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Abstract

In this contribution, we briefly examine the
role of end users in the evaluation and charac-
terisation of sophisticated AI-based systems,
such as autonomous vehicles or near-future
robots. Indeed, when trying to ensure the
safety of learning, perception and control in
real world settings, one aspect that needs
consideration is that human end users are of-
ten part of such settings.

We argue that current approaches for con-
sidering end users in this respect are insuf-
ficient, not the least from a safety perspec-
tive, and that this insufficiency will become
more acute when transitioning to neuromor-
phic and/or strongly cognitively inspired so-
lutions. We demonstrate this by borrow-
ing examples from the field of enactivism,
which demonstrate that human end users
might change the system dynamics of ad-
vanced neuromorphic systems when interact-
ing with them, which needs to be taken into
consideration. Enactivism might also provide
clues as to how to design future evaluation
metrics for human-machine teams.

1 Introduction

Sophisticated machines are increasingly becoming a
feature of modern-day society, and human collabo-
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ration with such machines increases correspondingly.
Such machines will employ state-of-the-art machine
learning algorithms, many of which are, at least in
some form, neuromorphic. They can be so, at a mini-
mum, by virtue of using deep neural networks or simi-
lar neural architectures, but evidence that more biolog-
ically plausible spiking networks are a viable solution,
potentially running on dedicated neuromorphic hard-
ware, is accumulating rapidly. For example, DeWolf
et al. (2016) recently demonstrated adaptive control
of a robot arm using spiking neural networks while
Blouw et al. (2018) have shown that spiking neural
networks running on Intel’s Loihi platform can, for the
right application, lead to significantly increased power
efficiency without penalty in accuracy.

Neuromorphic approaches, some going beyond just
deep learning, are also beginning to find applications
in autonomous vehicles, whether it is for sensorimotor
control using subsumption architectures (Plebe et al.,
2019) or more generally a biologically inspired cogni-
tive controller, including inspiration from human ac-
tion selection and the ability to imagine hypothetical
events (Da Lio et al., 2017).

This is therefore an opportune moment to reflect what
this push towards increasingly biologically plausible
and neuromorphic control, instantiated in machines
that increasingly aimed at interacting with human end
users in tasks that can be relatively complex, implies
for how such systems can be evaluated, whether this
is for safety, for ease of use, or other aspects.

The core argument in this contribution is that present-
day approaches are not sufficient in this, because the
neuromorphic aspect changes how information is inte-
grated in the system. Specifically, we will argue, that
the role of end users – used here for the lack of a bet-
ter word – goes fundamentally beyond that of merely
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a user: they are, in effect, a non-abstractable part of
the system itself. We will show this briefly by looking
to cognitive science, specifically enactivism, as a field
which has long studied interactions between neurally
controlled agents (including, of course, humans, but
also simple robots that are often used to demonstrate
some cognitive mechanism). We conclude by arguing
that it is also in these fields, rather than merely the
technological ones, that we can find clues for how to
approach the evaluation of physical neuromorphic sys-
tems built for interaction with humans.

2 Current approaches to evaluating
human-machine collaborations

How to evaluate a human ML-system collaboration
remains an unresolved challenge. Typical evalua-
tions of humans interacting with ML-systems are
done using traditional methods and metrics from the
concerned communities, namely the machine learn-
ing (ML; algorithm-centered evaluation) and human-
computer interaction (HCI; human-centered evalua-
tion) crowds (see recent surveys of methods and met-
rics in Mohseni et al. (2018) and Hoffman et al.
(2018)). This has led to a paucity of holistic and inte-
grative methods that assess the overall collaboration
over particular components (Boukhelifa et al., 2018).

ML normally uses performance evaluation metrics that
focus on the algorithms presented, such as accuracy,
precision, recall, squared error, likelihood, posterior
probability, information gain, and so on; metrics that
are also often used in robotics to evaluate the function-
ing of a system. Interactive ML (iML), meanwhile, im-
proves on these metrics by typically combining them
with some form of usability assessments (see, for exam-
ple Talbot et al., 2009; Ribeiro et al., 2016; Cremonesi
et al., 2011), i.e., the extent to which a product can be
used by specified users to achieve specified goals with
effectiveness, efficiency, and satisfaction in a specified
context of use. Such usability evaluations can be clas-
sified in exploratory, formative and summative evalu-
ations.

Exploratory evaluations examine the current usage of
a system, and normally use observations, interviews,
surveys and automated logging. Formative evalua-
tions help improve the system during the design pro-
cess, employing heuristics and thinking aloud meth-
ods. Summative evaluation assesses the overall qual-
ity of a system once is more or less finished by collect-
ing bottom-line data and quantitative measurements
of performance: how long did users take, were they
successful, how many errors did they make, number of
commands/features used, etc.

HCI, meanwhile, interacts with other fields that have
made noteworthy progress in the challenging evalua-
tion of their interactive systems. One of these is the
Visual Analytics (VA) community. Here, metrics in-
clude subjective user ratings, decision time, satisfac-
tion, confidence, number of insights, accuracy, time on
task, subjective preference, subjective choice assess-
ment, ease and attachment (Dimara et al., 2018). part
of the problem of designing and developing adequate
evaluation methodologies resides in the fact that it is
difficult to define concepts such as “insight” or “knowl-
edge discovery”; even if definitions exist, there is not
one that is commonly accepted by the research com-
munity (Yi et al., 2008).

It is also worth pointing out that some work is explic-
itly concerned with assessing the effectiveness of expla-
nations provided by iML-systems. The use of explana-
tions associated to ML-system outcomes has generally
brought positive results (the use of explanations has
been extensively studied in the context of knowledge-
based systems, see Gregor and Benbasat, 1999), but it
is not clear what information inherent to iML-systems
such explanations should contain. Lim et al. (2009),
for example, showed that explanations describing why
the system behaved a certain way resulted in better
understanding and stronger feelings of trust; but ex-
planations describing why the system did not behave
in a certain way resulted in lower understanding yet
adequate performance. Other concerns or limitations
of the use of explanations for calibrating trust or pro-
viding decision support have been raised recently by,
e.g., Springer and Whittaker (2018); Dietvorst et al.
(2015).

The evaluation of explanations and their effectiveness
tend to be a combination of different HCI and ML
methods as well, and as highlighted by the DARPA
report on XAI: these are for example, user satisfaction
through user ratings (clarity and utility of the explana-
tion), trust assessment, correctability (identifying er-
rors, correcting errors and continuous training), task
performance (does the explanation improve the user’s
decision or task performance) and mental model (un-
derstanding individual decisions, understanding the
overall model). There is thus a strong push towards
a human-centred AI in the field (Biran and Cotton,
2017; Kirsch, 2018). However, even in these endeav-
ours, humans are seen only as the end users of the
system, and this is reflected in the metrics that are
used for evaluation.

3 Roles beyond end users

The behaviour of a system trivially depends on hu-
mans in the sense that they are users of the system
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and therefore provide inputs, if nothing else, to en-
sure that a task is achieved. Similarly, the way that
a system interacts with a human influences their be-
haviour. In some of our own work, for example, we
have seen that humans will rate driver assistance sys-
tems that give recommendations for certain actions
(for example, which direction to take at a crossing
or for eco-friendly driving behaviours) higher if these
systems justify why these recommendations are given
(Thill et al., 2014, 2018). This remains true even if
the information from the system is factually wrong
(for example, claiming that there is less traffic on a
selected route even though the opposite is true Thill
et al., 2014). Critically, these recommendations af-
fect the behaviour of people, including possibly those
not directly targeted by the recommendation. For ex-
ample, we found that the perceived intelligence of a
navigation aid modulated the time they spend looking
through the front windscreen (Thill et al., 2014),

More generally, from such a perspective, one can con-
sider the human-machine system to be a team (not re-
stricted to just one human or one machine), and then
evaluate the team based on its performance as a whole.
This goes beyond the types of evaluations considered
before, and it too is not trivial – one can for example
question if machines should be considered full team
members at all (Groom and Nass, 2007). Even if that
question is ignored, different types of human-machine
teams place different responsibilities on the different
team members, which affects how one might analyse
the overall behaviour (see Lagerstedt et al., 2017, for
a discussion).

How to evaluate team of humans and robots has re-
ceived attention in the past in human robot interac-
tion (see, for example Dautenhahn, 2007; Breazeal,
2004), and it is arguably viable to look to the cog-
nitive sciences for guidance (Thill and Ziemke, 2015).
In enactive approaches to cognitive science in partic-
ular, agents are understood as coupled to the envi-
ronment, and thereby also to other agents in this en-
vironment (Maturana and Varela, 1987). This then
leads, amongst many others, to the question whether
or not these interactions are actually crucial in order
to understand the behaviour of a cognitive system, or
whether this system can be analysed and understood,
as it is in more computationalist cognitive science, by
focussing solely on this system. For example, social
cognition, although it is fundamentally about interac-
tion with other agents, is – within these computation-
alist branches – primarily studied in terms of mech-
anisms at play in the heads of the individuals: the
interaction that follows is merely an output of these
processes. This is challenged by more enactive views,
in which the interaction itself is hypothesised to be

constitutive of social cognition, and not just merely
an output (De Jaegher et al., 2010).

One of the key features of enactivism is that the math-
ematical framework of choice is dynamical systems
theory. This has led to relatively simple demonstra-
tions of the fundamental ideas in robotics – often, us-
ing simple wheeled robots that have basic neural net-
work controllers. In this context, Froese et al. (2013)
provide a noteworthy investigation into the role of the
coupling wiht the environment. In their study, the
authors simulate simple robots that are controlled by
just one neuron. From mathematical principles, it is
known that such a dynamical system cannot exhibit
particularly interesting behaviour; it requires at least
two dimensions for oscillatory behaviour, and three or
more for chaotic behaviours.

Nonetheless, analysis of the dynamics observed when
the robots interact with each other then revealed ex-
actly such complex behaviours that are mathemati-
cally not possible within the dynamic range of the
controller alone. This provides a very pithy demon-
stration that a neural system may behave differently
when studied in isolation compared to its actual use
case in interaction with other agents.

A difference between traditional computationalist ap-
proaches to artificial agents and present-day neuro-
morphic ones are that the former are based on classic
computationalism. In such an approach, the pertur-
bations that a human can bring into the system are
more controlled and well-defined because they essen-
tially reduce to known states (this also makes the sys-
tems brittle – they cannot deal as well with situations
not known at design time – which is arguably one of
the reasons for pushing towards more robust neuro-
morphic solutions) and traditional HCI approaches to
the evaluation of the system are sufficient.

When the artificial agents are fundamentally neuro-
morphic, however, the interaction is arguably one be-
tween two dynamical systems that are able to perturb
each other’s dynamics in non-trivial ways. This is a
strong reason to not ignore human end users while
designing a system – the system’s behaviour can po-
tentially only be adequately characterised when it is
in interaction with these users. At present, our eval-
uation metrics, whether it is for safety or other as-
pects such as explainability, do not fully capture this.
More research is needed to understand how to best ad-
dress this, but a viable starting point seems to exist
within enactivist approaches to characterising natural
cognition. It is worth noting that these approaches
are amenable to studying social interactions between
agents (Froese and Di Paolo, 2008; Froese and Paolo,
2010; Candadai et al., 2019). It is also worth not-
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ing that this would complement, rather than replace,
other approaches such as those reviewed above. There
will still be a need to verify that a system is at least
in principle functioning as intended. The point here is
just that, once it is ready for interaction with human
end users, these humans co-determine the behaviour of
the system in non-trivial ways when the system is no
longer simply built upon a computationalist paradigm,
and the details of this are not yet fully understood.

4 Conclusions

In this brief note, we were concerned with the role that
users play in interaction with autonomous technology,
and how one could evaluate such advanced systems.
Ensuring the safety of learning, perception and control
in real world settings requires that the corresponding
evaluations do not just reduce humans into the role
of passive (in terms of system behaviour) end users
but rather as part of the overall system. In the cogni-
tive sciences, enactivism has a long history of study-
ing agents in such terms and, even if one disagrees
with it philosophically, it may be interesting to look
towards it in order to better understand how to eval-
uate near future automated technology, whether ve-
hicles or robots. This seems particularly pertinent if
these are controlled using neuromorphic architecture
because this does fundamentally create the kind of in-
teractions – namely those between dynamical systems
– that enactivism seeks to characterise.
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