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Abstract
This review presents a perspective on recent trends in glacial geomorphological research, which has seen an
increasing engagement with investigating glaciation over larger and longer timescales facilitated by advances in
remote sensing and numerical modelling. Remote sensing has enabled the visualization of deglaciated
landscapes and glacial landform assemblages across continental scales, from which hypotheses of
millennial-scale glacial landscape evolution and associations of landforms with palaeo-ice streams have been
developed. To test these ideas rigorously, the related goal of imaging comparable subglacial landscapes and
landforms beneath contemporary ice masses is being addressed through the application of radar and seismic
technologies. Focusing on the West Antarctic Ice Sheet, we review progress to date in achieving this goal, and
the use of radar and seismic imaging to assess: (1) subglacial bed morphology and roughness; (2) subglacial bed
reflectivity; and (3) subglacial sediment properties. Numerical modelling, now the primary modus operandi of
‘glaciologists’ investigating the dynamics of modern ice sheets, offers significant potential for testing ‘glacial
geomorphological’ hypotheses of continental glacial landscape evolution and smaller-scale landform develop-
ment, and some recent examples of such an approach are presented. We close by identifying some future
challenges in glacial geomorphology, which include: (1) embracing numerical modelling as a framework for
testing hypotheses of glacial landform and landscape development; (2) identifying analogues beneath modern
ice sheets for landscapes and landforms observed across deglaciated terrains; (3) repeat-surveying dynamic
subglacial landforms to assess scales of formation and evolution; and (4) applying glacial geomorphological
expertise more fully to extraterrestrial cryospheres.
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I Introduction

In this paper we define glacial geomorphology

as the landforms, sediments and landscapes

created and/or modified by glaciation, and the

study of these features and their formative

processes. Motivations for such studies are

manifold. We live in a geological period, the

Quaternary, spanning 1.8 Ma BP to the present,

characterized by dramatic climate oscillations,

in response to which glaciers and ice sheets

throughout the globe have expanded and dimin-

ished many times. Understanding this history of

glaciation, how the growth and decay of large

ice sheets feeds back into further climate change,

and quantifying ice-atmosphere-ocean feed-

backs during past glaciations and deglaciations,

are all key to elucidating the present and likely

future responses of glaciers and ice sheets to

ongoing changes in climate, and predicting the

changes to sea levels and water resources that

these will effect (eg, Shepherd and Wingham,

2007; Soloman et al., 2007). Glacial geomor-

phology, in providing the evidence for determin-

ing former ice extents (eg, Dyke et al., 2001;

Glasser et al., 2008) and dynamic configurations

(eg, Clark, 1993; Stokes and Clark, 2001;

Kleman et al., 2008; Ó Cofaigh and Stokes,

2008; Rose and Hart, 2009), and in recording the

processes that occur beneath ice masses both

past and present (eg, Hindmarsh, 1993; Evans,

2003; Dunlop et al., 2008; Stroeven and Swift,

2008), forms an essential component of this

imperative. Glaciers and ice sheets are also

effective agents of landscape evolution: highly

active in erosion and landscape denudation, as

evinced by mountainous ‘alpine’ landscapes

(eg, Harbor et al., 1988; Mackintosh et al.,

2006; Brook et al., 2008) and regions of areal

scouring (eg, Sugden, 1978; Lidmar-Bergström,

1997; Glasser and Bennett, 2004); and in deposi-

tion, as exemplified by the numerous tills (eg,

Svendsen et al., 2004) and glacial depositional

landforms (eg, Eyles, 2006; Evans et al., 2008)

swathed across much of northern Eurasia and

America, legacies of the Last Glacial Maximum,

*21 ka BP. Improving our understanding of

glacial erosional, depositional, and deforma-

tional processes worldwide is critical to gauging

rates of landscape modification by ice masses,

and quantifying the relative role that ice plays

in global landscape denudation (Hallet et al.,

1996; Brocklehurst and Whipple, 2006; Aber

and Ber, 2007; Stroeven and Swift, 2008, and

references therein). From a more practical,

‘applications-based’ standpoint, a knowledge

of the structure and distribution of glacial land-

forms and sediments is also highly useful in

activities including gravel extraction, mitigation

of natural hazards, and waste disposal (Gray,

1993; Bridgland, 1994; Talbot, 1999; Clague,

2008; Moore et al., 2009).

In this article we reflect on some recent trends

in glacial geomorphological research, and in

particular the increasing engagement with

understanding glaciation over larger and longer

timescales afforded by advances in remote sen-

sing and numerical modelling. Space limitations

preclude a comprehensive review of the now

vast field of glacial geomorphology (recent

offerings from Benn and Evans, 2010, and

Knight, 2006, provide good starting points), so

we omit from this article any discussion of the

vast contributions advances in dating methods

have made to studies of deglaciation. Here we

focus especially on developments made in tech-

niques to image and interpret landforms, sedi-

ments and landscapes beneath modern ice

sheets, which have perhaps received little synth-

esis to date in traditional geomorphological

spheres, yet have much potential to inform the

rapidly expanding field of studies and recon-

structions of former ice sheets. We begin with

an overview of some of the technological and

theoretical advances which have facilitated an

‘upscaling’ of research in contemporary glacial

geomorphology (section II). We then focus on

the example of West Antarctica, reviewing the

methods used to investigate the form and

composition of the bed beneath the modern ice
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sheet and the insights such studies provide. In

section IV we discuss two examples of the ways

in which numerical models use such data to

advance our understanding of subglacial

processes and landscape evolution. In section

V we reflect on progress in contemporary glacial

geomorphology, and tentatively propose some

potential directions for future research.

II Changing scales and
methodologies in glacial
geomorphology

As in all aspects of geomorphology (cf. Church

and Mark, 1980), scale is a critical concept in

glacial research. The idea is illustrated with gla-

ciological examples in Figure 1. In glacial geo-

morphology the term landform is typically

used to describe features at local to sublocal

(<10 km) spatial scales, which are created and

persist over shorter temporal timescales (<103

years) than landscapes, palimpsests of land-

forms covering larger, regional to continental

(*102–105 km2) spatial scales, which must be

considered over accordingly longer temporal

timescales (cf. Sugden and John, 1976: 7). The

critical point is that the spatial scale over which

a landform or landscape develops tends to have a

corresponding temporal scale; thus to study the

evolution of entire ice-sheet-scale landscapes,

such as landscapes diagnostic of the former

Laurentide and Eurasian Ice Sheets, or the con-

temporary subglacial landscape beneath Antarc-

tica, requires methodologies capable both of

addressing spatial scales >105 km2 and temporal

scales >104 years.

Prior to the late 1980s, most glacial geomor-

phology was practised on deglaciated terrain at

relatively local scales, with the majority of stud-

ies focusing on the genesis of individual land-

forms (cf. Boulton, 1987b). Traditional

practices, with the primary aim of inferring past

ice-extent and flow directions in individual

localities, included geomorphological mapping

of formerly subglacial and ice-marginal

landforms (eg, striae, drumlins, moraines); and

fabric and compositional analyses of tills, either

exposed in riverbanks, cliffs and/or quarries, or

retrieved using sediment-coring techniques.

While there was a burgeoning desire to link

these disparate studies together to constrain gla-

ciation over larger, regional to continental land-

scape scales, thereby to address long-term

glacial landscape evolution (eg, Flint, 1971;

Moran et al., 1980; Denton and Hughes, 1981),

the technology and theory to address these larger

and longer scales of analysis were largely

lacking.

Over the last 20 years, advances in remote

sensing and numerical modelling have provided

both the impetus and the tools for glacial geo-

morphologists increasingly to engage with eluci-

dating glaciation over far larger spatial and

temporal timescales than was previously possi-

ble. Remote sensing, especially from space, has

allowed glacial landscapes clearly to be

observed over far greater spatial scales than

before (eg, Bamber, 2006; Kleman et al.,

2008), while numerical modelling has enabled

hypothesis-testing over the correspondingly

larger timescales (cf. Figure 1) required to

understand the development and evolution of

these spatially vast landscapes. We return to the

role of numerical modelling in glacial geomor-

phology in section IV. The advances in remote

sensing can be split into three groupings: space-

borne Earth observation; marine geophysics;

and glacier geophysics.

The development of a suite of ‘Earth observa-

tion’ satellites, such as SPOT5 and ASTER, has

enabled us, for the first time, to image land-

scapes effectively at up to continental scales

(eg, Clark, 1997; Smith et al., 2005). Especially

striking has been spaceborne imagery of north-

ern North America and Eurasia, which has aided

delineation of the former ice-sheet extents

(Napieralski et al., 2007; Kleman et al., 2008),

and enabled researchers to visualize the essential

coherence of different land systems diagnostic

of former ice-sheet configurations (eg, Evans,
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Figure 1. Illustrating the use of remote sensing to image glacial landforms and landscapes at a variety of
scales. (a) 900 km2 high-resolution (5 m) shaded relief map of the northern Cairngorm plateau and part of
Strathspey near Aviemore, Scotland, an area extensively glaciated during the last stadial. Landforms
characteristic of extensive glacial erosion over timescales >103 years (eg, the Glen Einich and Lairig Ghru
glacial troughs, truncated spurs, coires and roches moutonees) can be discerned; superimposed over these
are smaller landforms created over timescales of 10–102 years by glacial deposition (moraines), glaciofluvial
action (meltwater channels, kames, eskers, outwash terraces) and deglaciation (kettle holes). Image
generated from Intermap Technologies NEXTMap1 digital elevation data, made using airborne synthetic
aperature radar interferometry and provided courtesy of NERC via the NERC Earth Observation Data
Centre (NEODC). (b) 40,000 km2 medium-resolution (50 m) shaded relief map from ship-borne swath
bathymetry, showing a landscape of former ice stream beds on the continental shelf of West Antarctica,
submerged at up to 1000 m depth below sea level. The landscape is dominated by two ice stream troughs
that converge into a single, 65 km wide, trough eroded into the continental shelf. Even the smaller-scale
landforms in this landscape show the profound modifying effects of sustained fast glacier flow persisting
over timescales >103 years. Close to the modern grounding lines, an anastamosing network of channels
has been carved into exposed bedrock by subglacial fluvial erosion, and bedrock has been streamlined.
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2003). Illustrating the profound effect that

remote sensing has had on scales of analysis,

satellites have clearly imaged large-scale land-

forms (eg, megascale glacial lineations; Clark,

1993) that previously went unrecognized

because they appear too fragmented on the

smaller scales of aerial photographs of field

investigation. Perhaps more than any other

factor, such imagery has strengthened our appre-

ciation that large parts of the Earth’s terrestrial

landscape have fundamentally been shaped by

the growth and decay of major ice sheets; and the

consequent ability to synthesize previously

disparate observations of landforms and local-

scale models, and upscale to continental-scale

models of (de)glaciation, has fuelled a shift

away from the more traditional smaller-scale

‘alpine glaciation’ studies towards those with a

larger-scale ‘ice-sheet-glaciation’ emphasis. A

particularly dynamic growth area of glacial geo-

morphology now concerns the identification of

‘palaeo-ice streams’ across deglaciated terrain

(Stokes and Clark, 2001; Ó Cofaigh et al.,

2002; Clark et al., 2003; Graham et al.,

2007a). Such research has at its core the philoso-

phy that the composition and distribution of

exposed subglacial landforms and sediments

impart vital clues concerning what has con-

trolled the flow, and changes in flow, of former

ice streams and glaciers. Understanding these

controls is vital, as satellite-derived ice-

velocity observations have demonstrated that

arterial fast-flowing ice streams account for the

vast majority of overall ice flux in modern ice

sheets (Joughin et al., 2002; Rignot, 2006;

Rignot and Kanagaratnam, 2006), hence

understanding their behaviour is at the heart of

elucidating overall ice-sheet evolution.

Significant related advances further consoli-

dating the turn towards ice-sheet-scale geomor-

phology over the last 20 years have been made

in ‘ship-borne’ remote sensing, more commonly

termed marine geophysics (Dowdeswell and

Scourse, 1990; Dowdeswell and Ó Cofaigh,

2002). At the Last Glacial Maximum, terrestrial

ice sheets extended onto the continental shelves

off Antarctica, North America (including Green-

land) and Eurasia. While the submergence of

these subglacial landscapes has facilitated the

excellent preservation of features (see, for exam-

ple, Larter et al., 2009), it has also meant that

their detection and detailed study have had to

await the development of technology capable

of imaging landforms and landscapes effectively

beneath several 100 m of seawater. Over the last

two decades the capability to achieve this goal

has developed at a rapid pace, and marine geo-

physical techniques including multibeam swath

bathymetry, side scan sonar, TOPAS subbottom

profiling and multichannel seismic reflection

profiling have all been refined and increasingly

implemented to map, in sometimes astounding

detail, a plethora of glacial landforms and

sediments off Antarctica (eg, Anderson et al.,

2002; Lowe and Anderson, 2003; Mosola and

Anderson, 2006; Nitsche et al., 2007; Dowdes-

well et al., 2008; Larter et al., 2009; Smith et

al., 2009), Greenland (eg, Ó Cofaigh et al.,

2004; Evans et al., 2009) and the North Atlantic

(Dowdeswell et al., 2006; Nygard et al., 2007;

Ottesen et al., 2008). Mirroring the work

utilizing spaceborne instrumentation to image

terrestrial deglaciated landscapes, a common

drive has been to reconstruct former ice-stream

flowpaths, geometry and dynamics from the

landforms and sediments thus imaged (eg, Evans

Figure 1. (Continued) Downstream, there is a transition to drumlin swarms, often clustered between
isolated, scoured bedrock highs or interspersed with megascale glacial lineations (MSGL). As sediment
cover becomes continuous farther downflow, only MSGL persist, converging and reaching far onto the
continental shelf. Image after Larter et al. (2009); see also Nitsche et al. (2007); ice shelf imagery from LIMA
mosaic.
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et al., 2006; Ó Cofaigh and Stokes, 2008; Larter

et al., 2009).

Using both the onshore and offshore work

on deglaciated terrains, a range of landforms

or landform assemblages characteristic of for-

mer ice-streaming within a regional ice cover

(Clark, 1994) have been identified: (1) drum-

lins and flutes, hills or ridges of glacial till

elongated along the axis of ice flow (Boulton,

1976; Menzies, 1979; Clark et al., 2009); (2)

megascale glacial lineations (MSGLs), elon-

gate ridges of sediment also aligned along flow

similar to the above but with much larger

dimensions, which may in many cases consist

of amalgamations of the above (Clark, 1993;

King et al., 2009); (3) deformation tills, thick-

nesses of unconsolidated sediments containing

a directional deformational signature (eg,

Dowdeswell et al., 2004; Ó Cofaigh et al.,

2005); and (4) the absence of such features

on intervening regions interpreted as areas of

slow or sheet flow (Kleman et al., 2008). An

outstanding challenge is to invert from this

glacial geomorphology the former ice-sheet

conditions responsible for imprinting these

landforms, sediments and landscapes (eg,

Glasser and Bennett, 2004; Kleman et al.,

2008), and, to test such ideas rigorously, the

related challenge has therefore arisen of ima-

ging the corresponding landforms, sediments

and landscapes beneath modern ice streams.

This is a challenge that is steadily being

addressed through glacier geophysics.

Compared with the bulging archive of ima-

gery of exposed ice-sheet beds obtained from

Earth observation and marine geophysics over

the last 20 years, progress in using geophysical

techniques to image modern ice-sheet beds has

been less marked. This is certainly not due to

apathy on the part of glaciologists; rather, it is

because the task of ‘seeing through’ ice thick-

nesses of several km to gain comparable ima-

gery of ice-sheet beds remains at the frontier of

geophysical ability. A less significant, but still

important, consideration is that access to the

remote interior regions of ice sheets, especially

in Antarctica, while steadily increasing, remains

extremely restricted, limiting opportunities to

gather data and refine methods. Nevertheless,

geophysical methods applied over modern ice

sheets have steadily developed to a stage at

which they are beginning to produce geomor-

phological data directly comparable with that

retrieved over deglaciated terrains.

III Imaging subglacial conditions
across West Antarctica

1 Location

West Antarctica is shrouded by the world’s only

remaining marine ice sheet. Here, the term

‘marine’ specifically refers to the predominant

grounding of the West Antarctic Ice Sheet

(WAIS) below present (and iso-adjusted) sea

level, an attribute hypothesized as leaving it

especially vulnerable to rapid flotation and col-

lapse in response to rising sea levels and thin-

ning (Mercer, 1978; Pollard and DeConto,

2009). Knowledge that the WAIS holds the

equivalent of *3.3 m of sea-level rise (Bamber

et al., 2009), coupled with satellite observations

of its highly dynamic behaviour, comprising

dramatic thinning and ice-acceleration in some

parts (eg, Joughin et al., 2006; Wingham et al.,

2006a; 2009; Bamber et al., 2007; Rignot,

2008; Rignot et al., 2008), has motivated

research into the fundamental controls on ice-

stream behaviour in West Antarctica since the

early 1970s (Hughes, 1977; Bentley, 1987;

Alley and Bindschadler, 2001). Belief, evermore

backed up by theory, that the key to dynamic

changes in ice-stream behaviour lies at the bed

(eg, Alley et al., 1986; MacAyeal, 1992; Schoof,

2006), has fuelled numerous efforts to ‘view’

basal conditions beneath the WAIS. With the

exception of a handful of boreholes (Engelhardt

et al., 1990; Engelhardt and Kamb, 1998), this

research has relied entirely on applications of

glacier geophysics.
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The WAIS is drained predominantly by three

catchments at the apex of which is the WAIS

Divide (the site of a current deep-ice coring proj-

ect; Figure 2). The Ross catchment drains ice

westwards across the Siple Coast to the Ross Ice

Shelf via a series of ice streams some of which

have little or no obvious topographic control:

from south to north these are Mercer, Whillans,

van der Veen, Kamb, Bindschadler, MacAyeal

and Echelmeyer Ice Streams, formerly known

as Ice Streams A, B1, B2 and C to F). The Ronne

catchment feeds ice to the Filchner-Ronne Ice

Shelf: significant drainage conduits include

Evans, Institute, Möller and Rutford Ice

Streams, the latter of which is fringed and topo-

graphically constrained by the neighbouring

Ellsworth massif. Ice flow from the Amundsen

catchment is unprotected by a large ice shelf,

and is routed predominantly via Pine Island and

Thwaites Glaciers (Figure 2).

2 Methods

While much of glacial geomorphology has pro-

ceeded from smaller to larger scales of landform

and landscape analysis (section II), it could be

argued that efforts to sound and image the basal

interface beneath the WAIS have followed the

converse trend, with the principal pacemaker

being technology. Prior to the development and

application of ice-penetrating radar systems,

what little knowledge existed either of subgla-

cial topography or subglacial conditions was

obtained from very widely spaced point-

seismic reflection soundings (Bingham and

Siegert, 2007b) or gravity surveys, many of

which were conducted under the auspices of the

Figure 2. Location map of the West Antarctic Ice Sheet, showing the main geographical features mentioned
in the text, notably the major ice streams and glaciers that drain into three catchments: the Ross Ice Shelf, the
Ronne Ice Shelf, and the Amundsen Sea. The background image (shades of grey) is MODIS mosaic imagery
from Haran et al. (2006); superimposed over this is a mosaic of satellite-derived ice surface velocities (after
Edwards, 2008); the black line indicates the approximate grounding line as mapped in the Antarctic Digital
Database (http://www.add.scar.org:8080/add).
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International Geophysical Year programme

between 1957 and 1960 (eg, Bentley, 1971; and

see Naylor et al., 2008). However, the develop-

ment of airborne ice-penetrating radar systems

during the 1950s and 1960s rapidly opened the

door to more comprehensive sounding of conti-

nental- and regional-scale bed topography

throughout the 1970s, and in the last 30 years

aerogeophysical surveying has been refined such

that acquisition includes not only simple topogra-

phy but also physical information concerning the

characteristics of subglacial material. Building on

the continental/regional insights thus gained,

oversnow radar systems, often operated at lower

frequencies than airborne systems, have been

applied to interrogate basal properties over more

localized scales. Parallel developments in seismic

data acquisition have been critical to determining

the nature of the subglacial interface beneath

parts of the WAIS.

a Airborne radar investigations. Geophysical radio

detection and ranging (radar) investigations over

ice sheets exploit the transparency of cold ice to

electromagnetic waves in the high to very high

frequency (HF/VHF/megahertz) bands. All ice-

penetrating radar (IPR; also known as radio-

echo sounding or RES) systems comprise a trans-

mitter that emits electromagnetic waves and a

receiver that records their reflections (or

‘echoes’) off any surfaces evincing a contrast in

dielectric properties; these surfaces include the

ice surface, internal layers (englacial horizons

with common properties in density, chemistry

and/or ice-fabric) and, of most direct interest to

the geomorphologist, the ice-bed interface

(Figure 3). Indeed, it was the realization that the

bed could easily be sounded through thick ice

using radar that initially prompted early ‘radio-

glaciologists’ to mount radar systems within air-

craft, creating for the first time a viable means of

constraining subglacial morphology across the

vast ice-shrouded tracts of Antarctica and Green-

land (Bailey et al., 1964; Gudmandsen, 1969;

Robin et al., 1977; Drewry, 1983; Bogorodskiy

et al., 1985). The principal motivation for these
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early measurements was simply to sound the ver-

tical position of the bed, thereby ascertaining the

volume of ice stored in the terrestrial ice sheets;

across the WAIS systematic surveying designed

for this purpose was conducted in the late

1960s and throughout the 1970s (Robin et al.,

1977; Drewry, 1983). An early hint that radar

systems could retrieve not only topography per

se, but also information pertaining to properties

of the basal interface, was provided by the obser-

vation that particularly bright bed-echo strengths

occurred over putative subglacial lakes (Oswald

and Robin, 1973). From the 1980s onwards, air-

borne radar surveys explicitly designed to sup-

port coordinated field activities (eg, Alley and

Bindschadler, 2001; Payne et al., 2006) have

generated further data sets that have thus been

interpreted both for bed topography and basal

properties. In parallel, revolutionary develop-

ments in navigation (notably Global Positioning

Systems, GPS) and digital data acquisition have

enabled significant progress to be made in data

resolution and accuracy, such that modern sys-

tems can sound the bed at intervals of *20 +
1 m (Vaughan et al., 2006; cf. 1.8–3 km in

Drewry, 1983).

Airborne radar systems therefore provide per-

haps the most effective means of constraining

subglacial geomorphology on regional to conti-

nental scales. However, few, if any, airborne

radar surveys in Antarctica have been couched

explicitly in terms of addressing subglacial

geomorphology; rather, their findings, for the

most part, have been presented in geophysical

or process-glaciological arenas. A key question

for the geomorphologist, therefore, is: what

parameters extracted by radar across modern ice

sheets are useful in helping to interpret formerly

glaciated landscapes? To date, the answer may

be divided into two categories: (1) subglacial

topography itself, specifically addressed by ana-

lysing bed roughness along radar survey tracks;

and (2) radar-derived bed-compositional proper-

ties, a proxy for which is the strength of the

radar-returned power, or bed reflectivity.

Simply constraining the ‘shape’ of the subgla-

cial landscape, and smaller-scale landforms

(without yet addressing their composition, dis-

cussed below), is an important goal in West Ant-

arctica. At the continental scale, airborne radar

measurements of ice thickness (supplemented

by other methods) have been used to compile the

‘BEDMAP’ digital elevation model (DEM) of

subglacial topography (Lythe et al., 2001).

BEDMAP provides first-order indications of the

relations between major WAIS ice streams and

basal topography: Rutford Ice Stream is clearly

underlain by a well-defined subglacial trough;

the Siple Coast ice streams, however, display a

much less clear, in some cases negligible, corre-

spondence with basal topography. The DEM

therefore displays very clearly that whereas in

some places ice streams have clear topographic

control elsewhere other factors drive ice-stream

configuration. However, while BEDMAP is

highly useful in this and the other regards for

which it was intended (eg, Arthern and

Hindmarsh, 2003; Llubes et al., 2003; Pollard

and DeConto, 2009), its 5 km grid resolution

precludes capturing most individual glacial land-

forms, even at the larger scales of features now

identified with remote sensing on deglaciated

landscapes, such as MSGL. Moreover, its reli-

ance on interpolation between survey tracks,

especially in data-sparse regions (cf. Welch and

Jacobel, 2003), limits its use in terrain analysis

techniques. However, the constitutive airborne

radar tracks themselves, along which the bed has

been sounded at high resolution (*20 m to

3 km), have been interrogated for smaller-scale

variations in the shape or texture of the ice-

sheet bed, a property commonly termed bed

roughness.

Bed roughness can be defined qualitatively as

the vertical variation of an ice-sheet bed with

horizontal distance, and has been quantified from

radar-derived bed echoes in several ways. One

approach is to characterize bed roughness based

on the standard deviations of individual bed-

elevation points from an interpolated bed surface
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(Rippin et al., 2006). Taylor et al. (2004) devel-

oped a technique for assessing bed roughness

based on power spectra derived from Fast-

Fourier-transforming bed-elevation profiles; this

has been exploited by Siegert et al. (2004a) and

Bingham and Siegert (2007a) to quantify bed

roughness across several West Antarctic ice

streams. The above methods have utilized only

raw bed-elevation profiles sounded by radar; var-

ious attributes relating to the strength of radar-

returned echoes (or bed reflectivity, which we

discuss in more detail below) have also been

interpreted as variations in bed roughness (Peters

et al., 2005; Rippin et al., 2006). Significantly, an

intercomparison of eight different algorithms for

assessing bed roughness has demonstrated that

regardless of the particular method used similar

regional-scale patterns are derived (D. Rippin,

personal communication). Thus, for example,

beds beneath areas of streaming (fast) flow are

typically ‘smooth’ (ie, little vertical variation

with horizontal distance), while beds beneath

intervening areas of sheet (slow) flow are often

‘rough’ (Siegert et al., 2004a). Bingham and Sie-

gert (2009: their Figure 3) present schematically

a framework for the geomorphological interpre-

tation of bed roughness patterns across Antarc-

tica. The underlying concept is that smoother

beds reflect regions that have experienced more

subglacial modification (erosion and/or deposi-

tion/deformation) by warm-based fast-flowing

ice, perhaps aided by a softer preglacial lithol-

ogy, whereas rougher beds evince greater pregla-

cial landscape preservation, frequently

corresponding with cold-based slow-flowing ice

(eg, interior regions and ‘ice ridges’ between ice

streams) and/or subglacial orogenies. An out-

standing challenge is to apply parallel methods

to former ice-sheet beds, and in so doing set up

a methodological framework for using ‘rough-

ness signatures’ in the currently glaciated

continental-scale landscape as analogues for

their equivalents in deglaciated landscapes.

The use of airborne radar to derive informa-

tion on the composition of modern ice-sheet beds

typically focuses on a proxy termed ‘bed reflec-

tivity’ (also known as bed-echo strength, or bed-

reflection power, BRP), wherein variations in

the amplitude of the radar echo from the bed,

corrected for ice thickness and internal ice prop-

erties, have been interpreted as variations in the

composition of the basal interface. Such varia-

tions arise due to differences in water content,

subglacial geology and/or the roughness of the

subglacial interface, so that, in principle,

brighter (dimmer) bed reflectivity can be used

to identify areas of wet (dry/frozen), hard (soft/

unconsolidated) and/or smooth (rough) beds.

The approach was pioneered by Shabtaie et al.

(1987), who examined airborne radar data over

Mercer, Whillans and Kamb Ice Streams, and

argued that bed reflectivity varied inversely with

freezing at the bed. Seismic studies (discussed in

section III.2.c) showing that much of West Ant-

arctica is underlain by unconsolidated packages

of sediments led Bentley et al. (1998) to reinter-

pret variations in radar-derived bed reflectivity

over the same region as contrasts between wet

and frozen subglacial till. More recently, Peters

et al. (2005) have drawn up a table of

airborne-radar-derived bed reflectivities for dif-

ferent subglacial materials. This scheme

accounts for the fact that rougher beds will scat-

ter the radar signal and weaken the bed reflectiv-

ity; a property exploited by Rippin et al. (2006)

in using bed reflectivity as a proxy for bed

roughness itself.

In addition to bed reflectivity, which focuses

on the amplitude of the signal returned from the

bed, researchers are now beginning to recognize

that other parameters, such as the length and

phase of the radar pulse returned from the bed,

may also be related to the nature of subglacial

sediments (Rippin et al., 2006; Murray et al.,

2008; see also Doake, 1975).

b Oversnow radar investigations. In several parts

of the WAIS, oversnow radar systems have been

deployed to gain further insights into subglacial

morphology and composition. The operation of
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oversnow systems is essentially the same as for

airborne radar, but with the transmitter and

receiver mounted on, or towed behind, over-

snow vehicles (Figure 3). Where the key advan-

tage of airborne radar lies in its ability to acquire

data over the larger scales of landscape analysis,

oversnow radar is typically used to acquire

higher-resolution data in targeted areas of espe-

cial interest, often suggested in the first instance

by spaceborne remote sensing or airborne radar

surveys. In addition to the advantages of

improved spatial resolution and the elimination

of losses through the air, many oversnow radars

can also be operated at lower frequencies than

airborne systems, enabling better penetration

through thick ice to subglacial landforms.

Drawing upon a range of bed reflectivities

derived for subglacial materials from frozen per-

mafrost to a film of liquid water (Gades, 1998),

several oversnow-radar surveys have demon-

strated sharp contrasts in bed reflectivity cross-

ing the margins from ice streams (high

reflectivity) to ice ridges (low reflectivity)

across the Ross ice streams (Gades et al.,

2000; Catania et al., 2003; Raymond et al.,

2006). These authors have attributed the higher

bed reflectivities beneath ice streams to water-

saturated tills and the lower bed reflectivities

found interstream to frozen or patchy, thin tills;

some calibration of these results has been pro-

vided by comparing bed reflectivities with mea-

surements of water content and basal sediment

in nearby boreholes (Catania et al., 2003).

Within an ice stream itself, Jacobel et al.

(2010) found on the Kamb Ice Stream that,

although bed reflectivity is generally high, it is

possible to have isolated areas of low reflectivity

that correspond to ‘sticky spots’ of localized

slow flow, which can be picked out from space-

borne observations and where borehole studies

have found dry beds (Engelhardt, 2004). Hence,

although the till beneath modern ice streams is

widespread, it appears to have heterogeneous

properties that correspond strongly with the con-

figuration of ice streams and the distribution of

intrastream sticky spots. These findings support

the detailed analysis of till characteristics in

deglaciated regions to identify former regions

of ice streaming and ice-stream sticky spots

(eg, Christoffersen and Tulaczyk, 2003; Stokes

et al., 2007).

The use of oversnow radars in West Antarc-

tica to image subglacial landforms on scales that

tally with those imaged across former ice-sheet

beds (eg, Stokes and Clark, 2006; Larter et al.,

2009) is a field still in relative infancy. Traver-

sing the grounding line of Whillans Ice Stream,

Anandakrishnan et al. (2007) imaged an 8 km

long, up to *80 m deep subglacial sedimentary

wedge (or ‘till delta’), the existence of which

probably serves to stabilize the current

grounding-line position (Alley et al., 2007).

Relict wedges of similar dimensions, with

upstream MSGL, have been observed across the

floor of the Ross Sea between the Ross Ice Shelf

and the continental shelf, likely evincing relict

stages of grounding-line retreat dating back to

the Last Glacial Maximum (Domack et al.,

1999; Mosola and Anderson, 2006). Driving a

radar in grids over the onset region of Rutford

Ice Stream (and also deploying seismic methods,

discussed in the following section), King et al.

(2007) imaged several subglacial bedforms and

supplied the first evidence from a contemporary

ice stream of a direct relationship between bed-

form shape and ice-stream flow-velocity,

inferred only previously from geomorphological

analyses of palaeo-ice-stream beds (Ó Cofaigh

et al., 2002; Stokes and Clark, 2002; Wellner

et al., 2006). Indeed, subsequent radar surveying

across a downstream fast-flowing (*375 m a-1)

sector of the same ice stream confirmed this asso-

ciation, revealing MSGL beneath the modern ice

stream indistinguishable from those found on the

beds of palaeo-ice streams in northern Canada

(King et al., 2009). These studies have demon-

strated the potential that radar-imaging of land-

forms beneath the modern ice sheet offers for

testing rigorously ideas concerning landform/

ice-dynamics associations previously only
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postulated from studies of deglaciated terrain.

However, as yet there remain tantalizingly few

such observations from modern ice streams with

which to test theories of elongate glacial land-

form development.

c Seismic investigations. The use of seismic tech-

niques constituted the first application of geo-

physics to glaciology (Mothes, 1926, after

Clarke, 1987) and, in the early (pre-radar) days

of Antarctic science, seismic shot-depths pro-

vided the first (albeit sparse) measurements of

ice thickness across the WAIS (eg, Bentley and

Ostenso, 1961). Because seismic techniques

exploit different phenomena – elastic rather

than electromagnetic waves – the information

they generate concerning subglacial conditions

is complementary to that obtained by radar;

indeed, seismic techniques retrieve some sub-

glacial properties that radar cannot. Notably, the

principal limitation of radar techniques over

modern ice sheets is the inability of electromag-

netic waves (in most cases) to penetrate beneath

the subglacial interface. Elastic waves, by con-

trast, travel easily through ice and can image

sub-bed structures (Figure 3). This has become

an especially significant attribute following the

widespread uptake in glacial geomorphology of

the deforming-bed paradigm (eg, Boulton and

Hindmarsh, 1987; Hart, 1995; Maltman et al.,

2000; van der Meer et al., 2003), the key tenet

of which is that where glaciers and ice streams

are underlain by unconsolidated sediments, sub-

glacial deformation of those sediments, particu-

larly when wet, may facilitate fast flow. There is

therefore a need to image sub-bed conditions

and elucidate the composition and internal

structure of subglacial sediments in both mod-

ern and palaeo settings, and such information

beneath modern ice sheets can only be extracted

by seismic methods.

One of the most common seismic techniques

applied to elucidate basal conditions in West

Antarctica has been normal-incidence seismic

reflection sounding (hereafter shortened to

seismic reflection sounding). A comprehensive

introduction to this methodology and its applica-

tions is given in Smith (2007). For each measure-

ment, the equipment comprises a source that

emits elastic waves, typically a small explosive,

and an array of detectors, typically a spread of

geophones hand-planted just beneath the snow

surface, each of which picks up reflections of the

elastic waves from subsurface reflectors, most

obviously the ice-bed interface but also from

sub-bed sediment layers (Figure 3). Useful para-

meters for the glacial geomorphologist that are

derived from the method include: (1) sub-bed

reflectors, indicative of subglacial sedimentary

structures; (2) acoustic impedance of the subgla-

cial material, evincing subglacial sediment

properties; and (3) small-scale subglacial topo-

graphic features, analogous to Quaternary glacial

landforms. With respect to the latter point, the

spatial resolution of seismic measurements is

often better than that obtained by radar (eg, King

et al., 2007).

The first intensive use of seismic reflection

sounding to delineate subglacial conditions in

West Antarctica was conducted in 1983/84.

Blankenship et al. (1986) picked out two clear

reflectors below Whillans Ice Stream, an upper

reflector corresponding to the ice-bed interface,

and a lower reflector corresponding to the bot-

tom of a metres-thick subglacial sediment layer.

Subsequent modelling of the relation between

elastic-wave velocity and porosity based on

laboratory experiments suggested that the sub-

glacial sediment layer was relatively porous

(*40%) and too weak to support the shear stress

exerted by the overlying ice; thereby providing

the first evidence that a significant component

of the flow of streaming ice may be attributed

to active deformation in an underlying layer of

dilated sediments (Alley et al., 1986; 1987;

Blankenship et al., 1987). The dilatancy of this

till layer was later confirmed by drilling into it

(Engelhardt et al., 1990), and further seismic

reflection sounding similarly disclosed the exis-

tence of dilatant subglacial sediments beneath
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the neighbouring Kamb Ice Stream (Atre and

Bentley, 1993).

The significance of subglacial sediments to

the onset of ice streams and the configuration

of the tributaries that feed them was first investi-

gated using seismic reflection sounding by Ana-

ndakrishnan et al. (1998), who showed that the

margin of streaming flow in the upper reaches

of Kamb Ice Stream was coincident with the

boundary of a regional-scale deep subglacial

sedimentary basin. Further extensive seismic

experiments in this region have confirmed that

tributaries of both Kamb and Bindschadler Ice

Streams overlie significant sedimentary

packages (Peters et al., 2006). A transect from

the ice-sheet interior into a tributary of Kamb Ice

Stream shows a progression from no-sediment to

discontinuous-sediment to continuous-sediment,

while the upglacier and lateral extensions of

Bindschadler Ice Stream correspond strongly

with the extent of continuous subglacial

sediments. Both of these observations imply a

signficant subglacial sedimentary influence on

the onset and overall configuration of ice stream-

ing (Peters et al., 2006).

The seismological study of Kamb Ice Stream

by Atre and Bentley (1993), which also included

seismic reflection sounding over the slow-

flowing Engelhardt Ice Ridge, demonstrated that

subglacial sediment porosities typically range

from 30 to 45%. The lower porosities corre-

spond to lodged (non-deforming) sediment;

shear of the sediments causes dilation inducing

porosity increases to 40% or above. These inter-

pretations have subsequently been calibrated

with direct analyses of sediments spot-sampled

from the bed using ice drilling and piston coring

(Tulaczyk et al., 1998; Kamb, 2001). Signifi-

cantly, Atre and Bentley (1993) further demon-

strated that porosity may be approximated by

the acoustic impedance (compressional wave

speed times density) of the bed material. Since

the acoustic impedance of the bed material is a

function of that in the ice and the seismic

reflection coefficient at the basal interface, and

following a widely held assumption that the

acoustic impedance of the basal ice is a constant

over typical scales of seismic-reflection analysis

(a few to a few tens of km), subsequent work has

used the seismic reflection coefficient at the

basal interface as a proxy for the existence and

composition of subglacial sediments. Beneath

Rutford Ice Stream this technique has been

deployed extensively to distinguish areas of ice

underlain by actively deforming, wet dilatant

sediments and adjacent areas of lodged sedi-

ments over which the ice flow is interpreted as

being dominated by basal sliding (Smith,

1997a; 1997b; Smith and Murray, 2009). Atre

and Bentley (1994) and Vaughan et al. (2003)

have further supported the idea that ice streams

are underlain by actively deforming tills juxta-

posed with ‘patches’ of lodged sediment, the

proportions of which may go some way towards

explaining the dynamic behaviour of the overly-

ing ice – greater proportions of deforming tills

relative to lodged tills promote streaming, while

areas of lodged till within ice streams may act as

‘sticky spots’. Where subglacial seismic reflec-

tion coefficients are particularly high (but with

a reversed polarity corresponding to low

acoustic impedance), they may evince directly

the presence of subglacial water: King et al.

(2004) reported one such instance in which they

identified water-filled canals up to 200 m wide

flowing overtop and between actively deforming

saturated subglacial till. It was not, however,

possible to resolve in this study whether the indi-

vidual ‘canals’ extracted by the seismic data

corresponded to individual canals 200 m wide

or alternatively lateral amalgamations of several

narrower canals.

While much seismological research in West

Antarctica has concentrated on discerning the

distribution and properties of subglacial sedi-

ments, seismic-reflection data have also been

used to image subglacial landforms. For exam-

ple, seismic profiling conducted across Whillans

Ice Stream demonstrated that the subglacial

sediment is organized into flow-parallel flutes
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as much as 13 m deep and 1000 m across

(Rooney et al., 1987). By far the most extensive

seismic investigations of subglacial landforms,

however, have been conducted within the Rut-

ford Ice Stream catchment. Smith (1997a)

reported on the acquisition, in 1991, of a seismic

profile orthogonal to ice flow in the main trunk

of the ice stream, and interpreted a 400 m wide

50 m high bedrock obstacle (therein named ‘The

Bump’) as a drumlin on the basis of its cross-

sectional dimensions and an inferred composi-

tion of soft, deforming till. In that study Smith

did not possess data on the length (along-flow)

of the inferred drumlin but contended it would

likely be longer than it were wide due to stream-

lining of drumlinoid features by ice flow; a

subsequent seismic profile collected 10 km

upstream appeared to support this (Smith,

1997b), while recent extensive radar surveying

across the region has confirmed the widespread

existence of streamlined bedforms beneath this

section of the ice stream (King et al., 2009). The

seismic-reflection acquisition undertaken in

1991 (Smith, 1997a) was repeated at the same

geographical location in 1997 and 2004, and

revealed that this drumlin and adjacent features

experienced active erosion and/or deposition

during the intervening periods (Smith et al.,

2007). The 1991-identified drumlin (The Bump)

underwent little change between the first two

surveys, but was eroded by 2–3 m between the

second and third surveys. More arresting,

however, were changes that took place over an

adjacent 500 m wide portion of the bed: between

1991 and 1997 this part of the bed experienced a

lowering of 6 m, equating to an average erosion

rate of 1 m a-1; yet between 1997 and 2004 the

same section evinced no erosion but a mound

of material 100 m wide and 10 m high appeared

in the middle. With dimensions and soft-

sediment characteristics again typical of drum-

lins investigated in deglaciated regions, this was

interpreted as the first observation of a drumlin

actively forming beneath a contemporary ice

mass (Smith et al., 2007). The appearance of this

drumlin within a seven-year period, together

with the observations of rapid erosion rates

between repeat-surveys, demonstrates the dyna-

mism present in the subglacial environment, and

in particular within subglacial sediments, such

that significant changes to subglacial deposi-

tional landforms may occur over timescales of

a few years or less. Smith et al. (2007) posited

that the drumlin may have formed either by sedi-

ment filling a groove in the ice above the bed, or

due to an instability mechanism in the underly-

ing till proposed by Hindmarsh (1998) and

which forms the basis of numerical modelling

discussed in section IV. We revisit the signifi-

cance of repeat surveying in advancing geomor-

phological understanding in section V.

Results from most of the seismic reflection

surveys undertaken over the last two decades

on Rutford Ice Stream, covering *140 km2

across the main trunk, have been collated in

Smith and Murray (2009). This has shown that

cross-stream bed topography is characterized

by streamlined mounds of deforming sediment

aligned along the ice flow direction, superim-

posed onto the bed in regions both of basal slid-

ing and sediment deformation. With mean

dimensions of 22 m (height), 267 m (width) and

extending for at least 1–2 km, these features

have all been interpreted as drumlins and at least

one MSGL. Notably, these bedforms are consid-

erably elongated compared with the drumlins,

crag-and-tail features and ribbed moraines

imaged with radar and seismics 160 km

upstream in the onset region (King et al.,

2007), again supporting the hypothesis that bed-

forms become more elongated with distance

downstream (see section III.2.b). Notably, using

seismic reflection, King et al. (2007) were also

able to image depositional surfaces within drum-

lins, beneath the subglacial interface itself. The

dips of the internal depositional surfaces, predo-

minantly down-flow and across-flow, were

taken to indicate the active migration of these

bedforms along the direction of active ice flow,

consistent with hypotheses of drumlin formation
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presented by Boulton (1987a) and Dunlop and

Clark (2006).

IV Numerical modelling in glacial
geomorphology

Over the last two decades, the science of

glaciology has increasingly employed numerical

modelling as its primary modus operandi for

investigating the dynamics of ice sheets (eg,

Oerlemans, 1984; Hindmarsh, 1993; Hughes,

1995; Payne et al., 2000; Huybrechts, 2002;

Pattyn et al., 2008; Pollard and DeConto,

2009). The chief attraction of modelling lies in

the ability to reduce ice-sheet behaviour to a

series of physical relationships, thereby to simu-

late ‘observations’ of ice-sheet fluctuations over

the geological timescales through which many

of the controlling processes operate and which

render their direct observation impossible.

Glacial geomorphology has a key role to play

in such efforts by providing, beneath modern ice

sheets, information on subglacial conditions,

and, in areas of former ice coverage, an archive

of palaeo-ice limits and palaeo-ice-flow direc-

tions, which may be used both as input to models

or as an independent ‘validation’ on their output.

There is therefore significant potential for

glacial geomorphologists to apply modelling

techniques directly to the testing of hypotheses

of glacial landscape evolution and glacial

landform development, some recent examples

of which we now review.

Perhaps due to the traditional paucity of

subglacial geomorphological data, and/or the

inability, until recently, of ice-sheet models to

represent ice-streaming phenomena (see Payne

et al., 2000; Pattyn et al., 2008; Hindmarsh,

2009), no modelling investigation of ice-sheet-

scale ice dynamics has yet been tied explicitly

into the glacial geomorphological record in

West Antarctica. Relevant progress is, however,

being made on two fronts. The first of these is

investigating ice-sheet/landscape interactions

on hypothetical substrates. Jamieson et al.

(2008), for example, applied the Glimmer ice-

sheet model (see Rutt et al., 2009) with an ero-

sion component to investigate the influence of

ice-sheet erosional processes on the evolution

of a hypothetical landscape over a scale similar

to that of Antarctica. This study has highlighted

more than ever the key importance of correctly

parameterizing basal sliding in ice-sheet models:

under low basal-slip conditions bed morphology

exerts a much greater influence on ice flow

because ice cannot respond readily to thermal

instabilities; this suggests that the permeability

of subglacial material may be a primary influ-

ence on streaming flow. This theoretical

approach has also suggested that as ice sheets

continue to erode a preglacial substrate the resul-

tant development of overdeepenings beneath ice

streams may ultimately aid stabilization of the

ice-sheet’s configuration of fast-flow units

(Jamieson et al., 2008). This is an important con-

sideration for the interpretation of palaeo-ice

sheets and in particular palaeo-ice-stream land-

scapes, and leads into the second relevant

approach: applications of ice-sheet models to

investigating the flow and form of palaeo-ice

sheets.

In recent years there has been a profusion of

numerical modelling studies applied to recon-

structing the limits, dynamics and basal condi-

tions of palaeo-ice sheets in the Northern

Hemisphere (eg, Arnold and Sharp, 2002;

Marshall and Clark, 2002; Siegert and Dowdes-

well, 2004; Hooke and Fastook, 2007; Boulton

et al., 2009). Research on the former British Isles

Ice Sheet (BIIS) provides an excellent example

of the direct usage of glacial geomorphology in

this regard. Over the last decade, high-

resolution digital elevation models of northern

Britain and Ireland have shown clearly an abun-

dance of lineated subglacial bedforms such as

MSGL distributed both onshore (eg, Evans et

al., 2009) and offshore (eg, Graham et al.,

2007a), supporting the contention that the BIIS

was characterized by several cold-based upland

areas of slow flow, drained by a series of fast-
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flowing warm-based ice streams into divergent

‘lobes’ spread across the North Sea and the

Atlantic continental shelf. Ice-sheet modelling

has provided a methodology both to link what

were previously many disparate hypotheses of

regional glaciation into a coherent picture of

Pleistocene glaciation and retreat, and to investi-

gate quantitatively the formation of particular

land systems across the British Isles. For exam-

ple, Boulton and Hagdorn (2006) explicitly

directed a thermomechanically coupled numeri-

cal ice-sheet model, driven by a proxy climate,

to explore the properties that would best produce

an ice-sheet configuration consistent with the

existence of ice lobes in the North Sea and Irish

Sea basins identified previously by offshore

surveying. The lobes could only be explained

with the explicit inclusion in the model of

fast-flowing ‘ice-stream’ units, achieved by

imposing high basal slip in areas coincident with

the existence of ‘soft’ marine sediments off-

shore. The overriding form, if not the details,

of this ‘dynamic, fast-flow’ ice configuration

was supported by further modelling conducted

by Hubbard et al. (2009), in which the temporal

variability of ice streams in the BIIS was also

explored. Hubbard et al.’s simulation suggests

that the BIIS was highly dynamic, with its ice-

stream units experiencing both spatial migration

and temporal ‘binge-purge’ cycles analogous to

those seen in Antarctica today (Retzlaff and

Bentley, 1993; Catania et al., 2006). Modelling

by Evans et al. (2009) further complements this

work, paying particular attention to explaining

large-scale cross-cutting bedforms prevalent

across many parts of the British Isles by recon-

structing the evolving ice-sheet configuration

during recession of the BIIS from the Last

Glacial Maximum. What has been particularly

striking about these recent modelling efforts are:

(a) the explicit engagement with glacial geomor-

phological records both in providing data on

palaeo-flow rates and directions which are testa-

ble using ice-sheet modelling, and in providing

comprehensive data sets against which model

results can be validated; and (b) the need to

incorporate dynamic, fast-flow phenomena, ana-

logous to those witnessed in modern ice sheets,

resulting in reconstructions more consistent with

the glacial geomorphological record than have

previously been achieved. Indeed, in displaying

properties such as ice-streaming units, low

longitudinal slopes and margins grounded pre-

dominantly below sea level, the picture that

emerges from recent models concerning the last

BIIS is not dissimilar to that of the WAIS today.

The outstanding challenge that now lies ahead is

to apply similar techniques to elucidate the links

between glacial geomorphology and ice-sheet

dynamics beneath modern ice sheets, such as the

WAIS. This task will be aided by the improved

retrieval of glacial geomorphology beneath the

modern ice sheet (as discussed in section III)

to complement the growing archive of offshore

subglacial bedforms.

While numerical modelling is therefore being

much applied to the larger and longer scales of

glacial geomorphological analysis (cf. Figure 1),

the same cannot be said with respect to studies

focusing on the scales of individual glacial

landforms. As we noted in section II, the deep

heritage of glacial geomorphology lies in local

landform studies on deglaciated terrains, arising

principally out of the interest of Northern Hemi-

sphere mid-latitude populations in the processes

that shaped their natural environment (Sugden

and John, 1976: 1). Such interest has spawned

a prodigious array of research papers concerning

glacial landforms, often characterized by com-

peting hypotheses presented to account for their

genesis and modification (eg, Bennett et al.,

1998; Wilson and Evans, 2000; Lukas, 2005;

Graham et al., 2007b). To date, however, numer-

ical modelling has rarely been employed to

resolve such debates. A notable exception is a

recent study by Dunlop et al. (2008). These

authors developed a physically based numerical

model (BRIE: Bed Ribbing Instability Explana-

tion) that describes the development of ribbed

(also known as rogen) moraines, transverse
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subglacial ridges distributed across deglaciated

terrains for which many alternative formation

mechanisms have been proposed (see Dunlop and

Clark, 2006, and references therein). Incorporat-

ing physical relationships derived by Hindmarsh

(1998), Fowler (2000) and Schoof (2007), BRIE

encapsulates the principle that ribbed moraine

results from natural instabilities in a deforming

bed, leading to the spontaneous development and

preferential growth of waveforms at the subgla-

cial ice-till interface. The true value of this

approach to investigating landform (in this case,

ribbed-moraine) formation and evolution lies in

the use of the model to test rigorously predictions

against observations: thus Dunlop et al. were able

to predict ribbed-moraine characteristics (such as

typical dimensions and between-moraine wave-

length) resulting from glaciologically plausible

inputs (such as effective pressures and ice veloci-

ties drawn from contemporary ice sheets), and to

validate their predictions against a large database

describing the spatial properties of these land-

forms (Dunlop and Clark, 2006). This successful

application of modelling techniques to address

smaller-scale bedform development sets a signif-

icant precedent: indeed, with geophysical tech-

niques now progressed to the stage at which

individual landforms may be imaged beneath

several km of ice (eg, King et al., 2007; 2009;

Smith and Murray, 2009; and other examples

in section III), and with glaciological theory

persistently maintaining the significance of sub-

glacial morphology in controlling regional ice

dynamics, an understanding of subglacial geo-

morphology at the scale of individual landforms

is increasingly being recognized as imperative

to issues of larger-scale landscape evolution and

ice dynamics.

In summary, numerical modelling techniques

are increasingly being adopted by glacial geo-

morphologists to explain landscape and land-

form genesis and evolution across deglaciated

terrains. Most such applications to date have

focused on the larger and longer scales of analy-

sis describing landscape evolution beneath ice

sheets, reflecting the greater engagement with

the ‘larger-scale’ in contemporary glacial geo-

morphology (discussed in section II). Modelling

allows rigorous testing of hypotheses of land-

scape evolution over geological timescales

which cannot directly be observed; but is also

showing promise for resolving the many com-

peting hypotheses of individual landform gener-

ation that bedevil the traditional literature

pertaining to ‘smaller-scale’ landform studies.

The strength of applying models to deglaciated

terrains is that model input can be fed by, or out-

put directly judged against, rich observational

records unobscured by contemporary ice cover.

An outstanding challenge is to link the findings

from such studies into improving our under-

standing of the myriad subglacial landscapes and

landforms we are now only beginning to unmask

beneath contemporary ice sheets, such as the

WAIS.

V Discussion: Future challenges in
glacial geomorphology

Addressing the multidisciplinary nature of mod-

ern geomorphology, Church (2005) suggested

that progress in geomorphology as a whole is

increasingly being achieved through the applica-

tion of fundamental mathematical and physical

principles. Responding to this, Summerfield

(2005) argued that a greater engagement with

longer timescales, processes and associated

methods was required too. From a ‘glacial’

perspective, these comments echo Sugden’s

(1976: 1) call from over 30 years ago for ‘a more

glaciological type of geomorphology and a more

geomorphological type of glaciology’, to

address a growing schism between glaciologists,

largely trained in mathematics or physics, who

placed greater stress on theory and smaller-

scale process-studies, and field geomorpholo-

gists, largely trained in geography or geology,

who placed greater import on description and

evolution of landforms but had engaged to some

extent with continental-scale glaciation. In this
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short review we have argued that glacial geo-

morphology has already, to a considerable

extent, travelled along the path towards greater

quantification and vastly widening scopes of

spatial and temporal analysis, in no small part

facilitated by the remarkable advances that have

taken place, and continue to take place, in remote

sensing and numerical modelling. Glacial

geomorphological research in Antarctica, inter-

faced with research on palaeo-ice sheets, exem-

plifies these trends, and future progress is

contingent on continuing the interdisciplinary

collaboration that has developed between the

geographers and the geologists, the geophysicists

and the engineers, the mathematicians, physicists

and the earth (system) scientists, who now

address contemporary glacial geomorphological

debates. As Bamber (2006) has noted, remote

sensing has not made field observations redun-

dant; rather it remains crucially dependent on

them – and in the case of acquiring bed data in

Antarctica the remote sensing itself is necessarily

conducted by field scientists. Similarly, numeri-

cal modelling, while in itself an exercise in

abstracting physical conditions, is fundamentally

reliant for its first principles on our ability to

observe what is happening and therefore on our

continued ingenuity in acquiring observational

records at a variety of scales through a combina-

tion of field, remote sensing and geophysical

techniques.

In this final section we reflect on some

potential avenues for future research in glacial

geomorphology and consider some of the chal-

lenges that lie ahead. We present four points,

explicitly inspired by our own research interests

in Antarctica; these are not to be taken as an

exhaustive list of future research directions but

rather intended to stimulate further discussion

among the community concerning where future

research can be directed.

(1) It is clear that developments in remote

sensing and numerical modelling have

afforded us an unprecedented opportunity

to engage with glacial landscape evolution

on much larger spatial and associated tem-

poral scales than was previously possible.

There is a clear need to pursue this: both of

the world’s remaining ice sheets are

undergoing dramatic rates of change, and

understanding ice-sheet (de)glaciation is

fundamental to predicting the significant

changes in global sea level and water

resources that may result. Glacial geomor-

phology comprises the key evidence from

which we can invert former ice-sheet his-

tories and processes, to predict contempo-

rary ice-sheet behaviour; yet the

interpretation of former ice dynamics from

the subglacial bedforms and sediments left

behind following deglaciation remains

limited by a dearth of observed analogous

features beneath modern ice masses.

Beneath the WAIS glacial geophysical

techniques are showing increasing prom-

ise for retrieving subglacial conditions,

and the coverage of such data needs to

be expanded further to gain a better overall

picture of basal conditions. This acquisi-

tion will take time – polar fieldwork,

incorporating, for example, radar and seis-

mic surveying, ideally supplemented by

sampling basal sediments via ice drilling,

can only be performed during the brief

summer window each year, and is by its

nature an expensive pursuit. In the mean

time, it is worth reflecting that many

insights into ice-sheet-scale processes

have been gained, and continue to be

gained, from studies of smaller-scale gla-

cier behaviour. For example, physical

laws of basal motion and deforming-bed

behaviour have been informed and

constrained by observational studies con-

ducted in artificial subglacial tunnels or

using down-borehole probes at several

mid-latitude valley glaciers (eg, Hubbard,

2002; Cohen et al., 2005; Rousselot and

Fischer, 2005; Kavanaugh and Clarke,
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2006; Hart et al., 2009). Moreover, small

glaciers can provide more accessible sites

for the testing and further refinement of

geophysical techniques capable of ima-

ging modern ice-mass beds (eg, Kulessa

et al., 2006; King et al., 2008). Viewed

in this context, valley glaciers may be con-

sidered ‘natural laboratories’ for testing

ideas and equipment, and developing laws

applicable to the larger and longer scales

of ice-sheet evolution and deglaciation.

Numerical modelling, in drawing together

the fundamental principles of ice beha-

viour at all scales of analysis, provides the

framework within which the physical laws

developed from valley-glacier studies can

be upscaled and applied to ice-sheet-scale

research.

(2) Although there has been steady progress to

date in imaging both the morphology and

composition of subglacial landforms, sedi-

ments and landscapes beneath modern ice

sheets, there is much ground yet to cover

in this field. One clear goal is simply to

survey subglacial conditions in regions

where such data remain lacking (cf. Lythe

et al., 2001). However, an even greater

emphasis needs to be placed on applying

geophysical surveying techniques to ima-

ging subglacial landforms and properties

on the scales that are now routinely being

captured over deglaciated terrains by

Earth observation and marine geophysics;

and such a goal will be aided considerably

by continued dialogue between research-

ers predominantly working in formerly

and currently glacierized environments.

There are at least two facets to this state-

ment. First, research on former ice-sheet

beds, and in particular over palaeo-ice

streams, where access is not limited by

overlying ice, has been particularly reveal-

ing for our understanding of modern ice-

sheet basal processes (eg, Clark, 1993;

Larter et al., 2009). Nevertheless, many

of the assumptions developed therein con-

cerning bedform genesis and evolution,

and processes of basal sediment deforma-

tion, remain unobserved and therefore not

rigorously tested in the contemporary

environments to which they apply. Future

research on palaeo-ice sheet beds, in par-

ticular identifying land systems associated

with, for example, ice-stream sticky-spots

or ice-stream onset-regions, could direct

glacier geophysicists to appropriate loca-

tions to search for analogues beneath con-

temporary ice streams; and the imaging of

analogous glacial land systems beneath

modern ice cover can then be used to test

hypotheses of their development and evolu-

tion that have been posed solely from stud-

ies of deglaciated terrain. Second, this

glacial geomorphology needs to be

extracted beneath modern ice sheets at a

range of scales. Beneath the WAIS,

regional- to continental-scale coverage of

subglacial topography and subglacial sedi-

mentation is steadily accumulating (Peters

et al., 2005; Holt et al., 2006; Vaughan et

al., 2006); and studies of macro-scale sub-

glacial roughness offer some potential to

compare modern and former ice-sheet beds

quantitatively (eg, Bingham and Siegert,

2009). At more local scales, further imaging

of subglacial landforms that correspond

with bedforms and bedform assemblages

observed on palaeo-ice streams offers

promise for improving modelling of past

and future ice-dynamic behaviour (King

et al., 2009; Smith and Murray, 2009). At

even smaller scales, glaciological theory

has persistently stressed the importance of

smaller scales of bedform, and the ‘control-

ling obstacle size’ (20 cm to 1 m) in

controlling basal friction, even beneath ice

streams several km thick (Weertman,

1957; Hubbard and Hubbard, 1998); thus

far we do not possess the geophysical capa-

bility to image any part of an ice-sheet bed
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with this resolution, and to do so would

represent a significant geophysical break-

through. Recent studies have demonstrated

the great potential of combined radar and

seismic surveying to infer a range of basal

conditions at a range of scales beneath mod-

ern ice streams (King et al., 2007; Murray

et al., 2008); seismic data provide detailed

local information on subglacial topography,

bed reflectivity (elastic waves) and sub-bed

structure, where radar data provide comple-

mentary data on subglacial topography and

bed reflectivity (electromagnetic waves)

and can be used effectively to upscale

spatial coverage.

(3) Given the temporal variability that has

been observed both in ice stream flow

(Retzlaff and Bentley, 1993; Siegert et

al., 2004b; Catania et al., 2006) and ice-

stream subglacial water systems (eg,

Wingham et al., 2006b; Fricker et al.,

2007), it is prudent to note that almost all

of our observations of the geomorphology

of modern ice-sheet beds are based on

single temporal ‘snapshots,’ ie, almost

nowhere has the bed been imaged more

than once using the same method. Yet

Smith et al. (2007) have demonstrated,

by repeat seismic-surveying the same

3.5 km profile traversing a 2 km deep part

of the Rutford Ice Stream, West Antarc-

tica, that the subglacial interface beneath

a modern ice stream is capable of remark-

able evolution over 6/7-year intervals (see

section III.2.c). The observation is signifi-

cant because it shows the sheer rapidity (a

few years or less) with which an ice stream

can reorganize its subglacial sediment. To

improve modelling of the formation and

evolution of subglacial landforms and

landscapes it is clearly necessary to eluci-

date further the essential dynamism of

subglacial geomorphology beneath ice

sheets and especially ice streams, and this

objective can only be supported by

practising further repeat surveying in tar-

geted regions of interest. In other words,

there may now be as much, if not more,

scientific value in ‘four-dimensional’

radar/seismic surveying of some ‘already

explored’ regions of the WAIS, than in

searching for virgin territory to survey.

In this context, pre-existing survey data

from some of the more well-constrained

WAIS ice streams (eg, Whillans, Kamb,

Rutford, PIG) can provide the baseline for

future surveys of the same regions that will

help to determine the temporal evolution

of the basal geomorphology.

(4) Ice is far from a uniquely terrestrial

commodity, and indeed spaceborne sen-

sors are enabling us to view extraterrestrial

geomorphology with ever increasing accu-

racy. One of our nearest neighbours, Mars,

has two polar ice caps, composed of cold

(dry) ice and therefore presently incapable

of making a geomorphological imprint on

the planet’s surface. Nevertheless, Martian

geomorphology is replete with evidence

that the planet’s history has been one of

multiple glaciations, and preliminary anal-

yses of high-resolution imagery have

shown, for example, that: (1) a number

of highland regions are characterized by

landforms analogous to glacial landforms

on Earth, such as MSGL, cirques, and

roches moutonnées (Head et al., 2006;

Banks et al., 2008); (2) substantial Boreal

and Austral ice sheets, capable of basal

melting and perhaps subglacial sediment

deformation, may once have extended to

the Martian mid-latitudes (Kargel and

Ström, 1992; Head et al., 2003); and (3)

the former ice sheets probably contained

significant ice-streaming units, evinced

by deep channels and longitudinal flutes

within them (Lucchita, 2001; Kite and

Hindmarsh, 2007). As we are attempting

on Earth, perhaps Martian glacial geomor-

phology can similarly be used to invert for
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former ice-sheet behaviour and can sup-

port burgeoning interests in Martian

process-glaciology (Phillips et al., 2008;

Prockter et al., 2008), which may ulti-

mately feed back into our understanding

of terrestrial glaciation. The larger and

longer scales of analysis now regularly

taken into consideration by those con-

cerned with ice-sheet (de)glaciation on

Earth have equipped the same community

with many of the skills necessary to

engage much more deeply with extrater-

restrial glacial geomorphology.
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