSTRACT

Finite-difference time-domain forward modeling is often
used to gain a more quantitative understanding of the inter-
actions between electromagnetic fields and targets. To
undertake full 3D simulations, the computational demands
are challenging, so simulations are often undertaken in two
dimensions, in which assumptions in the propagation of
electromagnetic fields and source type can result in errors.
We have developed the concept of a sliced-3D simulation,
wherein a thin slice of a 3D domain with strictly 2D geom-
etry is used to minimize computational demands while
obtaining synthetic waveforms that contain full 3D propaga-
tion effects. This approach requires optimization of perfectly
matched layer (PML) boundary condition parameters so as
to minimize the errors associated with the source being lo-
cated close to the boundary, and as a result of grazing-inci-
dent angle wave conversion to evanescent energy. We
explore the frequency dependence of PML parameters,
and we establish a relationship between complex frequency
stretching parameters and effective wavelength. The result-
ant parameter choice is shown to minimize propagation er-
rors in the context of a simple radioglaciological model, in
which 3D domains may be prohibitively large, and for a
near-surface cross-borehole survey configuration, a case
in which full-waveform inversion may typically be used.

INTRODUCTION

Finite-difference time-domain (FDTD) forward modeling has been
used in many areas of exploration and near-surface geophysics to test
the performance of novel processing algorithms and acquisition

(Versteeg, 1993; Langhammer et al., 2017), in data processing di-
rectly for finite difference and reverse time migration (Fisher et al.,
1992; Leuschen and Plumb, 2001; Yilmaz, 2001; Church et al.,
2018), and as a part of inversion algorithms including full-waveform
inversion (FWI) (Virieux and Operto, 2009; Busch et al., 2012; Mo-
zaffari et al., 2016). In electromagnetic applications, 2D formulations
of the Yee algorithm (Yee, 1966) are generally used, which make the
implicit assumption of lateral model invariance. The resultant syn-
thetic 2D data have an incorrect amplitude scaling with traveltime
for which a correctionmust be made.Many studies have used a Bleis-
tein filter (Bleistein, 1986; Auer et al., 2013) in preprocessing of field
data to facilitate comparison with 2D models (Mozaffari et al., 2016;
Klotzsche et al., 2019), but it has been demonstrated that this can
result in errors after the first-break arrivals or in complex velocity
models (Auer et al., 2013).
Reduction to 2D requires assuming that the radar antennas are

either crossline or inline, modes that are typically and hereafter de-
noted as TMz and TEz, respectively. The most commonly used
modeling platforms apply TMz reduction from the principle that
crossline antennas are more widely used in many fields. However,
the importance of source polarization has been noted in several
areas of the literature, including in glaciology (Langhammer et al.,
2017), where the TEz mode is more commonly applied in ground-
based studies (e.g., Bingham et al., 2017). To address the issues
outlined above, 3D modeling must be developed, yet the computa-
tional demands are intense; therefore, there is a need to develop a
computationally efficient approach for modeling 3D fields.
In this paper, we seek to minimize the computational cost of full

FDTD modeling of 2D geometries using a sliced-3D approach in
gprMax, an open-source ground-penetrating radar (GPR) modeling
package (Warren et al., 2016). To do so, we must optimize the boun-
dary conditions, implemented by perfectly matched layers (PMLs) so
as to attenuate noise due to grazing-wave interactions with the model
boundaries. We investigate the frequency dependence of PML
performance for the sliced-3D application, and we demonstrate
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the effectiveness of the approach by applying the technique to
two synthetic case studies in which full 3D models can be
prohibitively large and where assumptions about the source and
propagation mechanisms, which are implicit in 2D modeling, do
not hold.

THEORETICAL BACKGROUND

Approaches to modeling 2D geometries

FDTD modeling is generally undertaken using Yee’s algorithm
(Yee, 1966; Taflove and Hagness, 2005). In brief, the algorithm in-
volves a discretization of Maxwell’s equations of electrodynamics,
and an iterative propagation of a source term through time steps.
The algorithm can be implemented in three dimensions or simpli-
fied to two dimensions in the TMz mode by assuming an infinitely
long z-polarized dipole antenna (i.e., a line source) and crossline
geometry invariance to remove invariant E and H field components
(Taflove and Hagness, 2005) (Figure 1). The 2D simulations com-
prise a computationally quick method of modeling the response of a
laterally invariant model. In practice, however, the assumption of an
infinite z-polarized source is often violated due to the field logistics
imposed on many GPR surveys. For example, due to the low
frequencies often used in ground-based glaciological radio-echo
sounding (Scott et al., 2010; Sevestre et al., 2015; King et al.,
2016), lengthy dipole antennas are often towed inline to the survey
direction and as such cannot be modeled accurately using 2D FDTD
algorithms.
Additional issues with the 2D approach are encountered in the

scaling of amplitude with traveltime. In a 3D domain with a point
source, A ∝ 1∕r, where A is the amplitude and r is the distance, but
in two dimensions, the source becomes an infinite dipole and the
relationship becomes A ∝ 1∕

ffiffiffi
r

p
(Bleistein, 1986; Auer et al.,

2013). Because of this, when 2D modeling is used, the results need
to be postprocessed to obtain amplitudes that quantitatively match
field data. The 2D Green’s function can be transformed between 2D
and an equivalent 3D function through a π∕4 phase shift and an

amplitude scaling using the Bleistein filter (Bleistein, 1986),
expressed in the frequency domain as

G3DðωÞ ¼ G2DðωÞ
ffiffiffiffiffiffiffiffi
jωj
2πσ

r
exp

�
−sgnðωÞ jπ

4

�
; (1)

where G2D and G3D are the 2D and 3D Green’s functions, respec-
tively, ω is the angular frequency, j ¼ ffiffiffiffiffiffi

−1
p

, and sgnðωÞ is the
signum function of ω. The term σ is a scaling factor σ ¼ cr, where
r is the distance (m) and c is the velocity of propagation (ms−1).
This widely used function (e.g., Deregowski and Brown, 1983; Vi-
dale et al., 1985; Esmersoy and Oristaglio, 1988; Yang et al., 2013;
Lomas and Curtis, 2019) is an asymptotic solution making the far-
field assumption that distance r ≫ λ, the wavelength of the signal,
hence the near-field phase corrections are incorrect. The scaling
function σ is commonly estimated for the first-break arrival and
is often inaccurate for the cases of (1) heterogeneous media, where
c and r are uncertain or complex, and (2) for later arrivals after the
first break. Inaccurate amplitudes result in a degraded performance
for FWI algorithms (Auer et al., 2013), resulting in more complex
approaches requiring a good starting velocity model to be used (Van
Vorst et al., 2014).
To overcome issues of amplitude scaling and to retrieve EM po-

larizations in the inline survey orientation using a 2D modeling do-
main, several authors have used 2.5D implementations of the Yee
algorithm. These project the 3D algorithm onto a 2D plane by iter-
ating over a series of constant wavenumbers kz (e.g., Stoyer and
Greenfield, 1976; Moghaddam et al., 1991; Xu and McMechan,
1997). This approach involves multiple easily parallelizable 2D
syntheses, yet it requires a reformulation of the Yee algorithm
and postprocessing of the results, meaning that they have not, to
date, been readily implemented in open-access FDTD software
packages.

Sliced-3D FDTD modeling

Although the preceding approaches to data preprocessing are ef-
fective in converting the processing to a 2D problem, full 3D FDTD
modeling of 2D geometries remains the optimal solution for gen-
erating full 3D polarization and propagation effects (e.g., Mozaffari
et al., 2016; Langhammer et al., 2017), although the computational
demands of this approach can be significant. Restricting the width
of a 3D domain is therefore desirable to minimize computational
requirements, while retaining the benefits of 3D modeling. This
we refer to as a sliced-3D approach because it uses the 3D FDTD
algorithm with a laterally invariant 2D geometry, hence retaining
the aforementioned correct amplitude scaling and source polariza-
tion capabilities. In the following, we show that minimizing the do-
main width can only be achieved through optimization of boundary
conditions and that such a sliced-3D approach can show improve-
ments over 2D modeling for near-surface GPR modeling.

PMLs

The boundaries of an FDTD grid are often terminated using a
PML, in which a complex stretching function su is used to scale
the model domain and to provide a mechanism for reflectionless
signal attenuation. In the PML region, using cyclic notation
ði; j; kÞ ∈ ðx; y; zÞ; ðy; z; xÞ; ðz; x; yÞ (Giannopoulos, 2018), Max-
well’s equations become

Figure 1. Schematic of (a) a 2D model and (b) a sliced-3D model,
where WDom > dx; WPML ¼ 15 for both cases. Red represents the
PML region, and white represents the model domain. The 2Dmodel
uses a 2D FDTD grid, whereas the sliced-3D model is a 3D FDTD
domain with a minimized z-domain width, bounded on all sides by a
complex frequency stretched PML.
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jω ~Di ¼
1

sj

∂ ~Hk

∂j
−

1

sk

∂ ~Hj

∂z
; (2)

jω ~Bi ¼
1

sk

∂ ~Ej

∂k
−

1

sj

∂ ~Ek

∂j
: (3)

Minimizing the z-dimension of a 3D model results in energy
propagating within the model domain at grazing (low-incidence)
angles to the PML boundary, hence we use a complex frequency
stretched PML (hereafter, CFS-PML) (Roden and Gedney, 2000;
Berenger, 2002; Taflove and Hagness, 2005; Giannopoulos,
2008) where the stretching function su is of the form

su ¼ κu þ
σu

αu þ jωϵ0
; (4)

where u ∈ ði; j; kÞ is the orientation perpendicular to the model
boundary, κu is a unitless quantity, which dictates a real coordinate
stretch in the PML region, α is a frequency shift factor, and σ∕jω
introduces an imaginary spatial coordinate stretch mainly respon-
sible for signal attenuation. In this paper, we assume that the
PML parameters are the same in each orientation, so we will refer
to su; αu; κu, and σu as s; α; κ, and σ, respectively.
The CFS-PML parameters can be tuned to improve performance

over a frequency range and reduce nonphysical reflections from the
PML boundary. This is done by scaling parameters α, κ, and σ
through the PML, usually using an integer polynomial m. The term
σ is scaled from 0 to σmax as

σðxÞ ¼ σmax

�
x
d

�
m
; (5)

where d is the depth of the PML in cells and 0 < x < d is the lo-
cation within the PML so as to avoid sudden changes in σ and the
associated nonphysical reflections. We use the commonly used
(Gedney and Zhao, 2010; Giannopoulos, 2012) estimate of opti-
mum σmax after Gedney (1996) whereby

σmax ≈
mþ 1

150πdx
ffiffiffiffi
ϵr

p ; (6)

where m is a polynomial scaling, dx is the spatial resolution, and ϵr
is the relative dielectric constant. The term κ is similarly often scaled
from 1 to κmax by

κðxÞ ¼ 1þ ðκmax − 1Þ
�
d − x
d

�
m
; (7)

such that κ ¼ 1 (no coordinate stretch) at the model/PML interface
and κ ¼ κmax at the grid boundary.
The frequency shift factor α is generally scaled from a maximum

at the model/PML boundary to zero at the outermost grid boundary
to minimize the reflection coefficient at the PML/model boundary
(Taflove and Hagness, 2005) and provide broadband attenuation
within the PML. Hence,

αðxÞ ¼ αmax

�
1 − x
d

�
m
: (8)

Higher order CFS-PMLs operate via a product of multiple
contributions by

s ¼
YN
i¼1

si; (9)

where N is the number of terms, i is the order, and si is defined in
equation 4, with the aim of combining the characteristics of im-
proved attenuation within the PML compared to the standard
PML with the attenuation of evanescent energy of the CFS-
PML. Typically, two terms (N ¼ 2 in equation 9) are used for a
higher order PML, but more terms are possible by introducing fur-
ther terms of si. Feng et al. (2017) optimize a higher order PML for
the application of broadband seismic modeling and show a reduc-
tion in the error as a result. However, it is clear from inspection that
such implementations introduce cross terms in addition to the de-
sired terms such as, for a second-order CFS-PML (Giannopoulos,
2018),

s ¼
�
κ1 þ

σ1
α1 þ jωϵ0

��
κ2 þ

σ2
α2 þ jωϵ0

�
: (10)

What remains unclear is what impact these additional cross terms
have in an optimization process. Along with the higher number of
degrees of freedom associated with multiple stretching functions,
this results in the process becoming a cumbersome problem for
the general case and hence will not be considered in this study.

METHODOLOGY

We initially demonstrate the impact of using a small crossline
domain size on the signal error as a result of the aforementioned
evanescent energy. We demonstrate the effect of reducing the cross-
line domain size for a homogeneous ice (ϵr ¼ 3.2) model (Fig-
ure 2a) and a layered model of homogeneous ice overlying a
bedrock layer (ϵr ¼ 20) (Figure 2b).
We then undertake a series of sensitivity experiments with uni-

form models to investigate the performance of PMLs in attenuating
grazing wave energy on the boundary of the sliced-3D model for a
sliced-3D model with a fixed domain size of 5 cells and a PML
thickness of 15 cells. The experiments are performed at 25 and
50 MHz using a Ricker wavelet. We use an approach similar to that
of Taflove and Hagness (2005) and Drossaert and Giannopoulos
(2007) in testing parameter pairs over an expected range to derive
the optimum values because, although this is a computationally in-
tensive option, it allows a clear assessment of the sensitivity to dif-
ferent parameters. We initially do this using a κ scaling polynomial
m ¼ 2 and α polynomial m ¼ 1 (see equations 7 and 8). The model
is discretized at 0.1 m to give a model domain size of
24 × 24 × 3.5m. The PML thickness is extended compared to a typ-
ically used 10-cell implementation, with the intention of reducing
errors due to normal incidence energy at the bounding edges, which
may not be attenuated as effectively when optimization is under-
taken to reduce the evanescent energy. We then repeat this approach

Sliced-3D FDTD H45
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to investigate the impact of polynomial orderm for κ and α, running
this test for all combinations between m ¼ 0 (constant value)
and m ¼ 6.
We then investigate the frequency dependence of the optimal

CFS-PML parameters, by doing a similar grid search parameter test
as for the previous tests, but this time using an impulse source type
followed by a convolution with a Ricker wavelet with central wave-
length λc. We limit the frequencies used to 20 < λc∕dx < 100 be-
cause this is the most commonly used range of λ∕dx for
efficient FDTD modeling, also noting the dispersion limit of dx <
λmin∕10 (Giannopoulos, 1998) and that for a Gaussian waveform
the minimum significant wavelength considered for dispersion
(error < −40 dB) is λmin ≈ λc∕3. Using a grid size of 0.01

and 0.1 m, this allows testing in the range of 100–700 and
10–70 MHz, respectively. For this experiment, we use a 5-cell do-
main width with a 15-cell PML.
For each of these sensitivity experiments, a reference solution of

a 3D model Eðx; y; tÞref is calculated using a large 3D model with an
identical 2D geometry, to give the response where there is no in-
teraction with bounding PMLs normal to the z-orientation. The
3D model consists of identical geometry in the x- and y-orienta-
tions, with a 120-cell model width in the z-orientation and a 10-cell
PML using a constant κmax ¼ 1, and σ scaled linearly between 0 and
σmax after equation 6. As a result of this larger width, there is no
grazing-wave interaction with the model-PML interface, and we can
assume this to be the best-case scenario with a minimum error

Figure 2. Comparison of the effects of crossline domain size (in/out of the page), for (a and c) a homogeneous ice (ϵ ¼ 3.2) model with a
Gaussian wavelet and a standard PML and (b and d) a three-layer model with a homogeneous ice layer overlying flat bedrock with a free-space
layer above the surface. Here, dx ¼ 0.1 m and the PMLs are 10 cells thick. Two sources of noise can be noted for each. The A denotes high-
frequency noise as a result of normal incidence reflections through the PML. The arrival time of this noise is delayed in wider implementations
as the two-way traveltime between boundaries (out of the plane in [a] and [b]) increases. The B denotes low-frequency evanescent noise as a
result of grazing wave interactions between the signal and the PML boundary. Awider model results in minimization of this noise because the
incidence angle increases with the increasing width.

H46 Delf et al.
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response. Errors are reported relative to this reference solution as in
Roden and Gedney (2000), Berenger (2002), Taflove and Hagness
(2005), Giannopoulos (2008), and Feng et al. (2017) as

errorðx; y; tÞ ¼ 20 log10
Eðx; y; tÞ − Eðx; y; tÞref

Erefmax

; (11)

where Eðx; y; tÞ is the output electric field in time, Eðx; y; tÞref is the
reference solution in time, and Erefmax

is the maximum value of the
reference solution.
To demonstrate the performance of the sliced-3D approach, we

repeat our experiment of investigating domain width sensitivity to
confirm that an improvement in error is observed using an opti-
mized CFS-PML, before comparing the performance of an opti-
mized first-order PML with those previously published in the
literature, including Feng et al. (2017), which was developed for
computational seismology but follows a similar theory, along with
Gedney and Zhao (2010) and as outlined previously. For this case,
we use a model discretization of 0.005 m and free space (ϵr ¼ 1).

NUMERICAL RESULTS

Impact of domain size

Figure 2 shows the results of reducing the domain size for homo-
geneous and layered models. Thin models (with a three-cell model
domain size) show significant (> −20dB) noise levels at the signal
arrival, followed by low-frequency ringing as a result of evanescent
energy from the model-PML interface. Figure 3 shows the error for
the x- and z-polarizations for the homogeneous ice model. We es-
timate an error of −40 dB (1%) to be a feasible target to reduce the
errors below the signal-to-noise ratio of a typical radargram, which,
from Figure 3, would require a domain width of 60 cells. At small
domain sizes, the effect of evanescent energy is significant, whereby
low-frequency and high-amplitude errors are introduced following
the direct arrival (the arrivals in Figure 2, marked “B”). Thickening
the PML has a minimal impact on this error because it is induced by
the model/PML boundary.

First-order PML optimization

The optimum values for α and κ are estimated
through a brute-force grid search approach,
producing error contour plots exemplified in
Figure 4. The grid search shows minimum error
bounds of −65 and −45 dB for 25 and 50 MHz,
respectively. A clear frequency dependence of
the optimum parameters can be seen, indicating
that the optimum κmax decreases with increasing
frequency and that the sensitivity of error to the α
value decreases with the increasing frequency.
This is intuitive because κ dictates the real coor-
dinate stretch of the PML — a higher value re-
sults in a higher stretch, such that the maximum
λ∕dx within the stretched coordinates of the
PML is minimized. The optimum value of α is
approximately the same for both experiments,
but it has a much lower sensitivity at high
frequencies.

Impact of the polynomial order

Figure 5 shows the minimum error for each grid search as a func-
tion of order of polynomial scaling. It is clear that, for this example,
a constant α scaling function is the most efficient, with a maximum
−80 dB error. Higher orders of α result in an error of at least
−50 dB. A quadratic κ scaling function is shown to provide the
optimum attenuation for all orders of α. This result contrasts with
Taflove and Hagness (2005), who suggest that α ¼ 0 at the outer-
most grid boundary to enable sufficient traveling wave energy at-
tenuation. Our optimal parameter setting is therefore minimizing the
effect of evanescent energy, with the remaining noise being pri-
marily as a result of normal-incidence energy at the source point.

Frequency dependence

Figure 6 shows the minimum error and optimum α and optimum
κ as a function of λ∕dx, first demonstrating (Figure 6a) that the error

Figure 3. Plot of the maximum error as a function of the domain
width for the homogeneous ice model shown in Figure 2a. Decreas-
ing the model width results in increased error as a result of inter-
actions with the grazing-angle incident energy.

Figure 4. Contour plot of the maximum error as a function of αmax (the frequency shift
factor, equation 4) and κmax (the stretching factor) for a homogeneous ice model with a
5-cell width model domain, 15-cell first-order PMLs, with dx ¼ 0.1m. A Gaussian
waveform with the central frequency of (a) 25 MHz and (b) 50 MHz is used.
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is relatively constant at approximately −70 dB for all values of λ∕dx
tested. Figure 6b shows that the optimum selection of κ is linear
with λ∕dx, with a linear relationship of

κmax ¼ 0.14
λ

dx
− 1: (12)

In Figure 6c, αmax is plotted as log10 αmaxdx as a function of λ∕dx. A
negative linear relationship can be plotted for the range 20 < λ∕dx <
70 of form y ¼ mxþ c,

log10ðdxαÞ ¼ −0.005
λ

dx
− 4; (13)

which reduces to

α ¼ 10−4−0.005
λ
dx

dx
: (14)

Together with equation 6, these values can be readily used as a
guideline for first-order CFS-PML parameters in the frequency
range suggested because they only require calculation of a central
wavelength λ and the discretization. As such, they can be readily
calculated in the FDTD implementation. In addition, Figure 7
shows that, at higher frequencies (i.e., lower values of λ∕dx), the
error is much more sensitive to the value of κmax than to the value
of αmax, and this provides a more stable linear regression result in
Figure 6.

Domain width revisited

With our new understanding of the optimum CFS-PML param-
eters, we now revisit the signal error as a function of the domain
width (Figure 8). The optimized PML gives a consistent result
of −38 dB for an x-polarized source type and −45 dB for a z-
polarized source type. The error increases slightly at a domain width
of 10 cells for a z-polarized source, but it remains under −40 dB
down to a 3-cell domain width. In the following examples, we
use a five-cell domain width as a balance between the computa-
tional requirements and accuracy.

Comparison of implementations

The performance of differing implementations is compared in
Figure 9 using a sliced-3D homogeneous ice model as shown in
Figure 2a, now using 60 receivers in the positive x-direction, rep-
resenting a common-source point experiment. The difference be-
tween each result and the reference solution in Figure 9a is
shown in Figure 9b–9e. This demonstrates that a correctly opti-
mized first-order CFS-PML can produce synthetic data with no
evanescent energy in a sliced-3D model domain. There is a slight
error close to the source point in Figure 9c as a result of the CFS-
PML’s reduced ability to attenuate normal-incidence energy. Other
recommendations (Figure 9d and 9e) for the CFS-PML parameters
show strong evanescent energy, showing that although these have

been recommended for a general case for first-
and second-order CFS-PMLs, they are not suit-
able in this application.

EXAMPLES

Cross-borehole example

We now demonstrate the performance of
sliced-3D FDTD modeling in two applications
for which error levels and model computational
demand are important considerations. We first
use a cross-borehole survey configuration in
the presence of a heterogeneous soil with ϵr rang-
ing between 8 and 18. This is similar to the cross-
borehole FWI experiment configurations of Ernst
et al. (2007), Klotzsche et al. (2010), and the
computational configuration of Mozaffari et al.
(2016). We use a single z-polarized source point
with a 200 MHz Ricker wavelet, with an array of

Figure 5. Minimum error for all combinations of polynomial scal-
ing. This is found through repeating the results of Figure 4 for each
combination of polynomials in α and κ. The optimum value is
shown to be 0 for α and 2 for κ.

Figure 6. Frequency dependence of the first-order CFS-PML parameters using a dis-
cretization of 0.1 and 0.01 m for the homogeneous model (Figure 2a). (a) The error as a
result of the optimum parameters. (b) Optimum κmax as a function of λ∕dx. A positive
linear trend is observed as expected as a larger κmax is expected for larger wavelengths.
(c) The term α × dx plotted as a function of λ∕dx. This plot is scaled by discretization on
a lin-log plot, demonstrating that the optimum α shows a slight negative trend with λ∕dx
and a scaling with resolution.
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receivers located in a second borehole (see Figure 10a). The source
and receiver boreholes are separated by 6 m. Using a discretization
of 0.02 m, the recommended parameters from equations 12 and 14
are α ¼ 0.00397 and κmax ¼ 1.80. We undertake the simulations in
three dimensions, sliced 3D, and in two dimensions. The sliced-3D
model domain consists of 1 cell width, with PMLs extended to 15
cells to minimize noise from normal-incidence energy.
All of the simulations are undertaken with a z-polarized source to

enable like-for-like polarization comparison with the 2D implemen-
tation. We apply a frequency-domain Bleistein 2D-to-3D filter to
the 2D data (equation 1), with r being equal
to the straight-line raypath between the source
and receiver for each trace and c being calculated
from the root mean square (rms) value of ϵr from
the model. We compare the results in Figure 10c
and 10d, which shows a significantly lower error
field for the sliced-3D approach.

Common-offset glacier survey example

Now, we apply this approach to a model of a
simple glacier with a rough bed and several in-
ternal scattering points. We use model dimen-
sions of 150 × 100 × 3.5m with a 15-cell PML
thickness and resolution of 0.1 m to demonstrate
the low noise level achievable with our recom-
mendations. A dipole source with a 25 MHz
Ricker wavelet is used. Given these model
parameters, CFS-PML parameters are chosen
to be α ¼ 0.00046 and κmax ¼ 3.70, following
Figure 6 and equations 12 and 14. We use a sin-
gle-channel common-offset survey acquisition
with the source and receiver separated by 5 m
to represent a typical survey with low-frequency
dipole antennas. Several scattering points with
ϵr ¼ 80 are imposed to simulate scattering
bodies found within polythermal ice (Barrett
et al., 2008). We use 130 source/receiver locations along the surface
of a free-space/ice interface.
The results of the model are shown in Figure 11, along with the

error in dB in the second row. Figure 11c shows the solution for a
sliced-3D model with optimized CFS-PML parameters with the er-
ror compared to a 3D reference. This shows that optimization of
PML parameters can lower the error for scattering bodies to be con-
sistently less than −40 dB, with only some later arrivals close to the
bed with the error greater than −40 dB. Figure 11e and 11f shows
the response and error for a sliced-3D model with no PML optimi-
zation, respectively. Low-frequency noise is prevalent throughout,
and errors at the bed are significant. Figure 11g and 11h shows the
response for a 2D model with 2D-to-3D transformation with the
Bleistein filter assuming a first-break time of 1 μs for the bed return
(2600 iterations in Figure 11) and fails to replicate well the ampli-
tudes for any of the scattering or bed returns.
Computationally, testing on a workstation with a four-core Intel

Xeon CPU E3-1505M v5 @ 2.80GHz, the sliced-3D approach re-
quired 1.02 GB RAM and completed a single simulation in 17 min
54 s compared to the wider 3D model that required 4.06 GB RAM
and completed a simulation in 74 min 18 s for the same model. This
was largely driven by the reduction by a factor of four in the number
of cells in the sliced-3D model.

DISCUSSION

The numerical results from the preceding examples show that the
errors caused by near-grazing wave interactions with a bounding
PML region can be significantly attenuated through optimization
of the first-order CFS-PML parameters. We have suggested rela-
tionships between the optimal parameters and the model parameters
to attenuate such low-frequency energy significantly as a function
of λ∕dx, which can be readily calculated using the model param-
eters and source frequency used.

Figure 8. Comparison of the signal error as a function of the do-
main width, as in Figure 3, but including results with an optimized
CFS-PML, using the horizontally layered model as in Figure 2c and
2d. A consistent −38 dB can be achieved for the x-polarized result,
and −45 dB can be achieved for the z-polarization using our rec-
ommendations for the CFS-PML parameters.

Figure 7. The error surface as a function of κ and α for (a) 10MHz, (b) 30MHz, (c) 50MHz,
and (d) 70 MHz, where dx = 0.01 using the same experimental setup as in Figure 6a.
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Figure 11. Synthetic model representing a glacier bed with internal scattering points within the ice. (a) Initial model with homogeneous ice and
a rough bed. (b) Reference model response from the full 3D simulation. (c) Model response and (d) error with a sliced-3D domain and an
optimized CFS-PML, using the recommendations from equations 12 and 14. (e) Model response and (f) error for a sliced-3D domain with no
optimized CFS-PML, using αmax ¼ 0, κmax ¼ 1, and σmax ¼ σopt. (g) Model response and (h) error for a 2D model followed by a 2D-to-3D
Bleistein filter transformation. A significant improvement in error can be observed when the correct source polarization is used in a sliced-3D
approach.

Figure 9. Error plots as a function of the receiver
offset and time for a 5-cell width sliced 3D domain
with a z-polarized source at 50 MHz. The error is
the difference between the result and a reference
3D solution. The color scale is clipped at 1% of
the maximum. (a) Reference solution from a 3D
model showing the direct arrival; (b) a sliced-
3D domain with no PML parameter optimization;
and (c) the same model with optimum parameters
selected from equations 12 and 14, (d) with
parameters selected from the results of Feng et al.
(2017), and (e) with the parameters recommended
by Gedney and Zhao (2010). This comparison
demonstrates that a well-optimized first-order
CFS-PML, using recommendations from this
study, can show an improvement for grazing-wave
interactions over generic parameters chosen for
the first- and second-order PMLs, which are often
developed for different applications.

Figure 10. Cross-borehole GPR experiment ex-
ample. (a) Model domain showing random varia-
tions in the dielectric constant, overlaid with the
source point (the triangle) and receiver locations
(the crosses). (b) Results of a full 3D modeling
experiment using a z-polarized source. (c) Error
plot (in dB) using a sliced-3D domain with the
parameters recommended in this paper. (d) Error
plot (in dB) of 3D-to-2D transformed data using
a Bleistein filter.
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In practice, the effect of κ in the CFS-PML formulation is a real
stretching of the cells within the PML region. Higher values of κ
result in an increasing cell size within the PML region. As such,
κmax is a balance between larger stretch and nonattenuated disper-
sive effects. For larger stretch coefficients, low-frequency energy is
more effectively attenuated, although large cell sizes can result in
numerical dispersion at the outermost bounds of the PML introduc-
ing high-frequency noise that the PML is not effective at at-
tenuating.
Although there have been significant developments in PML im-

plementations through increasingly complex and higher order
stretching functions, this study represents the first numerically
based approach to optimize first-order CFS-PML parameters for
a broad range of low-frequency geophysical applications. We have
compared our results to values published in the literature (Figure 9),
although it must be noted that the previous values have been derived
and estimated for different applications, and as such the perfor-
mance cannot always be expected to match those derived for this
application.
We have suggested that our parameter choices can be applied for

radioglaciological surveys, but the effects of a wider range of dielec-
tric materials have not been explored. Regions of higher ϵr result in
increased numerical dispersion in the propagation, resulting in the
requirement of a higher resolution model. In such a case, we require
improved attenuation of lower λ∕dx values, which is shown in Fig-
ure 6 to result in a higher sensitivity of error on κmax. This may be a
limitation of the technique in applications to wider geoscientific ap-
plications of sliced-3D FDTD modeling.
Further work in this area could explore the improvements that

may be attained through optimization of higher order CFS-PMLs
or through optimization of recently developed multipole PML
(Giannopoulos, 2018). However, such approaches will necessarily
be more complex due to their implicit higher degrees of freedom.

CONCLUSION

We have shown through numerical modeling that optimization of
a first-order CFS-PML can be undertaken to minimize the domain
size to obtain full 3D polarization synthetics in the case of strictly
2D geometries. Such an approach is required to reduce the impact of
grazing-angle evanescent energy close to the model and PML boun-
dary. For a 5-cell domain size with a 15-cell PML, we can reach a
maximum amplitude error of −70 dB (or 0.03%) over the typical
range of λc∕dx used for efficient numerical modeling. We have sug-
gested relationships among CFS-PML parameters α, κ, and λ∕dx
that demonstrate the suitability of such an approach for wider ap-
plications of GPR FDTD modeling in which consideration of the
waveform polarization is important. These recommendations mean
that this approach is readily applicable in iterative processing algo-
rithms because the parameters can be automatically estimated using
the defined model.
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