

Adaptive Robotic Control with the Neural Engineering Framework

Theory:

SpiNNaker2

- Self-learning adaptive control algorithm realized through the Neural Engineering Framework (NEF) **Task:** Control of robotic arm Neural Adaptive Controller superior to PID Controller for simulated aging Low-latency between robot and chip required for real-time execution **Hardware Setup:**
 - FPGA-prototype / JIB-1 (planned) + Lego Mindstorms Ev3 + Host PC

Target:

- Demo for neuro-based processing in lowlatency application
 - Evaluate use of Machine Learning Accelerator (MLA)
 - > 10x speed-up from MLA

