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200 years ago…
• Ada Lovelace, b. 10 Dec. 1815

"I have my hopes, and very distinct 
ones too, of one day getting 
cerebral phenomena such that I 
can put them into mathematical 
equations--in short, a law or laws 
for the mutual actions of the 
molecules of brain. …. I hope to 
bequeath to the generations a 
calculus of the nervous system.” 
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70 years ago…
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Bio-inspiration

• Can massively-parallel computing 
resources accelerate our understanding of 
brain function?

• Can our growing understanding of brain 
function point the way to more efficient 
parallel, fault-tolerant computation?
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ConvNets - structure

• Dense convolution kernels
• Abstract neurons
• Only feed-forward connections
• Trained through backpropagation
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The cortex - structure

• Spiking neurons
• Two-dimensional structure
• Sparse connectivity

Feed-forward 
input

Feedback input

Feed-forward 
output

Feedback output

6



10/21/19

4

ConvNets - GPUs

• Dense matrix multiplications
• 3.2kW
• Low precision
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Cortical models - Supercomputers

• Sparse matrix operations
• Efficient communication of spikes
• 2.3MW
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Cortical models - Neuromorphic
hardware

• Memory local to computation
• Low-power
• Real time
• 62mW
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Start-ups and industry interest
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SpiNNaker project

• A million mobile phone 
processors in one 
computer

• Able to model about 1% 
of the human brain…

• …or 10 mice!
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SpiNNaker system
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M ulti-chip 
packaging by 

UNISEM  Europe

SpiNNaker chip

Chip resources
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Multicast routing
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High-level software flow
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SpiNNakermachines
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SpiNNaker chip
(18 ARM cores)

SpiNNaker board
(864 ARM cores)

SpiNNaker racks
(1M ARM cores)

• HBP platform
– 1M cores
– 11 cabinets (including server)

• Launch 30 March 2016
– then 500k cores
– 93 remote users
– 5,134 remote jobs run
– >5 million local jobs run

SpiNNakermachines

18

• 100 SpiNNaker
systems in use
– global coverage

• 4-node boards
– training & small-

scale robotics
• 48-node boards

– insect-scale 
networks

• multi-board systems

• 1M-core HBP 
platform

sales (40 48-node boards)

loans



10/21/19

10

Simulation

Computational 
Neuroscience

SpiNNaker applications
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Cortical microcolumn
1st full-scale simulation of 1mm2 cortex on neuromorphic & HPC systems
• 77,169 neurons, 285M synapses, 2,901 cores
• using as benchmark example, since improved:

• run-time by x80: 10 hours → 7.5 minutes
• run speed, from 20x slow-down to real time
• efficiency, by 10x

S.J. van Albada, A.G. Rowley, A. Stokes, J. Senk, M . Hopkins, M . Schmidt, D.R. Lester, M . Diesmann, S.B. Furber, Performance comparison of the digital 
neuromorphic hardware SpiNNaker and the Neural network simulation software NEST for a full-scale cortical microcircuit model. Frontiers 2018.
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Joshi, A., & Rhodes, O,. et al. Serotonergic modulation of cortical columnar dynamics: A 
large-scale neuronal network simulation study using SpiNNaker. In prep. 

• Serotonin modulates Pre Frontal Cortex
• neurons express range of serotonin 

receptors
• respond at different timescales

• Dorsal Raphe Nucleus stimulation 
modulates brain rhythms
• releases serotonin

• Computational model to simulate 
serotonergic modulation
• monitor local effects – firing rates
• understand global effect on connected brain 

regions – oscillation in local field potential

Computational Neuroscience

21

Celada, P., et al. Serotonin modulation of cortical neurons and networks. Frontiers in Neuroscience. 2013

Jaakko Malmivuo and Robert Plonsey, 1995

Computational Neuroscience
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• Explore chemistry modulating 
neuron behaviour
– intracellular dynamics (ion 

channels)

• Simulate patch-clamp 
experiments from biology

• Incorporate findings at larger 
scales
– study effect on consciousness
– multiple brain regions
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Simulation

Computational 
Neuroscience

Theoretical 
Neuroscience

SpiNNaker applications
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Constraint satisfaction problems

work by: Gabriel Fonseca Guerra 
(PhD student) 

G. A. Fonseca Guerra and S. B. Furber, 
Using Stochastic Spiking Neural 

Networks on SpiNNaker to Solve 
Constraint Satisfaction Problems, 
Frontiers 2018.

S. Habenschuss, Z. Jonke, and 
W. Maass, Stochastic computations in 
cortical microcircuit models, PLOS 
Computational Biology, 9(11):e1003311, 
2013.

Stochastic spiking neural 
network:
• solves CSPs, e.g. Sudoku

• 37k neurons
• 86M synapses

• also
• map colouring
• Ising spin systems
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• Network plasticity for learning and 
memory
– adjust synaptic connections
– add/remove connections

• HBP Co-Design Project 5
– functional plasticity for learning on 

neuromorphic hardware

• Bridge the gap from neuroplasticity 
to machine learning?

Rhodes, O., et al. How On-Chip Learning Impacts SpiNNaker Realtime Performance. In prep.

Theoretical Neuroscience
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Structural plasticity
• Create/remove connections to 

facilitate learning/consolidation
– feedforward and recurrent
– distance-dependent receptive 

field
– pruning of weak connections

• Computational challenge
– update connection matrices on-

the-fly
– maintain network dynamics and 

computational performance

Bogdan, P., et al. Structural Plasticity on the SpiNNaker Many-Core Neuromorphic System. 
Frontiers in Neuroscience. 2018

Theoretical Neuroscience

26
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Hopkins, M., et al. Spiking Neural Networks for Computer Vision. Royal Society Interface 
Focus, 2018.

Theoretical Neuroscience
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Rhodes, O., et al. Gradient-based training of LSNNs on neuromorphic hardware. In prep.

• Transfer machine learning concepts to 
brain-like spiking neurons
– Long Short Term Memory (LSTM) units
– BPTT & SGD 

• Train SNNs via error back-propagation
– recurrent spiking neural networks
– pseudo differential to overcome 

discontinuity of gradient at spike

• First deployment on neuromorphic 
hardware
– unlock scale and explore performance

Theoretical Neuroscience
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Bellec, G., et al. Long short-term memory and learning-to-learn in networks of spiking 
neurons. NIPS 2018.
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Sen-Bhattacharya, B., et al. Building a Spiking Neural Network Model of the Basal Ganglia on 
SpiNNaker. IEEE Transaction on Cognitive and Developmental Systems. 2018

Theoretical Neuroscience
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• Basal Ganglia – biological  
decision making and action 
selection
– Single channel model inspired 

by biology: neuron dynamics; 
numbers; and topology

• Dopamine is central to 
network function
– Expressed via two receptor 

types
– Explore how modulation 

relates to scale and disease

Simulation

Computational 
Neuroscience

Theoretical 
NeuroscienceNeurorobotics

SpiNNaker applications

30
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Behrenbeck, J. et al. Classication and Regression of Spatio-Temporal Signals using 
NeuCube and its realization on SpiNNaker Neuromorphic Hardware. Journal of 
Neural Engineering. 2018

• Classification of electrical signals
• real-time control of active prosthetics
• low power

• Record electrical activity of 
participants during prescribed hand 
movements

• Classification with reservoir of spiking 
neurons
• encode signals into spikes
• train network (unsupervised)

• readout to classify

Neurorobotics

31

• Study vestibular ocular reflex in iCub
robot
• SpiNNaker as neural substrate

• Learn control via cerebellum inspired 
spiking neural network
• Range of learning kernels based on 

relative spike timing + error

• Research embodiment of neural 
control systems

Bartolozzi, C., et al. A Cerebellum Inspired Vestibular Occular Reflex in and iCub Robot 
with SpiNNaker as the Neural Substrate. In Prep

Neurorobotics

32

Francisco Naveros, Jesús A. Garrido, Angelo Arleo, Eduardo Ros, Niceto R. Luque. 
Exploring vestibulo-ocular adaptation in a closed-loop neuro-robotic experiment using 
STDP. A simulation study.
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Simulation

Computational 
Neuroscience

Theoretical 
Neuroscience

Neurorobotics

SpiNNaker applications
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Simulation

Computational 
Neuroscience

Theoretical 
Neuroscience

Neurorobotics

Dr Alok Joshi

Prof. Johan Storm
Dr. Ricardo Murphy

Dr Chiara Bartolozzi

Prof Nikola Kasabov Jan Behrenbeck
Zied Tayeb
Prof. Jorg Conradt

Prof. Wolfgang Maass Dr Andre Grüning

SpiNNaker collaborators

Prof. Markus Diesmann
Dr. Sacha van Albada
Prof. Abigail Morrison
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SpiNNaker2
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• Approach: Neuromorphic Many Core System 

• Processor based à flexibility
• Fixed digital functionality as accelerators à performance

• High quality random numbers (including stochastic rounding)
• Exponential/Log functions
• Machine Learning multiply-accumulate unit

• Low voltage (near threshold) operation enabled by 22FDX technology and 
adaptive body biasing (ABB) à energy efficiency

• Event driven operation with fine-grained dynamic power management and 
energy proportional chip-2-chip links à workload adaptivity

• Scaling Target:

• >x10 capacity compared to 
SpiNNaker1

• Enabled by new hardware features 
and modern CMOS process 

SpiNNaker2 Processing Element

36

Dynamic Power Management for 
enhanced energy efficiency

Neuromorphic accelerators and 
random generators for synapse 
and neuron computation 

Multiply-Accumulate accelerator 
for machine learning

Network-on-Chip for efficient 
spike communication

Adaptive Body Biasing for 
energy efficient low voltage 
operation 

Memory sharing for flexible code, state 
and weight storage 

Production ready layout in
22nm FDSOI technology
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Deep Rewiring
• Synaptic sampling as dynamic rewiring for 

rate-based neurons (deep networks)
• Ultra-low memory footprint even during 

learning 
• Uses PRNG/TRNG, FPU, exp

• à speed-up 1.5
• Example: LeNet 300-100

• 1080 KB à 36 KB
• training on local SRAM possible
• ≈ 100x energy reduction for training 

on SpiNNaker2 prototype (28nm) 
compared to X86 CPU

• à 96.6% MNIST accuracy for 1.3% 
connectivity

Le
N

et
30

0-
10

0 In MNIST 784

Hidden FC 300

Hidden FC 100

Out Softmax 10

à G. Bellec et al., “Deep rewiring: Training very sparse deep networks”, arXiv, 2018
à Chen Liu et al., “Memory-efficient Deep Learning on a SpiNNaker 2 prototype”, Frontiers in Neuromorphic Engineering 37

Reward-Based Synaptic Sampling

• Characteristics:
• Spiking reward-based learning

• Synaptic sampling of network configuration

• Benchmark: task-dependent routing
• 200 input neurons, 20 stochastic neurons, 12k stochastic 

synapses 

• Main results:
• random, float&exp, speed-up factor 2 of synapse update 

every time step

• Use of Accelerators + local computation (no DRAM): 62% 
less energy

• Modified version of synaptic rewiring “Random  
reallocation of synapse memory”: More efficient 
implementation, Faster exploration of parameter space

à Yexin Yan et al., “Efficient Reward-Based Structural Plasticity on a 
Spinnaker 2 Prototype”, IEEE Trans BioCAS

Reviewer: I rarely review papers like this that build so well on related 
work, that are comprehensive, and that present a significant result.

38
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Adaptive Robotic Control with the 
Neural Engineering Framework

Theory:
Self-learning adaptive control algorithm realized
through the Neural Engineering Framework 
(NEF)

Task: Control of robotic arm
Neural Adaptive Controller superior to PID 

Controller for simulated aging
Low-latency between robot and chip required

for real-time execution
Hardware Setup:

FPGA-prototype / JIB-1 (planned) + Lego 
Mindstorms Ev3 + Host PC 

Target:
Demo for neuro-based processing in low-

latency application
- Evaluate use of Machine Learning 

Accelerator (MLA)
- > 10x speed-up from MLA

39

Challenges and new directions

Understanding biological neural systems
• despite accurate models, we still have little clue how, 

e.g., the cortex works
• but we know it‘s a lot better than any engineered

system!

Learning for spiking neural nets
• currently much less established than backprop in ANNs
• promising progress from, e.g., TU Graz

• e-Prop, BPTT, L2L, ...
• translating a trained ANN into an SNN is also possible

• rate-based SNNs offer little advantage over ANNs?
Scale & energy efficiency
• useful networks are big, brains are very big

• mouse ~100M neurons, 1012 synapses
• human ~100B neurons, 1015 synapses

40

Feed-
forward 
input

Feedback 
inputFeed-

forward 
output

Feedback 
output
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Conclusions
• SpiNNaker:
• has been 20 years in conception…
• …and 10 years in construction,

• and is now ready for action!
• ~100 boards with groups around 

the world
• 1M core machine built
• HBP is supporting s/w development

• SpiNNaker2:
• 10x performance & efficiency
• tape-out Q2 2020

• prototype test-chips available now

41


