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Abstract

The proposed architecture applies the princi-
ple of predictive coding and deep learning in
a brain-inspired approach to robotic sensori-
motor control. It is composed of many layers
each of which is a recurrent network. The
component networks can be spontaneously
active due to the homeokinetic learning rule,
a principle that has been studied previously
for the purpose of self-organised generation
of behaviour. We present robotic simulations
that illustrate the function of the network
and show evidence that deeper networks en-
able more complex exploratory behaviour.

1 Introduction

Deep neural architectures [4, 6] have meanwhile
reached a level comparable to human performance
in certain pattern recognition tasks [7]. Also in
robotic applications, deep networks gain more and
more importance, from state abstraction to seamless
end-to-end control in complex repetitive tasks [8].
Moreover, it has been speculated whether deep
feedforward networks can account for some aspects
of information processing in the mammalian visual
system [12], which is not to say that the brain is
nothing but a collection of deep neural networks.
Quite to the contrary, brain have dynamical properties
that are much richer than standard deep architectures:

• Biological neural systems consist of patches
of interconnected neurons which also receive
re-entrant connectivity via other patches.

• These patches are hierarchically organised to
enable lateral transferability and flexible compo-
sitionality of elementary behaviours.
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• Sensory inputs are not only providing informa-
tion for decision about actions, but they are also
analysed for traces of effects of previous actions.

• Spontaneous behaviour can occur at any level of
depth and may spread in either direction.

• There is little use for supervised learning.

We are proposing here an architecture that combines
the undeniable strengths of deep neural networks with
an approach to meet requirements of autonomous
robots. In the following, we will consider first the
homeokinetically controlled sensorimotor loop [3] as
the basic element of the proposed system (Sect. 2).
In this way, we incorporate a source of spontaneous
activity. The composition of these elements in the
DIAMOnD1 architecture (Sect. 3) will thus be able to
generate activity at all levels and work in a fully self-
supervised way, although it is also possible to steer
the system to desired behaviour by very small guid-
ing inputs [9]. The main layout of the architecture
includes a basic layer that receives information from
outside world and sends actions and is expected to rep-
resent low-level features. There is a variable number
of deeper layers that interact only with the neighbour-
ing layers and which represent more abstract features
that are extracted from the data through the lower
layers. The architecture learns by the homeokinetic
learning rule (see below) which implies that consis-
tency between neighbouring layers is required. We will
present a few experimental results in Sect. 4, and dis-
cuss the realism and performance of the architecture
as well as further work in Sect. 5.

2 Homeokinetic control

The basic element of our architecture is formed by
a homeokinetic controller [3]. This unsupervised ac-
tive learning control algorithm shapes the interaction
between a robot and its environment by updating
the parameters of the controller and of an internal
model. The learning rule implies a balance between
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predictability and sensitivity with respect to future in-
puts. The resulting behaviour is random yet tempo-
rally coherent and correlated across multiple degrees of
freedom. The homeokinetic controller is a parametric
function

yt = C(xt; C) (1)

of the vector xt of current sensory states of the robot.
It generates a vector of motor commands yt in depen-
dence on the current values of the parameter matrix
C. The update of the parameters is based on a com-
parison of actual inputs and their prediction by means
of an internal model. This model

x̂t+1 = M(xt,yt; M), (2)

produces a prediction of future states x̂t+1 based on
the current input xt or action yt or both, and a pa-
rameter matrix M. The difference between actual and
estimated state defines the prediction error

ξt+1 = xt+1 − x̂t+1, (3)

which gives rise to one of the two complementary ob-
jective functions, firstly the prediction error

Et+1 = ‖xt+1 − x̂t+1‖2, (4)

which is used to adapt the parameters M of the inter-
nal model (2), and secondly the the time loop error

Et = ‖xt − x̂t‖2, (5)

which is based on a post-diction x̂t of previous input
xt given the new input xt+1.

Using Eq. 1 we can always consider the model as a
function defined on the state space

ψ(xt) = M(xt, C(xt)), (6)

which together with Eq. 3 defines a dynamical system
that represents the trajectory of the robot

xt+1 = ψ(xt) + ξt+1. (7)

It is of importance in homeokinetic learning [3] to de-
fine an input shift η corresponding to the error ξ. It
is given as the argument η = ηt that minimises

‖xt+1 − ψ(xt + η)‖ (8)

or, if ψ is invertible, as ηt = ψ−1 (ψ(xt) + ξ) − xt.
Using a Taylor expansion

ψ(xt + ηt) = ψ(xt) + J(xt)ηt +O(‖ηt‖2), (9)

we express the prediction error (3) in linear order by

ξt+1 = J(xt)ηt, (10)

where

J =

(
∂ψi(x)

∂xj

)
(11)

is the Jacobian matrix of the system (7). If the inverse
of J exists, we can use

ηt = J−1t ξt+1 (12)

in order to define the time loop error

Et = ‖ηt‖2 = η>t ηt = ξ>t+1(JtJt
>)−1ξt+1. (13)

The homeokinetic learning rule updates the parameter
matrix C of the controller (1) by gradient descent

∆Cij = −εC
∂Et

∂Cij
, (14)

where Cij is an element of C and εC is a learning rate.

If the representational power is of less importance than
the flexibility [13], a quasi-linear system can be consid-
ered as sufficient. This is clearly the case in the present
context where the representational power is achieved
by a complex system that uses the current controller
as an element. A linear controller

yt = C (xt) = g (Cxt + c) (15)

and a linear model

x̂t+1 = M(yt) = Myt + m, (16)

does thus not limit the complexity of achievable con-
trol. The parameters of the controller and the model
are now the matrices C and M resp., which are com-
plemented by the matching bias vectors c and m. In
order to incorporate limitations of actions of the robot,
the controller is quasilinear due to the elementwise sig-
moidal function g. Because of the simple structure
of Eq. 15, we can omit here the state dependency (2)
and define the model M only in motor space. The
model defines the dynamics (6)

ψ(x) = Mg(Cx + h) + m (17)

and the Jacobian (11) can be obtained explicitly as
J(x) = MG′C, where G′ is a diagonal matrix with
entries g′(zi). The parameter update (14) becomes

∆Cij = εC η
>J

∂J

∂Cij
η, (18)

and analogously for the bias term h. With µ =

G′M> (
J>

)−1
η and ζ = Cη the learning rules for

a linear controller with a linear model are

∆Cij = εCµiηj − 2εCµiζiyixj (19)

∆ci = −2εCµiζiyi. (20)
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Figure 1: Schematic representation of the homeoki-
netic learning rule. Left: The prediction error in the
elementary sensorimotor loop is obtained as the dif-
ference of new sensory input x′0 and its prediction x′1.
It is used in the update of the model, see Eqs. 21,
22. Right: In addition, the time-loop error, i.e. the
difference of previous input x0 and re-estimated previ-
ous input x1, is used to update the controller parame-
ters, see Eqs. 19, 20. The downward arrow on the left
merely indicates that the “new” input will serve as the
input at the next time step.

Simultaneously, but possibly with a different learning
rate, the parameters M of the linear model (16) are
updated via gradient descent on the standard predic-
tion error (Eq. 4, rather than Eq. 13).

∆Mij = −εM
∂E
∂Mij

= εMξiyj (21)

∆bi = −εM
∂E
∂bj

= εMξi (22)

where εM is the learning rate for the adaptation of the
internal model. The ratio of the two learning rates εC
and εM is known to be critical for the behaviour of
controlled robot [13]. For the architecture presented
next, an optimised ratio is to be used, see also Fig. 5.

3 The DIAMOnD model

3.1 Deep homeokinesis

The DIAMOnD model is a generalisation of the home-
okinetic controller described in Sect. 2. As shown in
Figs. 2 – 4, the paring of a state variable and its es-
timate is now extended by estimates of estimates etc.
where each pair of layers corresponds to a homeoki-
netic controller that acts onto the lower layers as its
environment and receives biases from the higher lay-
ers. As in the inner layers, the external information
becomes less dominant, we can identify a formal sym-

Figure 2: Homeokinetic learning in a multilayer archi-
tecture. Several instances of the homeokinetic senso-
rimotor loop are stacked to form a multilayer neural
network. The internal model of any lower layer serves
as the “world” for the next higher layer. Likewise, es-
timates for input obtained at by a lower layer are the
inputs for the higher layers, so each layer reproduces
the elementary loop shown in Fig. 1.

metry between the actual relation between motor ac-
tions and sensory effects and the representation of this
relationship in the model.

3.2 Simple variant

Layers are indicated by ` = 0, 1, . . . , L. The main
structure, see Fig. 2, is described by the following
equation for the controller for ` < L

y` (t) = C`+1 (x` (t)) = g (C`+1x` (t) + c`+1) (23)

with no controller for ` = L. The controller update is
here the same as for the one-layer model. The linear
model for ` < L is given by

x̂` (t+ 1) = M`(y`−1 (t) ,y` (t)) (24)

= M`y`−1 (t) + M′
`ỹ` (t) + m`. (25)

where the M′ matrix is updated in the same way as
the M matrix. For ` = L, this is simply

x̂` (t+ 1) = M`(y`−1 (t) ,y` (t)) (26)

= M`y`−1 (t) + m`.

Note that the virtual action ỹ` (t), ` ≥ 1, is given
by x′`+1 (t− 1) is not the same as y` (t) in the home-
okinetic update of the controller (23), i.e. not the
backpropagated value of x′`−1 (t− 1), but instead the
forward-propagated value of x′` (t− 1): First x′` (t− 1)
is copied to x` (t) for all ` just like in the first layer
the previous sensory input becomes the new sensory
input x′0 (t− 1) → x0 (t). Then, using the controller
C ′`+1 the virtual action ỹ` (t) is generated, which fi-
nally contributes to the prediction via Eq. 24.
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3.3 Main variant

The variant with extra connections (Fig. 3) has for the
controller

y` (t) = C`+1 (x` (t)) (27)

= g
(
C`+1x` (t)+C′`+1x

′
`+1(t− 1)+c`+1+c′`+1

)
i.e. in the same way as new input x′0 (t+ 1) that is
used to calculate the prediction error is also used in
the next time step as input x0 (t), we are also for ` > 0
using previous predictions as new virtual input. For
the deepest layer ` = L, Eq. 27 is not applied, and for
the penultimate layer we have simply

y` (t) = C`+1 (x` (t)) = g (C`+1x` (t) + c`+1) . (28)

For the model, Equations 24 and 26 are used as above.

While the first C matrix in Eq. 27 is adapted learned
in the standard way (s. Eqs. 19 and 20), the matrix
C′ is updated by gradient descent with respect to the
prediction error for the action

E = (y` (t)− ỹ` (t))
2
,

where

ỹ` (t) = g
(
C′`+1x

′
`+1 (t− 1) + c′`+1

)
,

i.e. the input x′`+1 (t− 1) from the more inner level is
used to predict the motor output y` (t). The update
equations for C′ are similar to Eqs. 21 and 22, but will
contain also a derivative of g. Note that in practice
(M′)

−1
and C′ may be converge to a similar result,

as both aim to map x′` to y`, although one is using a
linear and the other a non-linear map.

Note that the loops in Fig. 4 are not present in the
network of Fig. 3, which may not be a problem as
the loops have no function (yet), and may be included
later. However, it is not clear what “deliberation”
could mean without these loops.

We assume that the inner (deeper) layers are updated
first. The deepest layer ` = L has no variables, just
the controller and the model. According to Eqs. 28
and 26, no higher-level input variables are needed in
order to update the variables at ` = L− 1.

In this way, virtual actions and virtual inputs are avail-
able to be used in Eqs. 27 and 24 to update the next
layer towards the outer side, i.e. with lower `. For the
update of the matrices M, M′, C and C′ the time or-
der is not essential, if the variables are calculated as
described above.

3.4 Main variant with deep associations

In a third variant, a standard deep network is con-
necting the x` (Fig. 4). In this case a separate matrix

Figure 3: Same as Fig. 2, now top-down effects en-
abled by additional connections. This includes virtual
actions analogous to the initiation of actions in the en-
vironment. The activities are propagated alternatingly
through the upwards (orange and brown) arrows and
through the downwards arrows (cyan), both of which
correspond to a set of parallel fibres, whereas the adap-
tive interconnections are maintained in the controller
(C nodes) or the model (M nodes).

P` is learned for the x` which is now determined from
x`−1 by the connections P`+1 through the sigmoidal
non-linearity q:

y` (t) = C`+1 (x` (t)) (29)

= g
(
C`+1x` (t)+C′`+1q(P`+1x` (t))+c`+1+c′`+1

)
C′ is updated in the same way as C, but also P and
the derivative of q will occur in the learning rule. The
weights P are learned by the activations x` that arise
due to the activations of the network. The matrices R
in Fig. 4 play the same role as P, but for the predicted
sensor values.

It may be possible to use also the cycles in Fig. 4 more
explicitely for learning, but we want to restrict our-
selves to one-step learning rule, i.e. gradients are cal-
culated only over one step of the dynamics.

4 Experimental results

4.1 Active response by the recurrent network

As a first test, we have considered the simple vari-
ant of the architecture (see Sect. 3.2 and Fig. 2) when
it is driven with a sinusoidal input and the “world”
reproduces simply a noisy version of the motor ac-
tion as next input to the robot. Typical results are
shown in Fig. 5 for a two combinations of the learning
rates εC (19, 20) and εM (21, 22), which lead either to
an abstracted reproduction of the input in the deeper
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Figure 4: The network can sustain persistent activity
that represents an action perception cycle. Only sim-
ples cycles are show. Activity in these subnetworks
arises by self-amplification of noise or spurious activ-
ity. The full model also includes perceptual pathways
consisting of bridges between input-related units. In
this way the network activity becomes shaped by stan-
dard deep feed-forward networks.

layers or to a self-organisation of activity that, how-
ever remains without effect in this simple variant. At
lower learning rates (left column), even deeper layers
respond to the original input. In this case, the inter-
nal layers are square versions of the original input. For
larger learning rates (right column), the internal lay-
ers have a different response. The fifth row shows a
combination of homeokinetic adaptation (the red line
between 310 and 320 sec) and noisy output while still
following the input from the first layer. Deeper layers
(lower rows), tend have a decay in the generation of
motor action attributed to the squashing function.

4.2 A wheeled robot in the hills

The main variant (Sect. 3.3) is used in an exploration
task, where a four-wheeled robot is expected to cover
a large portion of an unknown territory [13]. In Fig. 6
is shown that more layers improve the exploration or
rather reduce the intervals where the robots is trapped
in trivial or repetitive behaviour, see Ref. [5].

4.3 A spherical robot in an arena

We also studied a simulated spherical robot which is
controlled by three masses that a movable along inter-
nal axes, see Fig. 7, top. Although a more systematic
study is yet to be performed, it is already obvious that
adding a small number of additional layers increases
the behavioural repertoire of the robot.
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Figure 5: Activity evolution in a perceptually con-
nected network structure, see Fig. 2. The sensory tra-
jectory is shown by the solid line (red) and the inter-
mediate motor action by the dashed line (green). The
top row gives the input activity, the second row the
activity of the first layer and the following rows show
every 10th layer of the architecture to a total depth
of 50. The left panel is for learning rates εM = 0.01,
εC = 0.05, and the right one for εM = 0.1, εC = 0.2.
While at low leaning rates, the input is similar across
all layers, for larger ratios εM/εC the model is more
flexible and the deeper activity becomes largely inde-
pendent on the input, which can be used (see Fig. 4).

5 Discussion

The numerical results seem to imply that a few layers
are sufficient, i.e. a larger number of layers does not
lead to further improvements or may require a much
longer learning time than attempted here. It should,
however, be considered that the tasks and environ-
ments are all very simple, such that it is not possible
to generalise this observation to more complex situa-
tions. It can nevertheless be expected that the sponta-
neous internal activations that were observed for suit-
able learning rate ratios, lead to a learning time that
is approximately linearly increasing with the number
of layers, and not much worse. This is suggested by
earlier results with homeokinetic learning rule [10].

The present model is a representation of the idea (see
e.g. [1]) that it is difficult to define a clear boundary
between brain and body or even between body and
world. At all layers the system follow the same prin-
ciples in its adaptation of the actions onto lower lay-
ers and in the learning of a model that affects higher
layers. The reduction of complexity of the internal
dynamics towards higher layers is counterbalanced by
the autonomous activity that such that the main eigen-
value at each layer will hover near unity [11].
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Terrain Coverage rate

ρ = 0.25 84 91 94 80
ρ = 0.75 67 71 82 74

Figure 6: A four-wheeled robot exploring a hilly land-
scape. The table shows the percentage of area visited
by the robot within 20 minutes (See Ref. [13] for details
on the task). Two levels of difficulty (linear scaling ρ
of the slopes) and four depths of the network (` =1, 3,
5, 7) are considered, showing an increased exploration
capability. The bottom graph shows the decaying pre-
diction error over all layers (` =7) which shows that
the deeper layers remain unused in this task.

Figure 7: Spherical robot (left) in a dodecagonal arena.
For a one-layer architecture, the robot mostly follows
the wall (middle), while for a 3-layer network, the
robot shows a highly exploratory behaviour (right).

Although the activity is updated here in parallel in all
layers, the stacked structure is clearly similar to the
subsumption architecture [2] as it allows for shorter
or longer processing loops. It remains to be studied
whether more general architectures are beneficial, es-
pecially when more complex tasks are considered.

In Figs. 2 – 4 it is understood that the dynamical vari-
ables (x, y and x′) exist each in two instances, one
updated by the controlling and predictive pathways,
the other by the feedback within the re-estimation sys-
tem. The need to disambiguate these units points to
an interesting parallel to the roles of the layers of the
mammalian cortex.

Finally, it should be remarked the principle of pre-
dictive coding is inherent in the architecture from the
homeokinetic principle. Activity can only travel to the
deeper layers if it is not already predicted by the inter-
nal model of the current layer. In some cases this can
lead to a complete decay of the activity in the deeper
layers (see Fig. 6), although more complex robots and
more challenging environments need to be studied in

order to precisely identify parallels to the predictive
coding principle in natural neural systems.
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