### Commonsense Reasoning and Knowledge Acquisition to Guide Deep Learning on Robots Robust AI for Neurorobotics Workshop

#### Tiago Mota<sup>1</sup>, Heather Riley<sup>1</sup>, Mohan Sridharan<sup>1</sup><sup>2</sup>

<sup>1</sup>Department of Electrical and Computer Engineering The University of Auckland, NZ

<sup>2</sup>Intelligent Robotics Lab, School of Computer Science University of Birmingham, UK

#### August 27, 2019

<sup>&</sup>lt;sup>1</sup>Ben Meadows, Rocio Gomez (Univ. of Auckland, NZ); Michael Gelfond (Texas Tech, USA); Jeremy Wyatt, Michael Mathew, Saif Sidhik (Univ. of Birmingham, UK); Shiqi Zhang (SUNY Binghamton, USA); Pat Langley (ISLE, USA), ONR Awards N00014-13-1-0766, N00014-17-1-2434; AFOSR Award FA2386-16-1-4071; EPSRC/EU projects

Architecture Desiderata Core Ideas and Claims Refinement-based Architecture

## Architecture Desiderata

- Uses different descriptions of incomplete commonsense knowledge and uncertainty, and different reasoning schemes to improve decision making.
  "The cereal box is usually in the kitchen"
  "I am 90% certain the cereal box is in the kitchen"
- Acquires domain knowledge, e.g., action preconditions, effects and affordances, interactively and from data.
  "A brittle object breaks when it is put down"
  "Robot with weak arm cannot lift heavy box"
- Enables designer to understand robot's behavior and establish that it satisfies desirable properties.

Architecture Desiderata Core Ideas and Claims Refinement-based Architecture

# **Inspiration and Core Ideas**

- Cognitive systems, theories of human cognition and control.
- Computational models of intention, affordance, explanation.
- Represent, reason, learn jointly at different abstractions with different schemes (Alan Turing, 1952; morphogenesis).
- Logician, statistician, and creative explorer; tight coupling not unified representation (Immanuel Kant, Aaron Sloman).
- Interactive and cumulative learning of relevant concepts.
- Not focusing on hardware, energy requirements.

Architecture Desiderata Core Ideas and Claims Refinement-based Architecture

### **Overall Architecture: Basic Idea**



Architecture Desiderata Core Ideas and Claims Refinement-based Architecture

#### **Illustrative Domain:** Robot Assistant

#### Robot assistant finding and manipulating objects.





Architecture Desiderata Core Ideas and Claims Refinement-based Architecture

# **Claims: Representation**

- Distributed representation of knowledge (commonsense, probabilistic) at different abstractions.
- Knowledge structures include definitions, constraints (static, causal/dynamic).
- Seliefs include prior knowledge, inferences, plans, explanations.
- History includes observations, (attempted, executed) actions.
- Separation of concerns (domain-specific/independent knowledge, observations), but abstractions tightly coupled.
- Possible worlds, each a set of beliefs.

Architecture Desiderata Core Ideas and Claims Refinement-based Architecture

# **Claims:** Reasoning

- Knowledge elements support non-monotonic revision; revise previously held conclusions.
- Actions produce immediate or delayed outcomes; reward-based and architecture-based exploration.
- Observations obtained through active exploration or reactive action execution.
- "Here and there" reasoning; satisfiability, stochastic policies.

Architecture Desiderata Core Ideas and Claims Refinement-based Architecture

# **Refinement-Based** Architecture



Architecture Desiderata Core Ideas and Claims Refinement-based Architecture



• Formal models of parts of natural language used for describing transition diagrams.

• Hierarchy of basic sorts, statics, fluents and actions.

- Types of statements:
  - Causal law (deterministic, non-deterministic).
  - State constraint and definitions.
  - Executability condition.

Architecture Desiderata Core Ideas and Claims Refinement-based Architecture

## **Coarse-Resolution Representation**

- Collection of statements of *AL<sub>d</sub>* forms system description *D<sub>c</sub>*, includes sorted signature Σ<sub>c</sub> and axioms.
- **Statics**: *next\_to*(*place*, *place*)
- Fluents:  $loc: robot \rightarrow place, in\_hand: robot \times object \rightarrow bool$
- Actions: move(robot, place), pickup(robot, object), putdown(robot, object).
- Axioms:

 $move(rob_1, Pl)$  causes  $loc(rob_1) = Pl$ loc(O) = Pl if  $loc(rob_1) = Pl$ ,  $in\_hand(rob_1, O)$ impossible  $pickup(rob_1, O)$  if  $loc(rob_1) \neq loc(O)$ 

# **Coarse-Resolution History and Reasoning**

- History  $\mathcal{H}_c$  with observations, actions, initial state defaults.
- Logician's task:
  - **Input**: (a)  $\mathcal{D}_c$ ; (b)  $\mathcal{H}_c$ ; (c) Goal.
  - **Output**: diagnose, plan, next transition  $T = \langle \sigma_1, a^c, \sigma_2 \rangle$ .
  - Can translate to different formalisms.



Reasoning and Interactive Learning Experiments and conclusions Architecture Desiderata Core Ideas and Claims Refinement-based Architecture

### Non-monotonic Logical Reasoning

- Nonmonotonic logical reasoning with program  $\Pi(\mathcal{D}_c, \mathcal{H}_c)$ .
- Answer Set Prolog; reasoning by computing answer sets.
- Default negation and epistemic disjunction.
  - ¬ l l is believed to be false
    not l it is not believed that l is true
    p ∨ ¬ p is a tautology
  - $p \text{ or } \neg p$  is not tautological

Reasoning and Interactive Learning Experiments and conclusions Architecture Desiderata Core Ideas and Claims Refinement-based Architecture

# Refine + Zoom + Randomize



- **Refinement**: describe  $(\mathcal{D}_c)$  at finer resolution  $(\mathcal{D}_f)$ .
- Theory of observation: knowledge fluents + actions.
- Randomize and zoom to  $\mathcal{D}_{fr}(T)$  for  $T = \langle \sigma_1, a^c, \sigma_2 \rangle$ .
- Formal relationships; domain-specific knowledge.

Architecture Desiderata Core Ideas and Claims Refinement-based Architecture

# Probabilistic Reasoning



- Plan and execute probabilistically; existing algorithms (motion planners, POMDPs).
- Infer coarse-resolution outcomes from fine-resolution; add to  $\mathcal{H}_c$  for subsequent reasoning.

# Reasoning + Learning: VQA

- Deep networks widely used in AI and robotics.
- Limitations of deep network architectures:
  - Large labeled datasets; considerable computational resources; and
  - Representations and mechanisms difficult to interpret.
- Inspiration from human cognition and cognitive systems:
  - Representation, reasoning, and learning tightly coupled.
  - Reasoning with incomplete commonsense knowledge guides interactive and cumulative learning.
  - Principles of relevance and persistence.
- Experimental domains:
  - Estimate object occlusion, and stability of structures.
  - Rearrange objects structures to minimize clutter.
  - Answer explanatory questions (VQA) with limited data.

Objective Architecture Description

### Architecture Components



Exploit complementary strengths of non-monotonic logical reasoning, deep learning, and decision tree induction.

Objective Architecture Description

# Architecture Components: Input



- Images: images of objects, scenes.
- Labels: object occlusion, stability of structures, answers.









Objective Architecture Description

# Architecture Components: Feature Extraction



Geometric features extracted from simulated images:

- Spatial relations between objects (above, behind, right of ...).
- Shape and size of objects in the scene.

Objective Architecture Description

# Architecture Components: Non-monotonic Logic



- Input: Extracted features and existing knowledge (including rules learned over time).
- Commonsense reasoning with incomplete knowledge.
- ASP: declarative language; non-monotonic logical reasoning.  $\neg stable(A) \leftarrow small\_base(A), not stable(A)$
- Decision about input image if possible.

Objective Architecture Description

# Architecture Components: CNN



• Attention: ROI selection based on state constraints.

 $stable(A) \leftarrow \neg obj\_rel(above, A, B)$ 

 $\neg$ stable(A)  $\leftarrow$  obj\_rel(above, A, B), obj\_surface(B, irregular)

• CNN: Convolutional Neural Network (Lenet and Alexnet).

Objective Architecture Description

# Architecture Components: Inductive Learning



- Input: Geometric features and figure labels;
- Decision Tree: induction of unknown rules (state constraints);
- Output: Learned rules.

Reasoning and Interactive Learning Experiments and conclusions Objective Architecture Description

### Architecture Components: Inductive Learning



 $\neg stable(A) \leftarrow obj\_rel(above, A, B), obj\_surface(B, irregular)$ 

#### **Default knowledge:**

 $\neg stable(A) \ \leftarrow \ obj\_rel(above, A, B), \ tower\_height(A, N), \ N \geqslant 5$ 

Experimental Results Conclusions

### **Experimental Results: Scene understanding**

• Accuracy increases and training complexity decreases.



• Generate minimal and correct plans.

Experimental Results Conclusions

# **Experimental Results: Decision making**



- Initially: 64 plans; most incorrect or sub-optimal.
- Including learned axioms: 3 correct plans.

|             | Bathroom |        | Kitchen        | Library       |              |
|-------------|----------|--------|----------------|---------------|--------------|
| Sarah's Off |          | Iffice | Sally's Office | John's Office | Bob's Office |
|             |          | •      |                |               |              |

• Without learned axioms: four times as many plans; six times as much time per plan execution.

Experimental Results Conclusions

### **Different Problem: Dexterous Manipulation?**



- Status quo: large datasets, analytic models, joint space control.
- Task-space control; abstract joint trajectories.
- Forward models learned online; variable impedance control.
- Hybrid force-motion controller; compliance.

Experimental Results Conclusions

# Conclusions + Future Work

#### • Conclusions:

- Represent, reason, and learn jointly with different descriptions and mechanisms.
- Step-wise refinement and separation of concerns simplifies design, increases confidence, promotes scalability.
- Non-monotonic logical reasoning with commonsense knowledge for reliable and efficient deep learning.
- Learned state constraints improve decision-making accuracy.

#### • Future Work:

- Provide intuitive explanations of deep learning models.
- Explore the interplay between reasoning and learning with different abstractions and reasoning methods.

Experimental Results Conclusions

# More Information

- VQA, interactive learning to visually ground spatial relations: IJCAI-18, HAI-18, RSS-19 (Best Paper Award Finalist).
- Refinement-based architecture: NMR-14, TRO-15, IJCAIwrksp-16, AAAISymp-17, JAIR-19.
- Declarative programming and RL for domain dynamics: ICSR-14, ICAPS-17, ACS-18.
- Non-monotonic logic, POMDPs: ICAPS-08 (Distinguished Paper), AIJ-10, ICDL-12 (Paper of Excellence), TRO-13.
- Variable-impedance control: **RSSWrkshp-19** (Best Poster), **Humanoids-19**.

Experimental Results Conclusions

# That's all folks!