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Abstract

The problem of finding stereo correspon-

dences in binocular vision is solved effort-

lessly in nature and yet is still a critical bottle-

neck for artificial machine vision systems. As

temporal information is a crucial feature in

this process, the advent of event-based vision

sensors and dedicated event-based proces-

sors promises to offer an effective approach to

solve stereo-matching. Indeed, event-based

neuromorphic hardware provides an opti-

mal substrate for biologically-inspired, fast,

asynchronous computation, that can make

explicit use of precise temporal coincidences.

Here we present an event-based stereo-vision

system that fully leverages the advantages

of brain-inspired neuromorphic computing

hardware by interfacing event-based vision

sensors to an event-based mixed-signal ana-

log/digital neuromorphic processor. We

describe the multi-chip sensory-processing

setup developed and demonstrate a proof

of concept implementation of cooperative

stereo-matching that can be used to build

brain-inspired active vision systems.

1 Introduction

Biological and artificial binocular visual systems rely

on stereo-vision processes to merge the visual informa-

tion streams. This implies solving the stereo-matching

problem, i.e. finding correspondent points in two

slightly shifted views (Cumming and Parker, 1997).

Typical applications in robotics that can benefit from

stereo vision include navigation in unknown environ-

ment, object manipulation and grasping. However,

current machine-vision approaches still lag behind
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their biological counterpart mainly in terms of band-

width and power consumption (Steffen et al., 2019;

Tippetts et al., 2016). Classical methods are based on

frame-based vision sensors. The main challenges of

frame-based algorithms are spatial redundancy and

temporal information loss due to the intrinsic nature

of fixed-rate processing. This affects latency, through-

put, and power consumption, making frame-based

approaches difficult to integrate into mobile platforms.

Biological systems, on the other hand, seem to effi-

ciently solve the stereo-matching problem by using

space-variant and asynchronous space-time sampling

(Polimeni and SchwartzÝ, 2001). Space-variant resolu-

tion refers to a non-uniform distribution of retinal pho-

toreceptors, with higher density in the center (fovea)

and a decreasing density towards the periphery. Asyn-

chronous instead refers to event-driven, self-timed

sensing, and processing. Therefore a massively paral-

lel, asynchronous, event-based chain, from sensing to

processing, seems to be a promising solution for more

robust and efficient architectures of stereo vision.

In this context, neuromorphic hardware has proven to

be an effective substrate (Indiveri, Corradi, and Qiao,

2015). To date, the emerging field of event-based stereo-

vision has shown successful approaches that interface

Spiking Neural Networks (SNNs) with neuromorphic

event-based sensors in order to build real-time event-

based visual processing systems (Mahowald, 1994a;

Osswald et al., 2017). Inspired by the retinal ganglion

cells, the neuromorphic vision sensors broadcast in-

formation, independently for all the pixels, only in

response to significant changes in illumination, which

results in a low-power, low-latency, event-driven and

sparse input stream (Posch, Matolin, andWohlgenannt,

2010; Berner et al., 2013; Lichtsteiner, Posch, and Del-

bruck, 2008). Spiking neurons, in turn, can process

signals using temporal information and therefore, can

take full advantage of an event-based input stream to

solve the stereo-matching problem.

However, although several biologically-inspired im-

plementations of stereo vision (Osswald et al., 2017;

Mahowald, 1994b; Kaiser et al., 2018; Dikov et al., 2017;

Piatkowska, Belbachir, and Gelautz, 2013; Piatkowska,

Kogler, et al., 2017) have extensively been explored,
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only a few solutions fully exploit the advantages of par-

allel computation, with an end-to-end neuromorphic

architecture that can replace traditional Von Neumann

architectures. In (Osswald et al., 2017), a proof of con-

cept of theMarr and Poggio cooperative network (Marr

and Poggio, 1976; Marr and Poggio, 1977; Marr and

Poggio, 1979) is implemented on a reconfigurable on-

line learning spiking neuromorphic processor (ROLLS,

(Qiao et al., 2015)); Dikov et al., (2017) propose an

alternative implementation that reduces false positive

stereo-matches on a scalable neuromorphic comput-

ing platform, SpiNNaker (Furber et al., 2014); more

recently, Andreopoulos et al., (2018) introduced a neu-

romorphic architecture of 3D vision using multiple

TrueNorth processors (Sawada et al., 2016).

Following up on the work from (Osswald et al., 2017),

in this paper we introduce a proof of concept for a

fully asynchronous, brain-inspired implementation

of the cooperative model for stereo-vision. To this

end, we replaced the ROLLS chip used in (Osswald

et al., 2017) with a multicore mixed-signal Very Large

Scale Integration (VLSI) architecture, and we built

an event-based interface that supports inputs from

a pair of neuromorphic sensors. Compared to the

previous work, the current implementation features

a more robust, biologically-inspired coincidence de-

tection mechanism implemented directly on chip and

allows to scale up the size of the network. Here we

describe the interface implemented on FPGA, and we

show a proof of concept of the cooperative network on

the scalable neuromorphic processor.

2 Methods

The stereo-vision architecture introduced here com-

bines two event-based sensors, theDynamic andActive

Pixel Vision Sensor (DAVIS) (Berner et al., 2013), and

a VLSI analog/digital Dynamic Neuromorphic Asyn-

chronous Processor (DYNAP) (Moradi et al., 2018). As

a prototype, we designed the interface between sensing

and processing on a dedicated Field Programmable

Gate Array (FPGA) device (Xilinx Kintex-7 FPGA on

the OpalKelly XEM7360).

2.1 Event-based Sensing

As opposed to classical frame-based cameras, event-

based sensor encodes information with lower latency

and redundancy. Inspiredby thebiological photorecep-

tors, the neuromorphic pixels operate independently

and send out asynchronous events in response to sig-

nificant changes in illumination using an event-based

data protocol Address Event Representation (AER)

(Deiss, Douglas, and Whatley, 1998). Overall, this

results in a fast acquisition with low latency and high

Fig. 1: The neuromorphic stereo-vision setup

temporal resolution (approximately 10 µs). Compared

to the original DVS (Lichtsteiner, Posch, and Delbruck,

2008), the DAVIS sensor features a higher spatial reso-

lution (240 × 180) and adds an APS readout.

In the proposed architecture, the two DAVIS sensors

are mounted on a stereo-setup (see Fig. 1) and sep-

arated by a baseline distance of about 6 cm, which

is similar to the pupillary distance of humans (≈ 65

mm). Events are sent separately from both retinas to

an FPGA using the AER protocol.

2.2 Sensing-Processing FPGA interface

Fig. 2 shows the main modules of the sensing-

processing interface. The communication to/from

the FPGA is based on a 4-phase handshake proto-

col, handled by the Handshake Receiver (HSR). The

Metastability Synchronizer (MSC) prevents metasta-

bility issues using a chain of two Flip-Flops on the

input signals. For the correct functioning of the net-

work, a pre-processing element (PEL) reduces the

input resolution to a 32×32 array to redirect the AER

events to the destination chip on the neuromorphic

processor. Specifically, inspired by the biological space-

variant and asynchronous space-time sampling, two

output modalities are supported: spatial downsampling,
which allows for coarse spatial resolution but with

an extended field of view, and fovea selection, which

forwards only the central 32×32 array of pixels of the

neuromorphic sensors. The pre-processed events are

thus forwarded to a small FIFOwith 8 entries, in charge

of absorbing the pipeline stall due to the successive

muxing stage. The DAVIS Input Selector (DIS) mod-

ule muxes the data using a round-robin scheme and

forwards them to the Handshake Sender (HSS), which

handles the output handshake with the neuromorphic

processor.
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Fig. 2: Overview of the implemented FPGA architecture

2.3 Event-based Processing

As the natural interface of event-based sensing is event-

based processing, here we implemented the coopera-

tive stereo network using a multi-core asynchronous

mixed-signal neuromorphic processor (DYNAP), fabri-

cated using standard 0.18 µm1P6M CMOS technology

(Moradi et al., 2018). Each core comprises 256 adaptive

exponential integrate-and-fire (AEI&F) silicon neurons

that emulate the biophysics of their biological coun-

terpart, and four different dedicated analog circuits

thatmimic fast and slow excitatory/inhibitory synapse

types (Chicca et al., 2014). Each neuron has a Con-

tent Addressable Memory (CAM) block, containing 64

programmable entries allowing to customize the on-

chip connectivity. A fully asynchronous inter-core and

inter-chip routing architecture allows flexible connec-

tivitywithmicrosecondprecision under heavy systems

loads. Digital peripheral asynchronous input/output

logic circuits are used to receive and transmit spikes

via an AER communication protocol, analogous to

the one used for the event-based input stream. As a

result, the proposed implementation leads to a proto-

type for a fully asynchronous pipeline of event-based

stereo-vision.

2.4 The Spiking Neural Network Model

The SNN implemented on the DYNAP follows the

structure presented in (Osswald et al., 2017). It consists

of three neuronal populations: the retina, the coinci-

dence detectors, and the disparity detectors. Pairs

of epipolar retina cells, here implemented with left

and right DAVIS, project excitatory connections to the

coincidence detector layer which encodes temporal co-

incidences amongpairs of interocular events. However,

coincidence neurons are also sensitive to false matches.

For instance, two different stimuli moving simultane-

ously but at different depths would erroneously be

perceived as a true target, thus leading to the encoding

of wrong disparities. Therefore, temporal information

is crucial but clearly not sufficient to correctly solve the

stereo-matching problem. This ambiguity is reduced

in the disparity layer by means of recurrent inhibition,

and excitatory and inhibitory projections from the co-

incidence layer, which results in a Winner-Takes-All

(WTA) mechanism that implements the matching con-

straints of cooperative algorithms (Mahowald, 1994b;

Marr and Poggio, 1976). Each coincidence and dis-

parity neuron is assigned a triplet of coordinates, a

horziontal and vertical cyclopean position (x , y) and
a disparity value (d), which determines the neuron

representation of a location in the 3D space. Therefore,

disparity spikes provide evidence for a potential target

in the correspondent 3D position.

Fig. 3: One layer of the SpikingNeuralNetwork: one epipolar

line for each retina projects to the corresponding layers of

coindcidence (C) and disparity detectors (D). Excitatory

(blue) and inhibitory (red) connections are shown. Adapted

from (Osswald et al., 2017).

2.5 Neuromorphic Hardware Implementation

The entire pipeline of visual information processing

was designed to be a scalable neuromorphic archi-

tecture. Here we built a proof of concept where the

field of view is restricted to one epipolar line of 32

cells for each retina, which narrows the coincidence

and disparity layers down to a two-dimensional 32×32

population (see simplified scheme in Fig. 3). Since

temporal coincidence detection is a key component of

our model, we carefully emulated and further opti-

mized the low power method exploited by biological

brains. We detect precise coincidence of spike events

by combining the mechanism of supra-linear, den-

dritic summation of synaptic events with slow and
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fast synaptic time constants. As in biological brains,

AMPA synaptic currents can boost the effect of slow

NMDA synapses when both synaptic inputs are close

in time (González, 2011). Coincidence detectors are

emulated on chip exploiting the nonlinear properties

of the dedicated analog synapse circuit block which

mimics the biological NMDA voltage-gating dynamics.

Specifically, each coincidence detector is connected

to one of the corresponding input retina cells via the

slow (NMDA-like) synapse and to the other one via the

fast (AMPA-like) synapse circuit block. An example

of coincidence detection emulated on chip is shown

in Fig. 4 This results in a more robust coincidence de-

tection mechanism, less sensitive to device mismatch,

which is a crucial feature of subthreshold mixed-signal

neuromorphic processors.

Fig. 4: Emulation of coincidence detection: recorded mem-

brane potential of a silicon neuron that receives two input

spike trains through AMPA-like and NMDA-like synaptic

circuits. The silicon neuron responds only to temporal coin-

cidences within a time window of 10 ms (first pair of input

spikes).

Fig. 5: Simulated stimuli: temporal image representation,

with black pixels representing more recent events (A); the-

oretically predicted output (ground-truth) of the disparity

layer given the input in A (B).

3 Results

3.1 Control Stimulus

Prior to validationwith a real-time scenario, herewe as-

sess the performance of the event-based neuromorphic

implementation of stereo-matching with a synthetic

ground-truth. Specifically, an input spike train gen-

erated on FPGA is used to simulate two input event

streams, which mimic two stimuli moving in oppo-

site directions at two different but constant disparities.

The correspondent temporal image representation is

shown in Fig. 5A. The correspondent ground truth of

stereo-matches is shown in Fig. 5B.

3.2 Stereo Matching

To test the network performance on the hardware setup,

we monitored the activity of the network across 100

presentations of the input stimuli (see Fig. 6). The

coincidence detectors successfully detect the temporal

matches, i.e. an action potential arises only when the

input events from the retina cells are coincident in

time (compare inserts A and B). However, coincidence

detectors still respond to false targets which would

correspond to stimuli moving at constant cyclopean

positions but across different depths. This ambiguity

is instead solved in the disparity layer.

In order to quantify the stereo-matching performance,

we computed the PCM (percentage of correct matches)

(Osswald et al., 2017) over windows of 100 ms, aver-

aged across trials. As shown in Fig. 7, the PCM of

disparity detectors (D) is larger than the one of co-

incidence detectors (C), suggesting that the WTA is

effectively reducing the number of false matches from

the coincidence to the disparity layer.

4 Discussion

Here we describe a proof of concept in hardware of

the cooperative network presented in (Osswald et al.,

2017). Thanks to the balance of feedforward excita-

tion/inhibition and recurrent inhibition, the disparity

detectors exhibit an average PCM that stays close to 1

and always above the PCM of coincidence detectors,

thus successfully reducing the number of falsematches.

Having tested the network dynamics with a synthetic

ground-truth, the next step for validating the stereo-

network architecture will be to stimulate the silicon

neurons with a real-time input stream from the neuro-

morphic sensors. Moreover, although not yet exploited

in this proof-of-concept implementation, the dual out-

put modality supported by the pre-processing element

(PEL) of the AER interface would allow optimizing

computational resources on the neuromorphic proces-
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Fig. 6: Emulation of one layer of the stereo network on DYNAP: mean firing rate across 100 trials of both coincidence (left

panel) and disparity (right panel) layer. Only input pair of events with ISI=0 (Interstimulus Spike Interval) give rise to an

action potential in the coincidence layer (compare the recorded membrane potential of two silicon neurons in inserts A and B).

Fig. 7: Percentage of Correct Matches (PCM) for the coinci-

dence layer (C) and the disparity layer (D): average measure

across 100 trials.

sor via multiplexing. Indeed, the parallel AER connec-

tion between the DYNAP and the FPGA supports both

input/output stream. Thus, by rerouting spikes from

the chip to the AER interface, it would be possible to

select the processing modality of the PEL, able to drive

an active sensory-processing system. Inspired by the

biological space-variant and asynchronous space-time

sampling, this approach could lead tomore effective be-

haviors of stereo vision in robotics, e.g. when having to

cope with constraint resources, such as computational

cost and power consumption.

5 Conclusion

We presented a mixed-signal neuromorphic architec-

ture for event-based stereo-vision. The proposed im-

plementation aims at fully leveraging the advantages

of brain-inspired parallel computation by interfacing

neuromorphic sensing and processing together. An

event-based digital interface was built to handle the

AER handshake between the silicon retina and the DY-

NAP chip while preserving the temporal information

of the input events streams. The long-term goal is to

include the finalized architecture as a brain-inspired

sensory building block of active stereo-vision system.
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