Robustness Through Simplicity: A Minimalist Gateway to
Neurorobotic Flight

Simon D. Levy
Washington and Lee University

Abstract

In attempting to build neurorobotic systems
based on flying animals, engineers have come
to rely on existing firmware and simulation
tools designed for miniature aerial vehicles
(MAVs). Although they provide a valuable
platform for the collection of data for Deep
Learning and related AI approaches, such
tools are deliberately designed to be general
(supporting air, ground, and water vehicles)
and feature-rich. The sheer amount of code
required to support such broad capabilities
can make it a daunting task to adapt these
tools to building neurorobotic systems for
flight. In this paper we present a comple-
mentary pair of simple, object-oriented soft-
ware tools (multirotor flight-control firmware
and simulation platform), each consisting of
a core of a few thousand lines lines of C++
code, that we offer as a candidate solution
to this challenge. By providing a minimal-
ist application programming interface (API)
for sensors and PID controllers, our software
tools make it relatively painless to for engi-
neers to prototype neuromorphic approaches
to MAV sensing and navigation. We con-
clude our discussion by presenting a simple
PID controller we built using the popular
Nengo neural simulator in conjunction with
our flight-simulation platform.

1 Introduction

Beginning with J.J. Gibson’s pioneering research on
visual perception (Gibson, 1979), decades of research
in behavioral neuroscience have shown the importance

Appearing in Proceedings of the Workshop on Robust Ar-
tificial Intelligence for Neurorobotics (RAI-NR) 2019, Uni-
versity of Edinburgh, Edinburgh, United Kingdom. Copy-
right 2019 by the authors.

of robust, tightly-coupled perception/action cycles in
supporting successful movement (predation, obstacle
avoidance) in challenging environments. This is espe-
cially true for flying animals like birds and insects,
whose survival depends on overcoming of a variety
of forces in three-dimensional space; most obviously,
gravity (Floreano, Zufferey, Srinivasan, & Ellington,
2009).

In attempting to build neurorobotic systems based on
flying animals, engineers have come to rely on existing
firmware and simulation tools designed for miniature
aerial vehicles (MAVs). Although they provide a valu-
able platform for quick entrée into the world of FPV
racing or aerial photography (firmware), and the the
collection of data for Deep Learning and related Al ap-
proaches (simulation), such tools are deliberately de-
signed to be as feature-rich and general as possible,
to appeal to the widest audience. The most popular
software tools support air, ground, and water vehicles
and provide a hierarchy of safety mechanisms for min-
imizing the likelihood of injury and property damage.
Unsurprisingly, the sheer amount of code required to
support such broad capabilities can make it a daunt-
ing task to adapt these tools to building neurorobotic
systems for flight.

In the remainder of this paper we present a pair of
simple, object-oriented software tools — Hackflight and
MulticopterSim — each consisting of a core of a few
thousand lines of C++ code, that we offer as a can-
didate solution to this challenge. These software tools
are built on the popular Arduino microcontroller plat-
form and the popular video game platform Unreal En-
gine 4. By providing a minimalist application pro-
gramming interface (API) for sensors and PID con-
trollers, these tools make it relatively painless to for
engineers to prototype neuromorphic approaches to
MAYV sensing and navigation.

2 Hackflight

Hackflight began in 2015 as an attempt by the author
to build a simple open-source flight-control firmware

Robustness Through Simplicity: A Minimalist Gateway to Neurorobotic Flight

program for MAVs using the Arduino platform (Banzi
& Shiloh, 2014). At that time, as well as today,
there were two major firmware projects for MAVs:
ArduPilot (ArduPilot Dev Team, 2019a) and Clean-
flight (Cleanflight Team, 2019). ArduPilot focuses on
sophisticated mission planning with waypoint naviga-
tion and other features, and runs mainly on the Pix-
hawk flight controller. Cleanflight and its derivatives
(Betaflight, Raceflight) are popular with FPV (first-
person-view) racing enthusiasts, and run on a broad
variety of flight-control boards designed for FPV rac-
ing. (A more recent Cleanflight derivative, iNav, adds
features for navigation and for fixed-wing aircraft). Al-
though both projects can trace their origin to the Ar-
duino platform, they have long since switched to using
their own non-Arduino hardware drivers for sensing
and motor control. Both projects are supported by
large development teams and have a code base of sev-
eral hundred thousand to two million lines (see Ta-
ble 1). Hackflight, by contrast, uses approximately
4,000 lines.!

How can Hackflight get away with using to or three
orders of magnitude less code than the two most pop-
ular flight-control firmware packages? We attribute
this difference to a few important design principles.

2.1 Features

Unlike ArduPilot, which supports a variety of vehicle
types (multirotors, fixed-wing aircraft, ground vehi-
cles, marine vehicles), Hackflight supports only mul-
tirotors. Cleanflight and its derivatives, while sup-
porting mainly multirotors (and perhaps fixed-wing
aircraft), offer a variety of configuration features and
flight modes (PID controllers), allowing everyone from
beginners to professional racing pilots to use them.
Hackflight, by contrast, uses only a the bare minimum
of PID controllers necessary for stable flight, allowing
you to create your own PID controllers with relative
ease (see section 2.4 below).

2.2 Audience

Although both ArduPilot and Cleanflight are open-
source, their target users are mostly non-programmers.
There is therefore a heavy focus in both projects on
GUI-based configurator programs. Hackflight, by con-
trast, is targeted toward engineers and researchers
comfortable with coding in C+4. Adding a feature

1To estimate the number of lines of code in each pack-
age, we cloned the package repository from github, ran the
cloc program (https://github.com/AlDanial/cloc) in the
root directory of the repository, and summed over the re-
ported number of lines in C/C++ header files, C files, and
C++ files.

to Hackflight therefore requires significantly less code
support, enabling rapid prototyping of new sensors,
PID, controllers, etc.

2.3 Arduino compatibility

As mentioned above, Hackflight began as the au-
thor’s attempt to to build a simple open-source flight-
control program using the Arduino software libraries.
Although Hackflight now supports a subset of the
STM32F3/4 flight controllers supported by Cleanflight
and its derivatives, our focus has always been on Ar-
duino compatibility. Thanks to the recent availabil-
ity of small, fast, 32-bit microcontroller development
boards like Teensy and the STM32L4 line from Tlera
Corporation?, Arduino compatibility is no longer tied
to slower, eight-bit boards lacking floating-point sup-
port (see Figure 1). Arduino compatibility means that
Hackflight can quickly exploit the increasing variety
of new sensors available today, without the need to
write a custom driver. Although the variety of neu-
romorphic sensors currently available cannot rival the
variety of Arduino-compatible MEMS sensors (inertial
measurement units, proximity sensors, and the like),
we are optimistic that neuromorphic devices will fol-
low the same trajectory; i.e., they will provide a UART
or other low-level serial interface for working with Ar-
duino and similar development platforms.

2.4 Simple object-oriented API

Hackflight is written entirely in C++4-, with the core
components written in header-only style. Our focus
is on object-oriented design, with most classes (alti-
tude PID control, distance sensing) being subclasses
of other, more abstract classes (PID controller, sen-
sor). In addition to enabling extensive code re-use,
this approach allows us to abstract the driver code
for a component (sensor, motor) from the algorithms
using that component (Madgwick quaternion filter,
mixer). This clean separation allows Hackflight to
be “dropped” directly into a simulation environment
(through the use of C++ #include statements), with-
out the need for Hardware-In-the-Loop” (HIL), socket
connections, or other indirect mechanisms (see section
3 below). Although both ArduPilot and Cleanflight
separate the driver code from the algorithmic code,
Hackflight’s consistent use of object-oriented design
allows us to avoid pre-processor macros (#ifdef
#else .. #endif) that are used extensively in those
two packages and can make it difficult to arrive at a
basic understanding of much of the code.

As well as keeping the codebase small, simple, and

portable, these design principles support a more di-

https://www.tindie.com /stores/TleraCorp/

Simon D. Levy

rect connection between the mathematical theory un-
derlying flight control and its implementation in code.
Figure 2 illustrates this point by showing the main
loop in Hackflight. In the figure, each box (de-
mands, state) represents a simple datatype in the
C++ code, and each oval (R/C Receiver, Sensors,
PID controllers, Mixer) represents an abstract class.
Mathematically, then, each abstract class is a function
from one datatype to another: Sensor : State — State;
PIDController : (State x Demands) — Demands. ~ We
believe that this design principle makes Hackflight
both easy to understand and simple to adapt.

Figure 3 illustrates these principles by showing a com-
plete Arduino firmware sketch (main program) for a
quadcopter using the flight controller in Figure 1. As
the sketch shows, Hackflight’s simple API supports
programs in which only the required components (PID
controllers, receiver, mixer) need to be specified (as
opposed to choosing from a list of options with a con-
trol statement). This approach results in example pro-
grams that are easy to read and to adapt for use with
new sensors, vehicle designs and control paradigms.

Table 1: Approximate size of flight-control firmware
packages

Package Lines of code
ArduPilot 2,310,889
Cleanflight 851,659
Hackflight 4,269

Figure 1: Arduino-compatible flight controller for
Hackflight (total cost approx. $55 U.S.)

Figure 2: Hackflight main loop

-G

Figure 3: Sample Hackflight sketch for Arduino

#include <Arduino.h=
#include “"hackflight.hpp"
#include "boards/arduino/butterfly.hpp"
#include "receivers/arduino/dsmx.hpp"
#include "mixers/quadxcf.hpp"
#include “"pidcontrollers/level .hpp"
constexpr uint8_t CHANNEL_MAP[E] = {0, 1, 2, 3, 6, 4};
hf::Hackflight h;
hf::DSMX_Receiver rc = hf::DSMX_Receiver(CHANNEL_MAP) ;
hf::MixerQuadXCF mixer;
hf::Rate ratePid = hf::Rate(0.05f, 0.00f, @.06f, 0.10f, 0.01f, 8.58);
hf::Level level = hf::Level(0.20f);
void setup(wvoid)
{
// Add Level PID for aux switch position 1
h.addPidController(&level, 1);
// Initialize Hackflight firmware
h.init{new hf::Butterfly(), &rc, &mixer, G&GratePid);
¥

void loop(void)

h.update() ;
]

3 MulticopterSim

MulticopterSim began as a plugin for the popu-
lar V-REP robotic simulation platform (E. Rohmer,
2013). In March of 2017 the head of Microsoft’s Air-
Sim project (Shah, Dey, Lovett, & Kapoor, 2017)
contacted the author about using Hackflight as the
flight-control software for AirSim, a new quadcopter
flight simulator built on the UnrealEngine4 platform
(Sanders, 2016), citing design principles of Hackflight
is the primary reason for this interest. After a licens-
ing incompatibility ended up making this collaboration
unfeasible, the author turned to developing quadcopter
flight simulator from scratch, using UE4 and and the
Hackflight firmware.

In addition to its focus on Deep Learning, AirSim has
since expanded to include support for self-driving cars,
and provides Python APIs for remote operation of the
vehicles. As with flight-control firmware discussed in
the previous section, this rich set of features translates
into significantly more code. Table 2 shows the relative
sizes of AirSim and MulticopterSim, based on the same
metric used in Table 1. As we saw with Hackflight, the

Robustness Through Simplicity: A Minimalist Gateway to Neurorobotic Flight

design principles used in MulticopterSim help keep the
codebase small, manageable, and easily extendable.

The core of MulticopterSim is the abstract C+-+
FlightManager class. This class provides support for
running the vehicle dynamics and the PID control
regime (e.g., Hackflight) on its own thread, after it
first disables the built-in physics in UE4. The dynam-
ics we used are based directly on the model presented
in (Bouabdallah, Murrieri, & Siegwart, 2004), written
as a standalone, header-only C++ class that can be
easily adapted for other simulators and applications if
desired. This class also supports different frame con-
figurations (quadcopter, hexacopter) via virtual meth-
ods. By running the Flight Manager on its own thread,
we are able to achieve arbitrarily fast updates of the
dynamics and flight-control. We currently limit the
update rate to 1kHz, based on the data output rate of
current MEMS gyrometers. It would also be possible
to run the dynamics and control on separate threads,
though we have not yet found it advantageous to do
that.

The FlightManager API contains a single virtual
method, update (), which accepts the current time and
the state of the vehicle (as computed by the dynam-
ics), and returns the current motor values. The motor
values are then passed to the dynamics object, which
computes the new vehicle state. On the main thread,
UE4’s Tick() method queries the flight manager for
the current vehicle pose (location, rotation) and dis-
plays the vehicle and its environment kinematically at
the 60-120Hz frame rate of the game engine. In a sim-
ilar manner, the threaded VideoManager classes can
be used to process the images collected by a simulated
gimbal-mounted camera on the vehicle, using OpenCV
(Bradski, 2000). An abstract C++ Target class sup-
ports modeling interaction with other moving objects
having their own dynamics; for example, in a preda-
tor/prey scenario.

This simplicity of our flight-control scheme makes
it easy to connect MulticopterSim to existing flight-
control software like Hackflight, or to the software-in-
the-Loop (SITL) mechanism of ArduPilot (ArduPilot
Dev Team, 2019b), as modules in the MulticopterSim
codebase. With the Hackflight module, for example,
we treat the control device (e.g., joystick, Xbox game
controller) as “virtual receiver”, which provides the
R/C Receiver signal shown at the top of Figure 2. Fur-
ther, the abstraction provided by Hackflight for sens-
ing and open-loop control allows rapid prototyping of
hybrid control systems, as we describe in the next sec-
tion.

4 Toward neuromorphic flight control

As a demonstration of our approach, we used the
Python-based Nengo neural simulator (Bekolay et al.,
2014) to create a simple PID controller class for alti-
tude hold. As shown in Figure 4, the controller con-
sists of three populations of 200 spiking neurons: one
population for computing the error between the target
altitude and current altitude (P term); one for inte-
grating the error (I term), and one for computing the
error derivative D) term. (For this simple experiment
we used only P.) The constants Kp, K, and K, are
implemented as arguments to the transform parame-
ter of the nengo.Connection constructor; i.e., as con-
nection weights between pools of neurons. We set the
simulation time to 0.001 seconds, and used the default
values for the remaining parameters in the Nengo class
constructors. We made this Python class available to
MulticopterSim by writing a C++ extension, allow-
ing us to call the Python class (and hence the Nengo
simulator) directly from C++.

For this trial experiment, the altitude-hold component
was the only part of the FlightManager implementa-
tion that used Nengo; all other components used the
Hackflight module, allowing us to fly the simulated
quadcopter in the normal way (with game controller,
joystick, or R/C transmitter with USB adapter), then
triggering altitude-hold by pushing a button or flip-
ping a switch on the controller.

To evaluate the performance of our neuromorphic PID
controller we followed the same procedure as we use to
evaluate other PID controllers in our simulator: raise
the throttle to fly the vehicle to sufficient altitude (typ-
ically three or four meters), level off the throttle un-
til the vehicle is relatively motionless, then flip the
switch to enter altitude-hold mode. Using this proce-
dure, we were able to keep the vehicle hovering, albeit
with some vertical oscillation.

Although this PID controller has been hand-tuned by
us to work with our simulator, and shows mediocre
performance?, it provides a simple proof of the feasi-
bility of using an advanced neural simulator like Nengo
in a real-time flight simulator, paving the way for more
interesting experiments.

5 Conclusion and future work

As the closest robotic approximation to flying in-
sects, birds, and mammals, miniature aerial vehicles
(MAVs) offer a compelling new platform for research

3A better method for altitude hold is to use the error
between the target and actual altitudes as a set-point for
a secondary, velocity-based PID controller, as is done for
example in ArduPilot.

Simon D. Levy

in neuromorphic sensing, notably in the realm of vision
(Mitrokhin, Sutor, Fermiiller, & Aloimonos, 2019).
Such research faces unique challenges.

In the physical realm, the current weight and form
factor of event-based dynamic vision sensor (DVS)
devices makes them impractical for deployment on
micro-scale aerial vehicles.

In simulation, the 60-120 Hz frame rate of game en-
gines like UE4 and Unity (Menard, 2011) exceeds that
of most commercially-available CMOS cameras but is
inadequate for emulating the multi-kilohertz data rates
enabled by DVS (Gallego et al., 2019). Hence, one of
our current research directions involves modeling the
DVS datastream directly from the dynamics of the ve-
hicle and target object.

Finally, to extend our Nengo-based PID controller
in a more biologically realistic direction, we are ex-
perimenting with a Python version of our multirotor
dynamics code, to exploit Nengo’s support for rein-
forcement learning (Bekolay & Eliasmith, 2011). This
paradigm would provide an accelerated way to develop
neuromorphic flight controllers in an abstract math-
ematical simulation, to be validated by transferring
them to MulitCopterSim, and eventually to an actual
vehicle.

For both real and simulated flying robots, we see
our minimalist, integrated approach to software and
firmware design as a promising direction for robust
aerial neurorobotics.

Table 2: Approximate sizes of two flight-simulation
packages®

Package Lines of code
AirSim 74,106
MulticopterSim 1,535

6 Downloads

The software described in this paper can be down-
loaded from the following repositories:

e https://github.com/simondlevy/Hackflight

e https://github.com/simondlevy/
MulticopterSim

e https://github.com/simondlevy/
MulticopterSim/tree/NengoModule

5The line count for MulticopterSim includes the module
for Hackflight (see main text for details).

Figure 4: Nengo model for simple PID control

Acknowledgments

We thank Terry Stewart for help with the Nengo PID
controller, and Shital Shah for the header-only rewrite
of Hackflight. This research was supported by winter
2019 sabbatical-leave funding from Washington and
Lee University.

References

ArduPilot Dev Team. (2019a). History of ardupilot.
(http://ardupilot.org/planner2/docs/common-
history-of-ardupilot.html, Accessed 15 June

2019)
ArduPilot Dev Team. (2019b). Sitl
simulator (software in the loop).

(http://ardupilot.org/dev/docs/sitl-simulator-
software-in-the-loop.html, Accessed 17 June
2019)

Banzi, M., & Shiloh, M. (2014). Getting started with
arduino. MakerMedia.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T.,
Stewart, T. C., Rasmussen, D., et al. (2014).
Nengo: A python tool for building large-scale
functional brain models. Frontiers in Neuroin-
formatics, 7(48).

Bekolay, T., & Eliasmith, C. (2011). A general error-
modulated stdp learning rule applied to rein-
forcement learning in the basal ganglia. Cog-
nitive and Systems Neuroscience.

Bouabdallah, S., Murrieri, P., & Siegwart, R. (2004).
Design and control of an indoor micro quadrotor.
In Proceedings of the 2004 IEEE international
conference on robotics and automation, ICRA
2004, april 26 - may 1, 2004, new orleans, la,
USA (pp. 4393-4398).

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s
Journal of Software Tools.

Robustness Through Simplicity: A Minimalist Gateway to Neurorobotic Flight

Cleanflight Team. (2019). (http://cleanflight.com,
Accessed 15 June 2019)

E. Rohmer, M. F., S. P. N. Singh. (2013). V-rep:
a versatile and scalable robot simulation frame-
work. In Proc. of the international conference on
intelligent robots and systems (iros).

Floreano, D., Zufferey, J.-C., Srinivasan, M. V., &
Ellington, C. (2009). Flying insects and robots
(1st ed.). Springer Publishing Company, Incor-
porated.

Gallego, G., Delbriick, T., Orchard, G., Bartolozzi, C.,
Taba, B., Censi, A., et al. (2019). Event-based
vision: A survey. CoRR, abs/1904.08405.

Gibson, J. J. (1979). The ecological approach to visual
perception. Houghton Mifflin.

Menard, M. (2011). Game development with unity
(Ist ed.). Boston, MA, United States: Course
Technology Press.

Mitrokhin, A., Sutor, P., Fermiiller, C., & Aloi-
monos, Y. (2019). Learning sensorimotor con-
trol with neuromorphic sensors: Toward hyper-
dimensional active perception. Science Robotics,
4(30).

Sanders, A. (2016). An introduction to unreal engine
4. Natick, MA, USA: A. K. Peters, Ltd.

Shah, S., Dey, D., Lovett, C., & Kapoor, A. (2017).
Airsim: High-fidelity visual and physical simula-
tion for autonomous vehicles. In Field and ser-
vice robotics.

