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One half of the Nobel Prize in physics for 2020 was awarded to
Roger Penrose for demonstrating that ‘black hole formation is
a robust prediction of the General Theory of Relativity’.
While it’s not my field, I do know a little about general
relativity; so I had a look at what I could find online. It
rapidly  became  clear  to  me  that  in  order  to  understand
Penroses’s work in detail, I would have to master a great deal
of mathematics – topology in particular – which is unfamiliar
to  me.  This  would  mean  giving  up  everything  else  for  a
substantial period of time and that just wouldn’t make sense.
So, despite knowing the basic equations of general relativity
(for  a  simple,  yet  reasonably  complete  introduction,  see
reference [1]), I just have to take the word of other people
that it all makes sense.

So what about relativistic quantum field theories, derived
from  the  Navier-Stokes  equations?  Well,  starting  with
Kraichnan, Wyld and Edwards in the early 1960s and leading up
to my own LET theory [2], there exists a moderately successful
class  of  statistical  theories  of  turbulence  which  are
essentially based on quantum field theory. Unfortunately, I
would  assume  that  many  (most?)  fluid  dynamicists  are  as
unfamiliar with the background to these as I am with the
methods of Penrose in demonstrating that general relativity
implies the existence of black holes. Although at least I hope
that I belong to the same ‘culture’ as Penrose, in the sense
that I appreciate the significance of what he has done and
also why he has done it.
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The question of how understandable (to turbulence researchers)
statistical theories should be, was raised in lecture notes
entitled ‘Problems and progress in the theory of turbulence’
[3] by Philip Saffman. In these he wrote down his list of the
properties  a  theory  should  have.  These  were  generally
unexceptionable and really quite obvious. Indeed, one should
perhaps bear in mind that a physicist would be very unlikely
to write down a similar list, essentially because they would
regard it all as being understood. The point that particularly
interests me is that the second item in his list, after ‘Clear
physical or engineering purpose’ is ‘Intelligibility’. It is
worth quoting exactly what he says about this.

‘Intelligibility means that it can be understood, appreciated
and applied by a competent scientist without years of study or
familiarity  with  the  jargon  and  techniques  of  a  narrow
speciality.’

Obviously, in view of what I wrote at the beginning of this
post, I have a certain amount of sympathy with this view. At
the same time, I feel that I should challenge it. The final
phrase, which I have emphasised, has a faint flavour of the
pejorative about it, particularly when taken in conjunction
with his other writings. But we are entitled to ask what he
means, by a ‘narrow speciality’.

His concern was with those theories of turbulence which are
applications of quantum field theory, a subject that made
great advances in the 1940s/50s. But quantum field theory was
not a ‘narrow speciality’ in the 1970s; and is even less so
today. It is a major discipline worldwide and, if we add in
statistical field theory in condensed matter physics, then the
activity  involved  would  dwarf  all  turbulence  research  by
orders of magnitude. Moreover, the theory in these areas is
closely linked to the experimental work. There is a vast, and
growing, body of work in these areas, so this cannot be seen
as a narrow or esoteric activity.



Presumably  then,  he  meant  simply  the  applications  to
turbulence.  For  Saffman  this  boiled  down  to  the  work  of
Kraichnan, so he does not give a balanced or scholarly view of
this field. Indeed, he does not cite any of the relevant
papers by Kraichnan but instead relies on the book by Leslie.
It  is  difficult  to  see  his  comments  generally  as  being
anything but an expression of frustration that there is an
activity going on which he does not understand, combined with
a degree of resentment because he felt that his own type of
work was somehow being belittled or patronised.

here are other parts of his lecture notes that I value, such
as his criticism of Kolmogorov’s 1962 ‘refined theory’; and
the general tone of the lectures is undoubtedly stimulating.
But although Philip Saffman is no longer here to speak for
himself,  I  still  think  that  his  views  about  fundamental
approaches to turbulence should be challenged, if only because
similar  views  seem  to  be  quite  widespread  today.  I  am
occasionally surprised by how glibly members of the turbulence
community are prepared to write off renormalization methods,
with phrases such as ‘everyone knows that Kraichnan’s theory
is wrong and no one bothers about it anymore’. Well life is so
much easier if you pass up on the challenges. But to such
people, I would address the question: what have you got to put
in its place?

In the mid-1970s, when Saffman was writing, the situation was
very different from that today. The basic idea of the LET
theory was put forward by me in 1974, incidentally offering a
fundamental reason for the failure of the Edwards theory and
other cognate theories, including Kraichnan’s. Since then the
LET theory has been developed and extensively computed and
compared to other theories. I have also published three books,
all intended to make such theories more accessible to non-
physicists. Two are on turbulence and one on renormalization
methods; and their titles can be found in the list of my
publications in this blog. So I would like to answer my own



question by saying that turbulence theories are intelligible
to fluid dynamicists, provided that they are open minded and
are prepared to make a bit of an effort. That’s what I would
like to say but I have to make one caveat. There are theories,
supposedly of turbulence, which are simply a relabelling of
text book equations from quantum field theory with variables
appropriate to turbulence. Yet such theories do not engage
with the existing body of work or explain how they solve
problems  that  others  encountered.  They  used  to  appear  in
obscure journals of the old Soviet Union, but now they appear
in the learned journals of the west. It appears that the
authors  do  not  understand  that  their  work  is  unsound  or
perhaps do not care. I intend to write on the subject of Fake
Theories (don’t know what put that idea in my head!) but as a
topic it presents its difficulties.

Lastly, for completeness, I should mention that there is a
class of theories based on the use of Lagrangian coordinates.
A recent development in this type of theory also presents a
decent and balanced review of other work in the field [4]. I
also intend to write about Lagrangian theories in a future
post.

[1] W. D. McComb. Dynamics and Relativity. Oxford University
Press, 1999.
[2] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor., 50:375501, 2017.
[3] P. G. Saffman. Problems and progress in the theory of
turbulence. In H. Fiedler, editor, Structure and Mechanisms of
Turbulence II, volume 76 of Lecture Notes in Physics, pages
273-306. Springer-Verlag, 1977.
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I recently saw the paper cited as [1] below, which for me is I
think the first of the 2021 papers. As the title suggests, it
presents  a  review  of  methods  of  measuring  the  turbulent
dissipation  rate.  It  contains  a  certain  amount  of  basic
theory, along the lines of expressions for the dissipation
rate, the Taylor dissipation surrogate, remarks about the role
of inertial transfer, dynamical equilibrium, and so on. But
there  is  no  attempt  at  a  statistical  theory  and  most
theoretical  attempts  at  explaining  the  dependence  of  the
dissipation rate $\varepsilon$ on the Taylor-Reynolds number
do not get a mention.

Nevertheless, the authors do cite a paper by my co-authors and
me, which presents an analytical theory of the dependence of
the  normalized  dissipation  $C_{\varepsilon}$,  which  is  the
dissipation rate divided by $U^3/L$, where $U$ is the root
mean square velocity and $L$ is the integral lengthscale [2].
They  say  that  we  `explained  that  the  decay  of  the
dimensionless dissipation with increasing Reynolds number was
because of the increase in the Taylor surrogate’. This is true
for forced, stationary turbulence, because we can keep the
rate of forcing (and hence the dissipation) constant while
decreasing the viscosity in order to increase the Reynolds
number.

However,  this  paper  says  so  much  more!  It  presents  an
analytical theory, based on the Karman-Howarth equation, in
which  dimensionless  structure  functions  are  expanded  in
inverse  powers  of  the  Reynolds  number.  The  resulting
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expression  is  given  by:  \begin{equation}C_{\varepsilon}=
C_{\varepsilon,\infty}+C/R_L  +  O(1/R^2_L),  \end{equation}
where $R_L$ is the integral scale Reynolds number. Direct
numerical simulation was used to obtain the coefficients as
$C=18.9  \pm  0.009$  and  $C_{\varepsilon,\infty}=
0.468\pm0.006$.  The  result  compared  to  other  numerical
investigations is shown in the figure below, which is taken
from Fig. 1 of [2], and where equation (44) of that reference
is the equation just given here.

 

 



It is worth emphasising that this result is asymptotically
exact in the limit of large Reynolds numbers. For low Reynolds
numbers, our DNS confirmed that the $1/R_L$ dependence was
correct to within experimental error. When this theory was
later applied to magnetohydrodynamic turbulence, it was found
necessary to include a term at order $1/R^2_L$ at low Reynolds
numbers [3]. In fact, a detailed argument was previously put
forward by us to the effect that the $1/R_L$ dependence was
exact for isotropic turbulence: see the supplemental material
to the paper cited as [4] below.

I should also emphasise that none of this is intended as a
criticism of Wang et al, which is a perfectly competent piece
of  work  of  its  general  type.  It  is  really  a  matter  of
emphasising the gulf between fluid dynamics and physics. For
instance,  it  would  be  very  unlikely  that  an  experimental
particle physicist would fail to see the point of a paper by a
theoretical particle physicist, even if they were unable to
follow the detailed derivations in it. This is because in
physics we all have the same education up to a certain level,
and even thereafter there is overlap and much in common. But
fluid dynamics is much less homogeneous than physics and this
leads  to  misunderstandings  based  very  largely  on  cultural
gaps. Those of us who belong to the very small number of
physicists working on turbulence have much cause to be aware
of this. I have posted about this before and I will do so soon
again!
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2015.
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In the preceding two posts, we have pointed out that the final
statement by Onsager in his 1949 paper [1] is, in the absence
of a proper limiting procedure, only a conjecture; and that
the infinite Reynolds number limit, as introduced by Batchelor
[2] and extended by Edwards [3], shows that it is incorrect.
We have also shown that it is not in accord with the way in
which turbulence is nowadays known to behave. In this post, we
consider  the  question  of  how  well  the  Batchelor-Edwards
picture of dissipation agrees with the experimental picture
and consider the nature of the equations of fluid motion.
Additionally, we consider the physical nature of the process
that we term ‘dissipation’.

A particular problem with Onsager’s paper is that it conflates
two  quite  distinct  situations.  These  are:  the  infinite
Reynolds number limit, on the one hand; and the breakdown of
the continuum limit, on the other. In order to distinguish
between these two, we have to distinguish between the two
kinds of Navier-Stokes equation (NSE). If we wish to take a
true  (in  the  mathematical  sense)  infinite  Reynold  number
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limit,  then  we  must  work  with  the  equations  of  continuum
mechanics.  If  we  want  to  consider  the  breakdown  of  the
continuum  limit,  then  we  must  consider  a  fluid  made  of
molecules, in which the equations of motion were derived by a
macroscopic  averaging  process.  I  have  touched  on  this
distinction in my post of 14 May 2020 and will develop it in
rather more detail here.

The  equations  of  fluid  motion,  as  they  are  normally
encountered  by  engineers  and  applied  mathematicians,  are
derived macroscopically; and rely on the concept of a fluid
continuum which is without structure. They express Newton’s
second law of motion as applied to the continuum and are based
on a linear approximation to the relation between the shear
stresses and corresponding rates of strain. Fortuitously, this
approximation applies to a wide class of fluids. They are also
based on the assumption of incompressibility which means that
the macroscopic fluid motions do not produce density changes.
Of  course,  sound  waves  will  travel  through  any  fluid,  so
strictly the incompressibility is only an approximation.

The NSE is expected to describe the macroscopic motion of any
Newtonian fluid. If we set the viscosity equal to zero, then
we have the Euler equation, which is taken to apply to an
ideal fluid. It then provides a relationship between velocity
and  pressure  for  fluid  motions  which  are  remote  from
boundaries. Combined with the concept of streamline flow, it
leads  to  the  Bernoulli  equation.  This  can  be  solved  for
practical problems by the use of ad hoc coefficients which
take effects such as viscosity into account. Also, the Euler
equation  can  be  combined  with  boundary  layer  theory  to
describe real fluid motions.

If we consider the Batchelor-Edwards infinite Reynolds number
limit [2,3], which locates the dissipation at $k=\infty$, then
this can only apply in the continuum mechanics picture just
outlined. What, then, is the use of such a limit? The answer
is that it is useful in any context where one’s theory is



based on the continuum model. In the case of Edwards, he
applied it to his self-consistent field theory of turbulence.
Of course, as we pointed out in the preceding post, this is
mathematically  equivalent  to  Kraichnan’s  use  of  scale-
invariance in testing his direct-interaction approximation.

Now let us turn to the microscopic derivation of the NSE. This
begins at the molecular level and one ends up by averaging
over volumes which are small compared to the flow volume but
large  enough  to  contain  very  large  numbers  of  molecules.
Evaluating such averages is seen as a limiting process and is
often referred to as the continuum limit.

It is worth quoting what Batchelor said (ibid page 5) after
discussing the possibility that small scale motions might not
satisfy the continuum limit, he went on: ‘However, the action
of  viscosity  is  to  suppress  strongly  the  small-scale
components  of  turbulence  and  we  shall  see  that  for  all
practical conditions the spectral distribution of energy dies
away effectively to zero long before length scales comparable
with the mean free path are reached. As a consequence, we can
ignore the molecular structure of the medium and regard it as
a continuous fluid.’

In my post on 14 May 2020, I quoted a calculation by Leslie
[4], making exactly the same point, but in a more quantitative
way. As an aside, I note that over the years I have heard many
speculations about singularities and near-singularities (sic),
but I have never heard of anyone making such speculations
actually doing a calculation to establish under just what
circumstances this pathological behaviour might be expected to
occur.  As  we  have  seen,  and  will  discuss  further  in  our
forthcoming paper [5], the practical onset of scale-invariance
is at quite a moderate Reynolds number.

We  will  conclude  by  considering  what  we  mean  by  ‘viscous
dissipation’. This is the rate at which the kinetic energy of
fluid motion is randomised at the molecular level, with the



result that the fluid heats up. Turbulent dissipation is of
course known to be very much larger, but the turbulent motions
are themselves dissipated by molecular motion and again the
fluid heats up. This is a two-stage process, with energy being
transferred through wavenumber until it is finally dissipated
by viscosity. As the Reynolds number increases, the volume of
wavenumber space also increases, such that a greater amount of
energy  can  be  accommodated,  and  this  leads  to  scale-
invariance, and to apparent independence of the coefficient of
viscosity. This absorption of energy may be seen as a quasi-
dissipation but the real dissipation still happens at the end
of the cascade! It would be really quite strange if this
limiting  process  led  to  a  situation  where  there  was  only
quasi-dissipation and the fluid no longer heated up. In other
words, if the Onsager view were to prevail over the Batchelor-
Edwards view.

[1] L. Onsager. Statistical Hydrodynamics. Nuovo Cim. Suppl.,
6:279, 1949.
[2] G. K. Batchelor. The theory of homogeneous turbulence.
Cambridge University Press, Cambridge, 2nd edition, 1971.
[3] S. F. Edwards. Turbulence in hydrodynamics and plasma
physics. In Proc. Int. Conf. on Plasma Physics, Trieste, page
595. IAEA, 1965.
[4] D. C. Leslie. Developments in the theory of turbulence.
Clarendon Press, Oxford, 1973.
[5] W. D. McComb and S. R. Yoffe. The inifinite Reynolds
number  limit  and  the  quasi-dissipative  anomaly.  (In
preparation:  2020)
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In the preceding post, we argued that the final statement by
Onsager in his 1949 paper [1] is, in the absence of a proper
limiting procedure, only a conjecture; and that the infinite
Reynolds number limit, as introduced by Batchelor [2] and
extended by Edwards [3], shows that it is incorrect. It is
indeed possible to formulate the limiting case such that the
detailed symmetry, which guarantees energy conservation by the
nonlinear term, is preserved globally. At this point we should
note that such extreme limits can only be taken in the context
of continuum mechanics, but not for a real physical fluid,
where  the  equation  of  motion  is  derived  from  statistical
mechanics. There is also the question: how does the turbulence
actually behave in the limit of infinite Reynolds numbers?

We may address these two points together by introducing the
flux $\Pi(\kappa)$ of energy through the mode with wavenumber
$\kappa$,  thus:  \begin{equation}\Pi(\kappa)  =
\int_\kappa^\infty \,dk\, T(k) = – \int_0^\kappa\, dk \, T(k),
\end{equation} where $T(k)$ is the energy transfer spectrum,
as  it  appears  in  the  Lin  equation,  and  we  have  assumed
stationarity for sake of simplicity.

As is well known, the effect of increasing the Reynolds number
is to increase the flux until it reaches a maximum value equal
to the rate of dissipation $\varepsilon$. We may write this
as:  \begin{equation}\Pi_{\mbox{max}}  \equiv  \varepsilon_T  =
\varepsilon.\end{equation}  Thereafter,  as  we  increase  the
Reynolds number, the flux cannot increase any further, but the
dissipation  wavenumber  keeps  increasing,  and  the  above
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relationship applies over an increasing range of wavenumbers.
This is known as scale-invariance and in effect defines the
inertial  range.  We  now  write  the  Edwards  result  for  the
infinite  Reynolds  number  limit  as:  \[T(k)  =  \varepsilon_W
\delta (k) -\varepsilon \delta (k-\infty) \equiv \varepsilon
\delta  (k)  -\varepsilon  \delta  (k-\infty),  \]  where
$\varepsilon_W  $  is  the  rate  of  doing  work  by  arbitrary
stirring  forces.  Then,  trivially,  substituting  this  into
equation (1) shows that it is mathematically equivalent to
scale-invariance.

For many years, it has been widely accepted among theorists
that the onset of scale-invariance is in effect the onset of
infinite Reynolds number behaviour. Both numerical simulations
and computations of statistical closures alike have shown the
asymptotic  behaviour  \[\lim_{R\rightarrow
\infty}\frac{\varepsilon_T}{\varepsilon} \rightarrow 1,\] from
below. Here we show the reciprocal of this behaviour (because
we were studying the dissipation at the time) where we plot
the  ratio  of  dissipation  to  maximum  flux  against  Taylor-
Reynolds number.



Ratio of dissipation to peak inertial transfer rate as
a function of Taylor-Reynolds number.

This figure is taken from the thesis [4] and will appear in a
paper now in preparation [5]. Clearly the ratio of dissipation
to maximum flux $\varepsilon_T$ approaches unity from above,
as  the  Reynolds  number  increases.  Evidently  from  about
$R_\lambda \sim 100$, scale-invariance is well established. In
the  next  post,  we  shall  discuss  the  nature  of  viscous
dissipation  and  distinguish  it  from  quasi-dissipation.

[1] L. Onsager. Statistical Hydrodynamics. Nuovo Cim. Suppl.,
6:279, 1949.
[2] G. K. Batchelor. The theory of homogeneous turbulence.
Cambridge University Press, Cambridge, 2nd edition, 1971.
[3] S. F. Edwards. Turbulence in hydrodynamics and plasma
physics. In Proc. Int. Conf. on Plasma Physics, Trieste, page
595. IAEA, 1965.
[4] S. R. Yoffe. Investigation of the transfer and dissipation
of energy in isotropic turbulence. PhD thesis, University of
Edinburgh, 2012.
[5] W. D. McComb and S. R. Yoffe. The inifinite Reynolds
number  limit  and  the  quasi-dissipative  anomaly.  (In
preparation:  2020)
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A  pioneering  paper  on  turbulence  by  Onsager,  which  was
published in 1949 [1], seems to have had a profound influence
on some aspects of the subject in later years. In particular,
he put forward the idea that as the turbulence was still
dissipative in the limit of infinite Reynolds numbers (or zero
viscosity)  it  implied  that  the  Euler  equation  must  be
dissipative  despite  its  lack  of  viscosity.  This  supposed
behaviour  has  come  to  be  referred  to  as  the  dissipation
anomaly.  This  view  of  matters  is  at  odds  with  that  of
Batchelor [2] and of Edwards [3]: for a discussion see my post
on 23 April 2020; but for the moment I will focus on the last
paragraph in [1].

The key point involved is that the inertial-transfer term
$T(k)$  of  the  Lin  equation  conserves  energy,  thus:
\[\int_0^\infty \,dk T(k) = \int_0^\infty \, dk \int_0^\infty
\, dj S(k,j) =0,\] because of the anti-symmetry of $S(k,j)$
under interchange of $k$ and $j$. Onsager uses the symbol
$Q(k,k’)$  for  this  quantity,  and  states  the  antisymmetric
property as his equation (17). Once he has set the viscosity
equal to zero, he concludes that the anti-symmetry of $S$ (or
his $Q$) no longer implies overall energy conservation. The
final sentence of his paper reads: ‘The detailed conservation
of equation (17) does not imply conservation of the total
energy if the number of steps in the cascade is infinite, as
expected (i.e. for zero viscosity), and the double sum of
$Q(k,k’)$  converges  only  conditionally.’  Note  that  the
parenthesis in italics has been added by me.

Now this is open to two immediate criticisms. First, setting
the viscosity equal to zero and replacing the NSE by the Euler
equation, is not the same thing as taking the limit of zero
viscosity, as done by Batchelor [2] and Edwards [3]. Secondly,
the idea of ‘steps in the cascade’, although intuitively very
attractive, is not sufficiently well-defined to be suitable
for quantitative purposes. In contrast, the limiting process
followed by Edwards is mathematically well defined and shows



that  in  the  limit  of  zero  viscosity,  the  NSE  possesses
dissipation in the form of a delta function at $k=\infty$.
Accordingly Onsager’s final statement is without justification
and, on the Batchelor-Edwards picture, is incorrect.

These  arguments  deal  with  extreme  situations,  but  a  more
moderate approach is to follow the second method of defining
the infinite-Reynolds number limit, which also arises out of
Batchelor’s work and which leads to the concept of scale-
invariance of the inertial flux. This approach was followed by
Kraichnan and many others; and, although differing in detail,
is mathematically equivalent to the Edwards formulation. We
will discuss this in the next post.

[1] L. Onsager. Statistical Hydrodynamics. Nuovo Cim. Suppl.,
6:279, 1949.
[2] G. K. Batchelor. The theory of homogeneous turbulence.
Cambridge University Press, Cambridge, 2nd edition, 1971.
[3] S. F. Edwards. Turbulence in hydrodynamics and plasma
physics. In Proc. Int. Conf. on Plasma Physics, Trieste, page
595. IAEA, 1965.

The  role  of  Gaussians  in
turbulence studies.
The role of Gaussians in turbulence studies.
The Gaussian, or normal, distribution plays a key part in
statistical field theory. This is partly because it is the
only functional which can be integrated and partly because
Gaussian  distributions  are  frequently  encountered  in
microscopic  physics  at,  or  near,  thermal  equilibrium.  The
latter is not the case in turbulence. Indeed the non-Gaussian
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nature  of  the  turbulence  probability  functional  (pdf)  is
inescapable. In the absence of a mean flow, the statistical
closure problem amounts to how one expresses the third-order
moment $\langle uuu \rangle$ in terms of the second-order
moment $\langle uu \rangle$. It is a matter of symmetry (so
that it can be determined by inspection) that the third-order
moment vanishes when evaluated against a Gaussian pdf. Of
course various turbulence pdfs are seen to be quite close to
Gaussian in form. This is particularly so for the distribution
of the velocity at a single point. But some deviation from
normality for a turbulence pdf is of the essence.

We will not discuss the properties of Gaussian forms here: a
pedagogic treatment can be found in Appendix B of my recent
book, which is cited below as reference [1]. Our aim is to
give a brief discussion of three ways in which Gaussians are
used in turbulence, one in Direct Numerical Simulation (DNS)
and two in statistical theory. From these considerations we
should be able to make a number of general points without
going through a lot of complicated theory. The one theoretical
aspect we should keep in mind, is the form of the solenoidal
Navier-Stokes equation in wavenumber space, which we can write
in a very symbolic form as: \[\left( \frac{\partial}{\partial
t} + \nu k^2\right) u_k = M_k u_ju_j + f_k .\] Here $k$ and
$j$ are combined wavenumbers and tensor indices, $\nu$ is the
kinematic viscosity, $M_k$ is the inertial transfer operator,
$u_k$ is the Fourier transform of the velocity field, and
$f_k$ is a stirring force, if required. A full discussion of
this equation can be found in reference [1]. As ever, repeated
indices are summed.

The two standard problems in DNS are (a) free decay; and (b)
forced, stationary turbulence. In both cases, we start with an
arbitrary (non-turbulent) velocity field, which is random and
has a multivariate normal (i.e. Gaussian) distribution. The
arbitrary initial energy spectrum $E(k,0)$ is chosen to be
confined  to  very  low  wavenumbers.  As  time  goes  on,  the



nonlinear coupling in the NSE generates a velocity field at
ever higher wavenumbers. In spectral terms, this is seen as
$E(k,t)$ spreads out to higher wavenumbers and the skewness $-
S$ rises from $S=0$ (corresponding to a Gaussian pdf) to $-
S\sim 0.5$, corresponding to developed turbulence. A brief
introduction to DNS may be found in Section 3.2 of reference
[2].

The theoretical approach began with quasi-normality in the
1950s, in which one assumes that the fourth-order moment can
be factorised as if Gaussian, in order to solve the second
equation  of  the  statistical  hierarchy  for  the  third-order
moment. This, as is well known, led to a catastrophe. The
first real advance was due to Kraichnan [3] and followed by
Wyld [4], in what is now known as renormalized perturbation
theory. In some ways, this is rather like the DNS, in that we
start with a random Gaussian velocity field with a prescribed
spectrum which is confined to low wavenumbers. Then, instead
of  stepping  this  forward  in  time  on  the  computer,  we
substitute it into the non-linear term of the NSE. Assigning a
book-keeping parameter $\lambda$ (where $\lambda = 1$) to the
nonlinear term, we expand out in powers of $\lambda$, with
coefficients in the series being calculated iteratively. This
is not strictly speaking perturbation theory, as $\lambda$ is
not small, but it resembles it, hence the name. Of course we
cannot truncate at low order in $\lambda$, so we must sum
infinite series, or rearrange into sub-series which can be
summed. This approach leads to remarkably successful results,
although there are still some questions to be answered.

The last approach was due to Edwards [5] and is the method of
the self-consistent field. In this theory, Edwards used the
NSE to derive a Liouville equation for the turbulence pdf. The
Gaussian pdf in this work is quite different from the other
two. It is chosen to give the correct value of the two-
velocity moment. Its role then is as a basis function for an
iterative solution of the Liouville equation as an operator-



product expansion about the Gaussian zero-order distribution.
Symmetry arguments play an important part in this work and if
you wish to pursue this point, you will find a discussion (and
an extension to two-time forms) in reference [6]. It is worth
noting two points. First, this is an expansion for the exact
pdf about a Gaussian and, as I remarked earlier, turbulence
pdfs can be quite close to Gaussian in form. Hence there is a
possibility of establishing a second-order truncation as a
rational  approximation.  Secondly,  the  statistical  closures
derived this way are cognate to Kraichnan’s closures which are
derived  by  very  different  methods.  These  points  should
encourage you to take a `glass full’ rather than a `glass
empty’ view of statistical turbulence theory!

[1]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
[2] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[3] R. H. Kraichnan. The structure of isotropic turbulence at
very high Reynolds numbers. J. Fluid Mech., 5:497-543, 1959.
[4] H. W. Wyld Jr. Formulation of the theory of turbulence in
an incompressible fluid. Ann. Phys, 14:143, 1961.
[5] S. F. Edwards. The statistical dynamics of homogeneous
turbulence. J. Fluid Mech., 18:239, 1964.
[6] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor., 50:375501, 2017.

Is  there  actually  a  single
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‘turbulence problem’?
Is there actually a single ‘turbulence problem’?
When I was preparing last week’s post, I consulted the Saffman
lectures in order to find an example of the culture clash
between theoretical physics and applied maths. In the process
I noticed quite a few points that I felt tempted to write
about  and  in  particular  that  old  perennial  question:  is
turbulence a single universal phenomenon? Or, does it depend
on  the  physical  situation  under  consideration  and  its
conditions of formation? Over the years this question has been
put numerous times by various people, both in discussions and
in writing, but never seems to lead anywhere. Saffman pointed
out  that  the  opposite  extreme  would  be  to  consider  each
situation  of  practical  importance  and  describe  it  to  the
required degree of detail. At the same time he conceded that
there was evidence for universality, but suggested that there
might be merit in some form of cataloguing and classifying of
flows.

Of course there has always been some degree of classification,
even just for pedagogic purposes. For instance, free shear
flows versus wall-bounded flows; but presumably Saffman was
thinking in terms of something more profound. So far as I
know, no such scheme exists; but, if it did, it might be
analogous to the idea of universality classes in the theory of
critical phenomena. Such phenomenon are characterised by the
way macroscopic observables, such as specific heat, magnetic
susceptibility or the correlation length, behave as a system
tends  to  the  critical  point.  They  either  diverge  (become
infinite) or go to zero. This behaviour is represented by a
power-law  dependence  on  the  reduced  temperature,  with  the
introduction of critical exponents which are either positive
or  negative,  according  to  the  observed  behaviour  at  the
critical point. If two different physical phenomena are found
to have the same values of their critical exponents, then they
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are said to be in the same universality class. This is of
course, a purely phenomenological approach, but it corresponds
to an underlying symmetry in the Hamiltonian of the system,
along with the dimensionality of the space. An introductory
account of this topic can be found in the book cited as
reference [1] below.

There is no doubt that many of the pioneers of turbulence
theory,  viz.  Taylor,  Kolmogorov,  Batchelor  and  Townsend,
thought in terms of a correspondence between turbulence and
statistical mechanics. As we have pointed out elsewhere (see
Section 12.5 of reference [2]), Batchelor wrote about ‘an
ultimate  statistical  state  of  the  turbulence’  that  would
follow from a ‘whole class of different initial conditions’.
As we have also pointed out (ibid), one problem with this is
the very great difference in the number of degrees of freedom
$N$ between the two. In effect, for canonical statistical
mechanics, $N$ is so large that fluctuations can effectively
be neglected and the average and instantaneous probability
distribution  functions  are  virtually  identical.  This  is
certainly not the case for turbulence. So perhaps one can only
expect a somewhat limited correspondence between the two. This
is not an argument for giving up the analogy. Merely a plea
for realism in employing it.

The  basic  idea  underpinning  the  statistical  picture  of
turbulence is that, as energy transfer proceeds from large
eddies to small, information is lost about the conditions of
their formation. Although many people prefer to think in terms
of real space and ‘eddies’, the idea of an energy cascade is
not well defined unless one works in wavenumber space, where
the Fourier modes are the degrees of freedom. So, strictly
speaking, one should express this in terms of transfer from
small wavenumber modes to those at large wavenumber, where
turbulent kinetic energy is converted into heat. This process
is in accordance with the Lin equation, whereas the Karman-
Howarth equation is entirely local and can tell us nothing



about it.

The scaling of spectra from a variety of flows on Kolmogorov
variables supports this picture and, even if there are results
that  do  not,  this  does  not  invalidate  the  correctness  of
Kolmogorov  scaling  for  certain  flows.  The  valid  (and
interesting) question then is: how do such flows differ from
those that do? A consideration of spatial symmetry may shed
some light on this.

Suppose, for a simple example, we consider turbulent shear
flow in the $x$-direction, between infinite parallel plates
situated at $y=\pm a$. The flows are homogeneous in the $z$-
direction, while the mean velocity $U$ depends on $y$. If the
plates  are  at  rest,  then  $U(y)$  is  symmetric  under  the
interchange of $y$ and $-y$. However, if the plates are in
relative motion (Couette flow) then $U(y)$ is antisymmetric
under this interchange. The first case is an approximation to
flow in a plane duct (or even, with some adjustment, to pipe
flow)  and  it  is  well  known  that  Kolmogorov  scaling  is
observed. What happens in the Couette case, I don’t know. But
it would be interesting to find out. The appropriate tool for
cataloguing flows in this way is to transform to centroid and
difference coordinates, and make an expansion in the centroid
coordinate in Taylor series. Well, it’s an idea!

Lastly, for the theoretical physicist the problem posed by the
Navier-Stokes  equation  in  wavenumber  space,  and  driven  by
random noise, is a well-posed problem. It should be noted that
the pioneers in this area were careful to set it up such that
it could satisfy the Kolmogorov conditions for an inertial
range, and in doing this they were guided by the statistical
treatment  of  other  dynamical  problems,  such  as  Brownian
motion. Nowadays it is seen as belonging to a wide class of
driven diffusion equations with particular relevance to soft
condensed matter. Recently we have even found the surprising
result that it can undergo a phase transition at low Reynolds
numbers [3], so there is much still to understand about this



stochastic dynamical system.

[1] W. D. McComb. Renormalization Methods. Oxford University
Press, 2004.
[2]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
[3] W. D. McComb, M. F. Linkmann, A. Berera, S. R. Yoffe, and
B. Jankauskas. Self-organization and transition to turbulence
in isotropic fluid motion driven by negative damping at low
wavenumbers. J. Phys. A Math. Theor., 48:25FT01, 2015.

Here’s to mathematics and may
it never be of use to anyone!
Here’s to mathematics and may it never be of use to anyone!

When I was a student, I read that mathematicians at conference
dinners would drink a toast along the lines of the title of
this piece. As an idealistic young man, I was quite shocked by
this; and thought it very arrogant. Apart from anything else,
it seemed to sell the entire discipline of applied maths very
short indeed. I think that it took me until I was in my middle
years to understand and indeed empathise with this statement.

In fact it can be seen as an indicator of what I call the
culture of a subject. By `culture’ I mean something to do with
a sense of what is the right way to think about physical
problems, such as turbulence, or to attempt to solve them. The
conviction that engineers, mathematicians and physicists have
different  cultures  has  grown  on  me  over  the  years  (and
remember  that  I  have  been  both  mechanical  engineer  and
theoretical physicist at different stages of my career).
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A  minor  incident  which  helped  my  understanding  of  the
mathematician’s  attitude  (or  culture)  happened  when  a
colleague and I invigilated a class exam. A class from the
maths department was being examined at the same time and their
subject was something like `Functional analysis and Fourier
analysis’. Well, I thought, this is something that I know a
bit about. So I picked up a copy of the exam paper and was
surprised to find that all the questions were to do with
proving  existence  or  uniqueness;  not,  as  I  would  have
expected, to actually work out some specific functional form
when given certain initial conditions.

Another hint came at a workshop on turbulence at the Max
Planck Institute for Mathematics in Bonn, sometime in the
mid-1980s. All the speakers were theoretical physicists but a
number of the resident mathematicians attended. When the first
speaker  had  finished  outlining  his  theory,  one  of  the
mathematicians said: `I would not dream of presenting such a
very long calculation to an audience in one lecture.’ That was
a bit of a bummer as we on the physics side had thought that
it  was  a  theory,  not  a  calculation.  This  chap,  a  rather
flamboyant American, had his comeuppance later, when we all
went to lunch at a pizza restaurant and he attempted to order
with Italian intonations and theatrical gestures. The waiter
was having none of it and pretended not to understand. So the
flamboyant one had to calm down and order like the rest of us.

These  and  other  encounters  led  me  to  understand  that  for
mathematicians  it  is  essential  to  be  able  to  study  those
aspects  of  the  subject  which  interest  them,  without
constraints being imposed for any reason. And so it is for
physics. For pure physics it is essential to be able to think
the  unthinkable  (if  necessary)  and  pursue  curiosity  based
research. In passing, I should note that much physics research
nowadays  is  really  to  be  classed  as  applied  physics.  For
instance, condensed matter physics, with its bedrock problems
unsolved, seems to me to be very much materials science.



Naturally,  it  is  in  the  subject  of  turbulence  that  these
different  cultures  may  clash.  Theoretical  physicists  can
publish in topics like particle theory, critical phenomena,
cosmology  or  plasma  physics,  without  having  a  mechanical
engineer or applied mathematician refereeing the papers that
they submit to journals. In turbulence, as I know from endless
personal  experience,  this  is  not  so.  Of  course  this  is
exacerbated by the shortage of theorists working in the field,
and  even  then  there  can  be  problems  because  of  different
agendas and an inability to put self-interest aside. I shall
return to that particular aspect in a future blog, but for the
moment I am concerned with the different cultures. Various
instances can be found in the well-known lectures of Philip
Saffman [1].

These lectures, and a previous set, are opinionated and quite
stimulating to read; not least, in my case, because I so often
disagree with them. In reference [1] on page 294, Saffman has
a section on statistical methods. He begins with the general
statistical  theories,  as  pioneered  by  Kraichnan  and  the
following quotation is of interest:

`The techniques of the statistical theory are supposed to be
rigorous and analytical. They are certainly impressive with
their talk of Greens (sic) functions, propagators, diagrams,
Galilean  invariance,  and  other  jargon  of  physics  and
probability  theory,  and  the  resulting  integro-differential
equations are sufficiently complicated to suspend belief, but
in fact the approximations are just as ad hoc and lacking in
mathematical  justification  as  those  of  Reynolds  stress
modelling.  Also,  the  absence  of  a  physical  basis  is
unfortunately  usually  combined  with  the  obscurity  of  the
details.’

In  this  Saffman  certainly  made  his  position  clear.  It
perfectly underlines the existence of a culture clash. In fact
a detailed deconstruction of that quotation (which would not
be entirely unsympathetic to Saffman) could be of interest and



I might return to that for a blog on its own later on.
However, to bring this to a point, he ends up quoting Leslie
(1973) and Bradshaw (1976) on the significance of Kraichnan’s
work  but  does  not  support  his  comments  (which  are  rather
confused) with any actual references to Kraichnan.

One point I should mention, is that he says that Kraichnan’s
theory `can postdict the Kolmogorov constant, which may not
exist because of intermittency, …’ In later years, at the
NASA-ICASE workshop on turbulence in 1984, we discussed his
use of the word `postdict’ and he conceded that if a theory
were genuinely from first principles it would be appropriate
to say predict. Of course the question arises, was Kraichnan’s
theory genuinely from first principles? And that is where
Saffman’s criticisms really have some force. Again, this is
something that I shall return to in later posts.

[1] P. G. Saffman. Problems and progress in the theory of
turbulence. In H. Fiedler, editor, Structure and Mechanisms of
Turbulence II, volume 76 of Lecture Notes in Physics, pages
273-306. Springer-Verlag, 1977.

Operational  Large-Eddy
Simulation.
Operational Large-Eddy Simulation.
When I was visiting TU Delft in 1997, I stayed with my wife
and daughter in the Hague, where we rented an apartment from
one of the professors at Delft. He and his wife occupied the
penthouse above us. They had originally bought the second
apartment so that their teenage daughters could combine a
degree of freedom with parental oversight. By the time we
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came, their girls had long since left home and they were
renting it out to visiting academics.

My landlord (I’ll call him Brian, because that was his name)
used to give me a lift into the campus in the mornings and
this could be a nerve-racking experience. His car had once
belonged  to  Queen  Juliana  and  was  a  gigantic  Cadillac  (I
think) that was fitted with every conceivable luxury. But
Brian was rather a small man and had to drive while peering
through the steering wheel, so that when he swept out of the
apartment block and turned into the narrow street beside a
canal, there seemed to me to be a good chance that we would
end up in the water.

However, one day he took me to see his experimental rigs.
These were in a vast hangar and were heavily insulated, so
that to me they just looked like large shapeless lumps wrapped
in something like kitchen foil. I was unable to muster much
enthusiasm and Brian told me that I `had no soul’! On a later
occasion, he remarked tartly that he didn’t see the point of
turbulence theory as he would just use the computer if he
needed to take turbulence into account. That, I thought, would
come  as  a  surprise  to  those  engineers  whose  field  is
turbulence modelling, but his remark stayed with me and I
wondered whether one actually could use the computer in some
operational way to model turbulence.

In  Edinburgh,  at  that  time,  we  were  studying  large-eddy
simulation of the energy spectrum in the context of RG, and
using DNS to test ideas. A typical approach was to run a fully
resolved simulation (say with $N=256^3$ mesh points), with
maximum wavenumber $K_{max} =1.2 k_d$, and compare this with a
low-wavemumber part simulation, cut off at $k=K_C$, having in
this case $N=64^3$. As energy spectra invariably showed an
upturn  near  the  maximum  wavenumber  (exaggerated  on  a  log
scale), it seemed likely that an unresolved simulation would
show a marked upturn and that removing this could be made the
basis  of  a  feedback  mechanism  to  produce  the  `correct



spectrum’  in  which  the  velocity  field  was  reduced
proportionally.

When  back  in  Edinburgh,  I  discussed  this  with  one  of  my
students, who was working on DNS at the time. In [1] you can
see how Alistair turned these vague ideas into an algorithm
that  worked.  Referring  to  the  figure  below,  this  shows  a
spectrum  for  $N=64^3$,  where  we  introduce  the  wavenumber
$k_{upturn}$ to mark the point where the unresolved spectrum
starts to turn up. That is the uncorrected spectrum and its
derivative is used to identify the position of $k_{upturn}$.

 

An energy spectrum with an upturn (crosses), its
derivative (triangles) and a schematic indication
of what the corrected spectrum should look like
after the application of the feedback procedure
(dashed  curve).  The  vertical  solid  and  dash-
dotted  lines  indicate  $k_{upturn}$  and  $K_C$
respectively.



In  the  second  figure,  we  show  a  comparison  between  the
corrected and uncorrected spectra for $N=64^3$, along with the
spectrum for the resolved simulation with $N=256^3$. It is
clear that the compensated spectrum agrees well with the fully
resolved one over their common range of wavenumbers.

 

Average  evolved  energy  spectra,  showing  the
results  from  resolved  $256^3$  simulation
(circles), the unresolved $64^3$ simulation and
the compensated $64^3$ simulation (diamonds).

For further details you should consult reference [1]. However,
we can make a two specific points here.

First, the ratio $k_{upturn}/K_C$ is plotted as a function of
time in the paper. It was later pointed out to me that this is
probably a good measure of eddy noise and that it would be
interesting to know the form of its pdf. Unfortunately we did
not think of measuring that at the time and anyone who is
interested  in  subgrid  modelling  might  find  it  helpful  to



rectify this omission. Another point in passing is that Fig. 2
in reference [1] shows a very rapid burst of activity at one
stage and somehow this underlines just how little we really
understand about the NSE as a dynamical system.

Secondly, when the subgrid drain due to the feedback loop is
interpreted as a subgrid eddy viscosity, this agrees closely
with the usual phenomenological form based on the truncated
transfer spectrum and the corresponding energy spectrum. See
Fig. 5 in reference [1].

Of course one would like to apply such a method to shear
flows, but there the picture is complicated by the fact that
lack of homogeneity means that energy can flow due to inertial
transfer in space as well as in wavenumber. One could study
this  by  separating  the  two  effects,  using  centroid  and
relative coordinates. If spatial transfer were mainly due to
large eddies, then a practical separation might be achieved.

[1] A. J. Young and W. D. McComb. Effective viscosity due to
local turbulence interactions near the cutoff wavenumber in a
constrained  numerical  simulation.  J.  Phys.  A,  33:133-139,
2000.

Peer Review in Wonderland
Peer Review in Wonderland
In 1974 I completed a task which had begun during my PhD days,
and found a way of rendering the Edwards statistical closure
compatible with the Kolmogorov spectrum. The basic idea was
that the entire transfer spectrum $T(k)$ acted as a sink of
energy at low wavenumbers and a source of energy at high
wavenumbers.  It  could  not,  as  in  the  Edwards  theory,  be
divided into separate output and input terms that were valid
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at all $k$. This division, which is present in other theories,
including DIA, would have seemed natural at the time, as it is
characteristic of many equations of mathematical physics, such
as the Boltzmann equation, the Pauli master equation, and the
Chapman-Kolmogorov  equation.  But  these  equations  are  for
Markov processes and turbulence transport in wavenumber is
most emphatically not Markovian.

My  key  assumption  was  that  the  turbulence  response  was
determined by a local (in wavenumber) energy balance and I
called it the Local Energy Transfer (or LET) theory. It was
limited to the single-time, stationary formulation, and a few
years later I published a two-time extension of the theory
which could be compared to Kraichnan’s DIA. This analysis was
somewhat heuristic and I have written in a previous post (see
post for 16 July 2020) about its inadequacies and how they
were cured over the years by phenomenological and heuristic
methods. However, my long term ambition was to follow the
self-consistent  field  methods  of  Sam  Edwards  and  actually
derive the LET for the two-time case from first principles.

It is a well-known truth that, as one gets older, it becomes
more difficult to do mathematics. I’m not sure why this should
be, but certainly as the years went on I was happy to entrust
the detailed derivations to my students. Nevertheless, once I
retired I felt that this was the moment to try. I had no
commitments, apart from the visits to be made as part of my
Leverhulme travel fellowship, so I could proceed at a glacial
pace to try to work out a theory. The result was a half-baked
theory which I published in 2009, two and a half years after
retirement. A lot more time passed, and in 2017 I published a
paper  which,  although  in  some  respects  still  a  work  in
progress, does amount to a first-principles derivation of the
LET. It is also a concise review of the topic and one of my
colleagues said that I should have published it as a review
article, in which case I would have escaped the hassle and
also been paid some money. Well, if I had escaped the hassle,



I wouldn’t have had anything to write about in this post!

The first lot of hassle arose when I submitted it to JFM. This
is  where  Sam  published  his  1964  paper  and  I  thought  it
appropriate to do the same. But the JFM alas is not what it
was when Sam published there nor indeed what it was over the
years that I published a number of papers in it. Indeed, if
memory  serves,  one  of  the  referees  said  something  to  the
effect that I had had more than my share of JFM papers and
that appeared to be his main reason for rejection. For the
moment I will pass over this episode. To do it justice I would
have to publish the entire correspondence online. Whether or
not  I  do  that,  there  are  some  points  to  be  made  about
Lagrangian versus Eulerian theories, so I will return to that
topic in a later post.

The next step was that I rewrote the paper and submitted it to
JPA [1], where it ultimately appeared. At the first hurdle
there was the usual lukewarm result and, as JPA is a staff-
edited journal, my manuscript was sent off to a member of the
editorial board (EBM) for a decision. In passing, I should say
that,  while  I  also  think  that  the  time  for  anonymous
refereeing  has  passed,  I  am  strongly  opposed  to  an  EBM
sheltering behind anonymity when giving a decision. It is in,
my view, an impropriety.

Of course, it isn’t necessarily very difficult to figure out
who your anonymous EBM is; and naturally his field of interest
as well. In this case the EBM made a few vague remarks which
indicated that he had probably not even troubled to read the
paper. Then he said something like: `I should have thought
that  a  theory  to  explain  the  anomalous  exponents  of  the
higher-order moments was a more worthy problem.’ That was
apparently  his  grounds  for  rejecting  the  paper.  I  then
appealed to the Editor-in-Chief, who made a careful assessment
of the situation which was reflected in his detailed written
statement in favour of publishing the manuscript. This was a
scholarly decision which was fully justified by the subsequent



interest  in  the  paper.  Within  days  of  the  paper  being
published, it had been downloaded several hundred times, and
at time of writing the total number of downloads is over
twelve hundred. That is a very large number of downloads when
compared to recent papers on turbulence in JPA and perhaps
when compared to any papers on turbulence.

So once again, we find ourselves in the Alice in Wonderland
situation that is quite common in turbulence refereeing, where
the normal rules don’t seem to apply. The failing of my LET
theory,  so  far  as  the  EBM  was  concerned,  is  that  it  is
compatible with the Kolmogorov spectrum and hence possibly
incompatible with the existence of his particular problem.
With regard to anomalous exponents, recent analysis using a
standard  technique  of  experimental  physics  to  account  for
systematic error, indicates that this may be the main cause of
so-called anomalous exponents [2]. I shall have more to say on
this particular topic in a later post.

[1] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor., 50:375501, 2017.
[2] W. D. McComb, S. R. Yoffe, M. F. Linkmann, and A. Berera.
Spectral analysis of structure functions and their scaling
exponents  in  forced  isotropic  turbulence.  Phys.  Rev.  E,
90:053010, 2014.
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Renormalization  Group  (RG)
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for turbulence: 2
Formulation of Renormalization Group (RG) for turbulence: 2
In last week’s post, we recognised that the basic step of
averaging  over  high-frequency  modes  was  impossible  in
principle  for  a  classical,  deterministic  problem  such  as
turbulence.  Curiously  enough,  for  many  years  it  has  been
recognized in the analogous subgrid modelling problem that a
conditional  average  is  required;  and  that  this  must  be
evaluated approximately. But even then it has not apparently
been realised that the formulation of the average must also be
approximate. As for theoretical physicists, they have long
forgotten that Wilson pointed out the need for a conditional
average in RG, and that it is evaded in their field by working
with Gaussian distributions, which render it trivial. So one
still sees the occasional pointless paper claiming to be a
theory of turbulence by people who are unaware of the work of
Forster et al as mentioned in my previous post.

During the second half of the 1980s, I was writing my first
book on turbulence and simultaneously trying to figure out
what was wrong with my iterative averaging form of RG. By the
end of that decade I had sent off my MS to the publishers and
could concentrate on the problems of RG. Early in 1990 I
realised that the average over the $u^+$ could not be simply a
filtered average if $u^-$ was to be held constant. Working
closely with my student Alex Watt, I came up with the two-
field  theory  to  evaluate  the  conditional  average
approximately; and this produced a considerable improvement by
reducing the dependence on the choice of spatial rescaling
factor [1]. Early in 1991, when I returned from the US where I
had  visited  MSRI,  Berkeley,  with  a  side  visit  to  the
Turbulence Centre at Stanford, we began work on a formulation
of the conditional average, in which we were joined by another
of my students, Bill Roberts. Some questions had arisen during
my trip to the States and that lent additional impetus to this

https://blogs.ed.ac.uk/physics-of-turbulence/2020/10/01/formulation-of-renormalization-group-rg-for-turbulence-2/


work. If memory serves, the key realisation that a conditional
average  of  the  type  we  were  using  was  impossible  for  a
macroscopic deterministic system was due to Alex and Bill; and
arose  when  they  were  discussing  this  by  themselves.  This
galvanised  our  approach  and  this  work  was  published  as
reference [2].

Although it defies chronology, we will discuss this theory
first. Consider a set of realizations $\{u(k,t)\}$, with their
low-$k$ parts clustering around one particular member of the
set $v^-(k,t)$, such that \[u^-(k,t)=v^-(k,t) + \phi^-(k,t),\]
where $\phi^-$ is the control parameter for the conditional
average $\langle \dots \rangle_c$ and is chosen to satisfy
\[\langle  \phi^-  \rangle_c  =  0  \qquad  \mbox{and}  \qquad
\langle u^- \rangle_c = v^-.\] In principle bounds on $\phi^-$
can be determined from a predictability study of the NSE, but
clearly the more chaotic it is, the smaller is $\phi^-$, and
of  course  when  the  conditional  average  is  of  modes  with
asymptotic freedom, $\phi^- = 0$.

The two-field theory was put forward in [1] and the essential
step was to write the high-$k$ modes in terms of a new field
$w^+$, thus \[u^+ = w^+ + \Delta^+.\] Here $w^+$ is of the
same general type as $u^+$ but is not coupled to $u^-$. We
identified a form for $\Delta^+$ by making an expansion of the
velocity field in Taylor series in wavenumber about $k_0$. We
tested the theory by predicting a value for $\alpha$, the pre-
factor in the Kolmogorov spectrum and found this to be much
less sensitive to the value of the bandwidth parameter. This
theory involved two plausible approximations and these were
later subsumed into a consistent perturbation expansion in
powers of the local (in wavenumber) Reynolds number, along
with  the  expansion  of  the  chaotic  velocity  field  being
replaced by an equivalent expansion of the covariance. The
current situation is that we predict $\alpha = 1.62 \pm 0.05$
over the range $0.2 \leq \eta \leq 0.6$ of the bandwidth
parameter. Evidently this breaks down for $\eta \leq 0.2$ as



the band is so small that integrals are dominated by behaviour
near the lower cut-off wavenumber; while for $\eta \geq 0.6$
the breakdown is due to the inadequacy of the first-order
truncation of the Taylor series for a large bandwidth.

Fraction  of  energy  (full  line)  and  dissipation
(dashed line) lost due to truncation at a specific
wavenumber. This figure is from reference [4].

 

 

In carrying out this analysis, we eliminate modes starting
from a maximum value of $k=k_0$ and end up with the onset of
scale-invariance  at  a  fixed-point  wavenumber  which  is  a
fraction of $k_0$. This fixed point is the top of the inertial
range of wavenumbers and, although this is not a precisely
defined wavenumber, experimentalists have traditionally taken
it  to  be  $0.1  k_d  -0.2k_d$,  where  $k_d$is  the  Kolmogorov
wavenumber. If we take $k_0 = 1.6 k_d$ (see the figure which



is taken from reference [4]) and consider the case $\eta =
0.5$, where the fixed point occurs at the fourth iteration, we
find the numerical value of the fixed-point wavenumber is
$k_{\ast} = (0.5)^4 1.6k_d = 0.1k_d$, in pretty good agreement
with the experimental picture.

To  sum  up,  this  method  seems  to  represent  the  inertial
transfer of energy rather well. But, as it stands, if offers
nothing  on  the  phase-coupling  effects  in  the  momentum
equations  which  are  usually  referred  to  as  eddy  noise.

[1]  W.  D.  McComb  and  A.  G.  Watt.  Conditional  averaging
procedure for the elimination of the small-scale modes from
incompressible-fluid  turbulence  at  high  Reynolds  numbers.
Phys. Rev. Lett., 65(26):3281-3284, 1990.
[2] W. D. McComb, W. Roberts, and A. G. Watt. Conditional-
averaging  procedure  for  problems  with  mode-mode  coupling.
Phys. Rev. A, 45(6):3507-3515, 1992.
[3]  W.  D.  McComb  and  A.  G.  Watt.  Two-field  theory  of
incompressible-fluid  turbulence.  Phys.  Rev.  A,
46(8):4797-4812,  1992.
[4] W. D. McComb, A. Hunter, and C. Johnston. Conditional
mode-elimination  and  the  subgrid-modelling  problem  for
isotropic turbulence. Phys. Fluids, 13:2030, 2001.
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Formulation of Renormalization Group (RG) for turbulence: 1

In my posts of 30 April and 7 May, I discussed the relevance
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of  field-theoretic  methods  (and  particularly  RG)  to  the
Navier-Stokes equation (NSE). Here I want to deal with some
specific  points  and  in  the  process  highlight  the  snags
involved  in  going  from  microscopic  quantum  randomness  to
macroscopic deterministic chaos.

The  application  of  the  dynamic  RG  algorithm  to  randomly
stirred fluid motion was pioneered by Forster et al (FNS) [1]
and  what  is  essentially  their  algorithm  (albeit  in  our
notation) may be stated as follows.

Filter the velocity field $u(k,t)$ into $u^-(k,t)$ on $0\leq k
\leq k_1$ and $u^+(k,t)$ on $k_1\leq k \leq k_0$. Note that we
introduce $\nu_0$ as the notation for the kinematic viscosity,
thus  anticipating  the  subsequent  normalization.  The  RG
algorithm then consists of two steps.

1. Solve the NSE on $k_1 \leq k \leq k_0$. Use that solution
to find the mean effect of the high-$k$ modes and substitute
it into the NSE on $0 \leq k \leq k_1$. This results in an
increment to the viscosity $\nu_0 \rightarrow \nu_1 = \nu_0 +
\delta \nu_0$.

2. Rescale the basic variables so that the NSE on $0 \leq k
\leq k_1$ looks similar to the original NSE on $0 \leq k \leq
k_0$.

These steps are repeated for $k_2 < k_1$, $k_3 < k-2$, and so
on;  until  a  fixed  point  which  defines  the  renormalized
viscosity  is  reached.  The  general  idea  is  illustrated
schematically  in  the  figure.

 



Sketch  illustrating  the  choice  of  wavenumber
bands for Gaussian perturbation theory at small
wavenumbers and the choice of bands for recursive
RG at large wavenumbers.

Two approaches are illustrated in the figure. First, we have
the theory of FNS [1], in which a stirring force with Gaussian
statistics is specified and an ultraviolet cut-off wavenumber
$k_0 =\Lambda$ is chosen to be small enough to exclude the
effects of the cascade. This means that this is not a theory
of turbulence and the authors make that fact clear in their
title. More recent workers in the field have not been so
scrupulous. While FNS do obtain a fixed point, this is at
$k=0$, which is a trivial fixed point analogous to the high-
temperature fixed point in critical phenomena.

The  first  version  of  my  iterative-averaging  theory  was
developed over the period 1982-86 and is summarised in [2].
Here the ultraviolet cutoff is chosen to be $k_0=k_max$, such
that the turbulence dissipation is approximately captured by
the formulation, thus:\[\varepsilon \simeq \int^{k_{max}}_0 \,
2\nu_0 k^2 E(k) \,dk,\] where $E(k)$ is the energy spectrum
[2]. The wavenumber bands are introduced through $k_1 = h



k_0$, where $h$ is the spatial rescaling factor, such that $0
\leq h \leq 1$, and the bandwidth is given by $\eta = 1-h$. In
this approach the stirring forces are chosen to be peaked near
the origin and are specified by their rate of doing work on
the fluid. The RG iteration does not involve them in any way
as it reaches a fixed point which corresponds to the top of
the inertial range.

It is a cardinal principle of RG that the final result should
not depend on the arbitrary parameters of the transformation.
In the case of iterative averaging, the fixed point effective
viscosity was found to be independent the choice of value
$\nu_0$, over quite a wide range. However, there was some
dependence on the choice of $h$ and this was a signal that
something was wrong.

The problem lay with the averaging. To simply filter and then
average over the $u^+$ means that we are treating the $u^-$
and $u^+$ as independent variables. In the case of Gaussian
variables, as considered by FNS, they are independent. But for
the  deterministic  solutions  of  the  macroscopic  NSE,  they
cannot  be  independent  variables.  In  fact,  it  is  not  even
possible to formulate a rigorous conditional average.

This is easily seen (although it took many years to see it!).
The $u^-$ and the $u^+$ each consists of a filter function and
a Fourier transform operating on the identical $u(x,t)$. It is
only the latter which is averaged. So if we average one, we
average the other.
In order to get round this difficulty, we have to formulate
the conditional average as an approximation and exploit the
underlying idea of deterministic chaos. We shall discuss this
in the next post.

[1]  D.  Forster,  D.  R.  Nelson,  and  M.  J.  Stephen.  Large-
distance and long-time properties of a randomly stirred fluid.
Phys. Rev. A, 16(2):732-749, 1977.
[2] W. D. McComb. Application of Renormalization Group methods



to  the  subgrid  modelling  problem.  In  U.  Schumann  and  R.
Friedrich,  editors,  Direct  and  Large  Eddy  Simulation  of
Turbulence, pages 67{81. Vieweg, 1986. 25.
[3] W. D. McComb. Theory of turbulence. Rep. Prog. Phys.,
58:1117{1206, 1995.
[4]  W.  D.  McComb.  Asymptotic  freedom,  non-Gaussian
perturbation theory, and the application of renormalization
group  theory  to  isotropic  turbulence.  Phys.  Rev.  E,
73:26303-26307,  2006.

Reynolds  averaging  re-
formulated.
Reynolds averaging re-formulated.
At  the  beginning  of  the  1980s  I  was  still  involved  in
experimental work on drag reduction; while, on the theoretical
side, I had begun numerical evaluation of the LET theory. One
day I went into the lab to help a student who was having
problems with his laser anemometer. In those days we used a
digital  voltmeter  to  obtain  the  mean  velocity  and  an  rms
voltmeter to obtain (you’ve guessed it!) the rms velocity.
Actually at that stage we had begun recording the anemometer
output  voltage  and  taking  it  away  for  A/D  conversion  and
subsequent processing on a computer. But we still used the
voltmeters for setting things up, and essentially the rule of
thumb was to turn up the value of the time constant until the
reading became steady.

It was while my student was playing with these things, that I
started  thinking  that  it  was  Reynolds’s  introduction  of
averaging which had created the closure problem, and (this is
very profound!) if we didn’t average then we wouldn’t have
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that problem. So how would it be if we averaged over a very
short time? Would we have a small version of the closure
problem? One perhaps that would be more easily solved, and
then one could average the resulting smoothed system over a
slightly longer time; and so on. I began to picture replacing
Reynolds averaging with a series of smoothing operations, over
progressively  longer  times,  and  with  some  approximate
calculation at each stage. So one might envisage replacing the
Reynolds equation with a form in which the Reynolds stresses
did not occur as such, but were represented by a constitutive
relationship derived during the preceding iterations plus the
unaveraged portion of the nonlinear term.

I began working on this idea and ultimately it was published
as reference [1]. What I want to do here is make a couple of
general points about this analysis, but first I will explain
the basic idea. Suppose we have a quasi-steady mean flow, in
which external conditions (e.g. applied pressure gradients,
boundary conditions) vary with time over scales which are long
with respect to the scales of the turbulent energy transfer
processes.  Then  we  may  define  the  mean  velocity  as:
\begin{equation}\overline{U(t)}  =  \frac{1}{2T}\int_{-T}^{T}\,
U(t+s)\,ds,\end{equation} where $2T$ is large enough to smooth
out  the  turbulent  fluctuations,  but  shorter  than  the
timescales of external variations. Of course, if the mean flow
is  actually  steady,  then  we  can  take  the  limit  where
$T\rightarrow \infty$ in the usual way. In either case, we may
obtain the fluctuating velocity $u$ in the usual way, thus:
\[u=U-\overline{U},\]  where  trivially  it  follows  that
$\overline{u} =0$. Note that this analysis is in real space,
but to keep things simple I’m omitting space variables and the
vector nature of velocity.

Next  let  us  generalise  the  above  smoothing  operation  to
\begin{equation}  \langle  U(t)\rangle_0
=\int_{\infty}^{\infty}\, U(t+s) a_0(s)\, ds, \end{equation}
where  \[\int_{-\infty}^{\infty}  \,  a_0(s)\,  ds  =1.\]  The



analogue of the fluctuating velocity from Reynolds averaging
can be defined in an analogous way, thus: \[u_{0}(t) = U(t) –
\langle  U(t)  \rangle_0.\]  Evidently  the  actual  limits  of
integration are determined in practice by the choice of the
weight function $a_0(t)$ and I began with the natural choice
of the Heaviside unit function multiplied by $1/2\tau_0$ and
defined on $-\tau_0 \leq t \leq \tau_0$, where $\tau_0$ is
very small compared to any relevant turbulence timescale, but
otherwise arbitrary. With this choice, our smoothing operation
is just the first operation above, with $T=\tau_0$. Then,
repeating the process with $\tau_1 > \tau_0$, and so on, for
ever increasing smoothing times, would ultimately take us back
to Reynolds averaging. But this is not the choice of $a_0$
that I made in [1], and I will come back to that.

At that time, the success of the renormalization group (RG) in
the theory of critical phenomenon was becoming well known and
it occurred to me that my underlying iterative method could be
turned into a RG calculation. To do this, I dropped the shear
flow  aspects  and  specialised  the  theory  to  isotropic
turbulence. Then I used Fourier transform with respect to time
to introduce the angular frequency $\omega$; and invoked the
Taylor hypothesis to introduce the wavenumber $k$. Hence I had
turned my iterative averaging over time, into an iterative
form of mode elimination which led to a fixed point for the
effective viscosity arising from the eliminated modes.

This was the form of the paper submitted for publication. The
referee was Bob Kraichnan and, although broadly happy with the
paper, he expressed a concern that the wavenumber bands were
not clearly defined. I agreed with this and fixed the problem
by choosing a new weight function to be \[a_0(t) = (1/\tau_0)
sinc (\omega t/\tau_0),\] where $sinc$ is the sine over its
argument, and this is how the paper was published. There were
two broad consequences of this.

First, I am left with the feeling that I didn’t actually do
what I set out to do; and reformulate Reynolds averaging.



Unfortunately, due to the pandemic, my older notebooks are not
available to me, so a fresh look at that aspect will have to
wait. Secondly, this was the beginning of a number of years
working on RG applied to turbulence. There was a lot more to
it than I imagined at the early stage and an overview and
exposition of the current situation can be found in reference
[2].  I  intend  to  follow  this  post  with  some  remarks  and
observations on the application of RG to turbulence in future
posts.

[1] W. D. McComb. Reformulation of the statistical equations
for turbulent shear flow. Phys. Rev. A, 26(2):1078-1094, 1982.
[2]  W.  D.  McComb.  Asymptotic  freedom,  non-Gaussian
perturbation theory, and the application of renormalization
group  theory  to  isotropic  turbulence.  Phys.  Rev.  E,
73:26303-26307,  2006.

Turbulent  dissipation  and
other rates of change.
Turbulent dissipation and other rates of change.
When I was working for my PhD with Sam Edwards in the late
1960s, my second supervisor was David Leslie. We would meet up
every so often to discuss progress, and I recall that David
was invariably exasperated by our concentration on asymptotic
behaviour  at  high  wavenumbers.  He  was  strongly  motivated
towards applications, and felt that the production process at
low wavenumbers was more important. To him the dissipation was
uninteresting. He used to say to us: `you are messing about
down in the drains, when the interesting stuff is all in the
production region.’
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We had many good humoured arguments but none of us changed our
positions. Yet with the passage of time, I increasingly feel
that David had a point; even when we restrict our attention to
isotropic turbulence. In fact, I would go further and argue
that much of the confusion over the Kolmogorov (1941) picture,
arises from a failure to see that the dissipation is not the
primary quantity. And even when one arrives legitimately at
the dissipation (having first considered the production and
then the inertial transfer rates), there is often confusion
between  the  instantaneous  dissipation  rate  and  the  mean
dissipation rate. I have myself contributed to that confusion,
and this is an opportunity to set matters straight. But first
let us consider what the usual practices are.

Kolmogorov used $\epsilon$ for the instantaneous dissipation
and $\bar{\epsilon}$ for the mean. Then, in 1953, Batchelor
used $\epsilon$ for the mean dissipation (see equation (6.3.2)
in the second edition of his book). A few years later, in
1959, Hinze favoured $\varepsilon$ for the mean dissipation,
and this has tended to prevail ever since, particularly in
theoretical physics, where $\epsilon$ is used as an expansion
parameter: e.g. the famous $\epsilon$-expansion!

In my 1990 book [1], I used $\varepsilon$ for instantaneous
dissipation  in  equation  (1.17)  and  $\langle  \varepsilon
\rangle$  for  the  mean  dissipation  in  equation  (A18).
Unfortunately, where I discuss the Kolmogorov variables, in
Chapter  Two  and  elsewhere,  it  is  clear  that  I  intend
$\varepsilon$ to be the mean dissipation rate. In fact this is
the most prevalent usage throughout the literature, at least
in theoretical work. When one thinks about it; well it makes
sense. One is only ever really interested in mean quantities
and a hat notation can be used for instantaneous values where
they are required. In my later book [2], I tried to sort this
out,  as  follows:  \[\widehat{\varepsilon}=\;
\mbox{instantaneous  dissipation}\]  \[\varepsilon=\;\mbox{mean
dissipation}\]  \[\varepsilon_D  =  -\ddt  E  :\;\mbox{the  eddy



decay  rate}\]  \[\varepsilon_T  =  \Pi_{max}  :\;\mbox{maximum
rate of inertial transfer}\] \[\varepsilon_W :\;\mbox{rate at
which stirring forces do work on the fluid}\].

So how does this help us with Kolmogorov, back in 1941? Well,
in  fact  it  helps  us  with  Obukhov  who,  unlike  Kolmogorov,
worked  in  wavenumber  space  where  there  actually  is  a
turbulence  cascade.  Obukhov  realised  that  as  the  Reynolds
number increased, there would be a limit where the inertial
transfer rate became equal to the dissipation. As the Reynolds
number continued to increase, this region of maximum energy
transfer would increase in extent, to ever higher wavenumbers.
This behaviour has been amply confirmed and is an example of
scale  invariance.  It  was  recognized  by  both  Obukhov  and
Onsager that in this range of wavenumbers the spectrum would
take the form \[E(k) \sim \varepsilon_T^{2/3}k^{-5/3}.\] If
you wish, you can replace the rate of inertial transfer with
the  dissipation  rate.  If  you  want  to  derive  Kolmogorov’s
$r^{2/3}$ law, then just Fourier transform the Obukhov result
for the spectrum. It is the form that has been derived by a
properly formulated physical argument. It would be difficult
to see how anyone could drag in the so-called intermittency
corrections!

[1] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[2]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.



Heuristic  is  as  heuristic
does!
Heuristic is as heuristic does!
In the early years of my career, I would sometimes encounter
the word `heuristic’ in a mathematical theory. I understood
that authors, when using this word, were in effect crossing
their fingers behind their back and indicating that their work
might  not  be  entirely  rigorous.  But  I  found  myself  quite
unable to understand precisely what the word meant.

Naturally I consulted a dictionary. It said:
1. Heuristic: serving or leading to find out.
2. (Of method, argument etc) depending on assumptions based on
past experience.
3. Consisting of guided trial and error.

Well, number 2 looked the most relevant but was not really
helpful. I still wasn’t sure how I should interpret the word
when I met it in an article. I found this mildly frustrating.

Some years later, I was working on the preparation of my book
on  the  physics  of  turbulence,  and  I  was  considering  the
relationship between the work of Sam Edwards [1], and the
later  work  of  Novikov  [2],  on  the  introduction  of  random
forcing to the Navier-Stokes equation. In discussing the paper
by Edwards, Novikov made use of the word `heuristic’ and this
is what he said:

`However, the probability distribution density in functional
space,  has  no  clearcut  mathematical  meaning,  so  that  the
entire analysis in [my reference [1], cited by Novikov as his
reference  [7]]  has  a  heuristic  character  (which  does  not
detract from the value of this interesting paper).’

The point was that Edwards was working with the pdf while
Novikov used the characteristic functional. So that while the
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Edwards  analysis  led  to  the  same  result  as  the  Novikov
analysis, it was mathematically iffy. I felt, from this, that
it was possible for me to understand how mathematicians used
the  word  `heuristic’,  and  since  then  I  have  become  quite
comfortable with it and sometimes use it myself.

That was progress of a kind. But with the passage of time I am
no longer sure that Novikov was correct. The fact is that the
Edwards analysis was carried out in a finite volume (a cube of
side $L$), with the limit of infinite system volume being
taken at the end of the calculation. In other words, I think
that  this  analysis  was  mathematically  well  defined.  So
although I understand Novikov’s use of the word heuristic, I
no longer agree with the basis of his comments. I intend to
return  to  the  concept  of  the  gulf  between  rigour  in
theoretical physics, on the one hand, and in mathematics on
the other.

[1] S. F. Edwards. The statistical dynamics of homogeneous
turbulence. J. Fluid Mech., 18:239, 1964.
[2] E. A. Novikov. Functionals and the random-force method in
turbulence theory. Soviet Physics JETP, 20:1290, 1965.

Peer  review:  some  further
thoughts.
Peer review: some further thoughts.
Vacation post No 4. I will be out of the virtual office until
Monday 31 August.
Peer  review  continues  to  cause  concern,  with  widespread
perceptions  of  unfairness.  Although  most  of  what  I  have
noticed recently seems to be in the medical/public health
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communities,  where  one  major  gripe  appears  to  be  that
established researchers have a significantly better chance of
getting published. The current favourite response to this is
to introduce double-blind refereeing, where you don’t know who
your referee is and they don’t know who you are. Well, I can’t
see that working in turbulence and I doubt if there is any way
that I could conceal my identity. In fact, that goes for
anyone who publishes regularly in a field which does not have
a lot of participants. So, in STEM subjects in general, that
looks like a non-starter.

In any case, why shouldn’t a researcher with a good track
record of publication in their subject have a better chance of
being published? Indeed, I would go further. I think that it
should be part of the `rules of the game’ that there should be
a presumption that a further publication on a topic should be
published unless it is wrong in some way, or misleading, or
quite  definitely  does  not  add  anything  to  previous
publications by that particular author. In other words, there
should be an onus on the referee to demonstrate such faults.

I  would  actually  go  further  and  argue  that,  rather  than
introducing an additional layer of anonymity, we should remove
the existing one. In my view, it would be helpful if referees
had to put their name to their report. It should improve both
fairness and (sometimes) courtesy. I should make it clear that
I apply that opinion to everyone who referees and do not
exclude myself!

Naturally there will be those who will respond that if we
remove anonymous refereeing, then the sky will fall in. I
don’t see why this should be. In my early years at Edinburgh,
I did some work on turbulent diffusion in aerosol jets and
this was published in the Journal of Aerosol Science. Their
policy, at least at that time, was to have one referee who was
expected to engage constructively with a submission and then
to sign their report. My memory of it (rather vague now) was
that it was a civilised and effective process. I also remember



that the late Bob Kraichnan signed his referee reports and
that was my experience on the few occasions that he refereed
anything of mine.

And what about me? Well, I have dropped my anonymity on a
number of occasions over the years, but only where I felt that
it was particularly appropriate, for instance when my own work
was being criticised. Apart from that, I have just been part
of the flock! However, I seriously believe that the nature of
refereeing in turbulence demands reform. My PhD supervisor
described it as `cut-throat’ and at times it would be hard to
disagree. Partly I think that this is due to the heterogeneous
nature of the turbulence community, so that very often people
are  refereeing  work  that  they  are  simply  not  able  to
understand.

I have yet further thoughts on this subject, which will be the
subject of further posts. At the moment I am looking forward
to a month’s holiday from turbulence, so this is being written
on the 30 July in order to be posted on the 27 August. On the
31 August I shall begin reading my email again.

Is  there  any  place  for
personal taste in science?
Is there any place for personal taste in science?

Vacation post No 3. I will be out of the virtual office until
Monday 31 August.

It has long been the case that physicists talk approvingly
about a
physical theory as being `elegant’ or even `beautiful’. Like
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so much
else, this seems to have become commonplace in the 1960s. More
recently
I have become aware of similar sentiments being expressed in
mathematics. In that case one can see that some particular
proof, say,
might be preferred to another, purely on grounds of economy or
clarity
or conciseness. However, in the case of physics, one might
expect that a
comparison of a theory’s predictions with experimental results
should be
the deciding factor.

There is an old adage in engineering design to the effect that
`if it
looks  right,  then  it  is  right’.  Obviously,  there  are
constraints  on  this
in that your design for a motor car must look as if it is
capable of
being a motor car. This latter point is an instance of the
precept `form
follows function’ which originated in architectural design in
the early
part of the last century. But the adage refers to quality, and
is
supposedly  a  way  of  separating  a  good  design  from  other
designs that are
merely adequate. So the implication is that a purely aesthetic
judgement
can  lead  to  a  design  that  satisfies  various,  perhaps
quantitative,
criteria which give a universal meaning to the term `good
design’ in
some particular context.

Of  course  the  insertion  of  the  word  `probably’  into  the



engineering
adage might lead to its justification in practice. That is, if
it looks
right then it `probably’ is right. So the adage could offer a
guide as
to whether or not one should take a particular design idea
further. For
this to work there must exist some consensus on what is meant
by `looks
right’. And this undoubtedly changes with time. A motor car
which was at
the leading edge of design in the 1960s will look distinctly
old-fashioned nowadays.

But there is always some unease about using a personal value
judgement
to determine a matter which will ultimately be settled on a
quantitative basis. And there are other complications too,
even when the
quantitative aspect is not present, as for example in the
arts. An awful
warning may be found in the well known crisis in painting at
the end of
the nineteenth century. This was triggered by the invention of
photography,  which  in  turn  led  to  artists  becoming
experimental  in  order
to  avoid  producing  paintings  which  were  no  more  than  (in
effect)
photographs. Such attempts were reviled and even the formation
of
schools of activity (e.g. Fauves, impressionists) did not at
first lead
to acceptance.

Unfortunately the fact that impressionist paintings are now
highly
valued appears to have led to the pendulum swinging too far in



the other
direction of uncritical acceptance. Even so, those who are
specialists
in the world of art, literature or music can argue that their
`informed’ eye or ear gives their opinion a special weight.
And no
doubt that is a tempting argument in science too. Indeed, in
the case of
string theory or the idea of the multiverse, where testing
against
experiment  is  impossible,  it  is  arguable  that  aesthetic
criteria may be
all that one has. But, if consensus develops, this can then
lead to the
creation of schools of opinion and standard models, which in
turn can have the
perverse  effect  of  shutting  down  other  approaches  to  the
problem. This
is not the case in the arts. Indeed, the non-specialist can
say `I know
what I like’, and there is an end to it. One does not have
that freedom
in science. Or at least, not if one expects to get published
in the learned
journals.

Therefore, it does seem that there are dangers from importing
purely
personal  aesthetic  considerations  into  science.  It  is
interesting  to
note that the greatest physicist of all had some words to say
on this
particular subject. In the preface to his 1916 book, entitled
`Relativity’,  Einstein  stated  that  he  had  followed  the
precepts of that
other great theoretical physicist, Boltzmann, `… according to
whom,



matters of elegance ought to be left to the tailor and to the
cobbler’.

My list of jobs to do from 17
November 2009.
My list of jobs to do from 17 November 2009.
Vacation post No 2. I will be out of the virtual office until
Monday 31 August.
Recently I was tidying up some papers and I came across this
list from 2009. At that time I had just entered my fourth year
of  retirement  (now  in  my  fourteenth!)  and  these  were  the
things I wanted to do. Actually other jobs took priority and
none of the following list was ever done!

1. LET: evaluate the Kolmogorov pre-factor as a function of
Reynolds number. Does it asymptote?
2.  DNS:  `Kolmogorov  exponent’  as  a  function  of  Reynolds
number. (In fact the inverted commas were because this was
shorthand for measure the power-law exponent for the inertial
range of wavenumbers and see if it asymptotes to -5/3. I would
also add the pre-factor to this, as in the LET case above.)
3. Calculate LET with the de facto vertex renormalization of
omitting modes from the convolution sum: test for universality
of the cut-off wavenumber ratios. (Method due to Kadomtsev:
see Leslie’s book.)
4. Do the same with DNS.
5. Make a systematic examination of the dependence on initial
conditions for both DNS and LET.
6. Use DNS to investigate the vorticity transfer corresponding
to the filtered, partitioned energy transfers $T^{–}$, $T^{-
+}$, $T^{+-}$, and $T^{++}$.

https://blogs.ed.ac.uk/physics-of-turbulence/2020/08/13/my-list-of-jobs-to-do-from-17-november-2009/
https://blogs.ed.ac.uk/physics-of-turbulence/2020/08/13/my-list-of-jobs-to-do-from-17-november-2009/


7. Use stirring forces which are not `white noise’ to test
effect of initial conditions.

Some of these ideas were prompted by the fact that I was
studying the variation of the dimensionless dissipation as a
function of Reynolds numbers at the time. This only required
quite small Reynolds numbers and it was easy to map out the
dependence. Our first paper reporting this work was rejected
by one of the referees because he had a simulation which could
go to much bigger Re, and so our work couldn’t be any good.
Fortunately this idiosyncratic view did not prevail.

Seriously, though, I think that the turbulence community as a
whole has been influenced by the need to get to large Re in
order to resolve questions about universal behaviour, and it
is perhaps time to build up a better understanding of the
basic  physics  of  turbulence  by  looking  at  the  low-Re
behaviour.  Point  6  is  relevant  to  large-eddy  simulation,
renormalization group and the scale-invariance paradox.

Are there any bright young people out there with access to a
code and a computer who would like to take on any of these
things? If so, just get in touch and I’ll be happy to advise
you.

Can  mathematicians  solve
problems in physics?
Can mathematicians solve problems in physics?
Vacation post No 1. I will be out of the virtual office until
Monday 31 August.
When  I  used  to  lecture  final-year  undergraduates  in
mathematical  physics,  there  were  often  quite  a  few
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mathematicians attending and I would sometimes tease them by
pointing out that mathematicians try to prove the ergodic
theorem whereas physicists don’t need to. We know it must be
true! This was always taken in good part, but it wasn’t really
a joke, because I believe it to be literally true. Progress in
physics from earliest times has proceeded from experimental
observation, which is then codified in mathematical theory.
When a new observation arises and does not agree with the
existing theory, then so much the worse for the theory. We
have to devise a new and better one. (I believe the Hegelian
position is the exact opposite of this: so much the worse for
the observation!)

The only exception to this that I know of is the work of the
great Paul Dirac, who actually started his working life as an
electrical engineer and only later qualified in mathematics.
He tackled the problem of deducing a relativistic form of the
Schrödinger  by  purely  mathematical  methods  and  ended  up
predicting the existence of antimatter. Nice one Paul!

If one is going to have an exception, what an exception to
have. The only thing that I can think of which might be
comparable, is the work of Emmy Noether. Her theorem that
continuous  symmetry  of  a  physical  quantity  implies  its
conservation underpins the whole of fundamental theoretical
physics. And of course much mathematical work has gone into
the  development  of  modern  formulations  from  the  original
observation-based  forms,  such  as  Newton’s  laws  of  motion.
However, I don’t know enough about Noether’s theorem to be
sure about whether or not it also represents a significant
exception. I still intend to rectify this, although I have
been intending to do so, for many years.

As  regards  the  relevance  of  my  original  question  to
turbulence, I can come up with a specific example in a related
field. A few years before I retired, I had some discussions
with  a  mathematician  about  problems  in  soft  (condensed)
matter.  This  arose  in  a  social  way,  in  that  one  of  my



colleagues had attended a party in the maths department and
got talking to a young mathematician who bemoaned the fact
that he had no one to discuss his work with. My colleague knew
that I had published something in this area [1] and suggested
that  we  make  contact.  As  a  result  we  had  a  number  of
discussions (and some games of badminton!) and it was clear
that we were poles apart in the way we looked at things.
Nevertheless, one specific point emerged. He had reservations
about the (at that time) famous KPZ equation for nonlinear
deposition. On purely mathematical grounds (something to do
with  simultaneously  working  with  generalized  functions  and
Fourier transforms, I think) he had concluded that the KPZ
equation was mathematically unsound and needed a counter-term
to  be  added  to  deal  with  this.  Accordingly  he  was  quite
surprised to find that my co-author and I had already come to
this conclusion on purely physical grounds and that we had
identified the requisite term to be added [1].

It seems to me that modern theoretical physics is dominated by
this sort of pure mathematical approach which may in fact be
sterile without a new physical hypothesis of the kind that
physicists can actually understand to be such. In the rather
humbler discipline of turbulence theory, I note many papers
which seem to be predicated on the assumption that one must
take account of singularities. I believe this activity may
actually be harmful, as well as unnecessary, because it makes
people  unsure  about  things.  For  example,  when  a  referee
insists that I qualify some statement about taking a limit or
making  an  expansion,  with  the  phrase  `provided  that  no
singularity occurs’ I feel that I am being forced to make use
of  the  mathematician’s  comfort  blanket.  Frankly,  I  would
rather rely on the physicist’s comfort blanket, which is based
on the interlocking physical picture which in turn is based
primarily on observation. Just bear it in mind: we physicists
know that the ergodic theorem holds.

[1] W. D. McComb and R. V. R. Pandya. Hidden symmetry in a



conservative equation for nonlinear growth. J. Phys. A: Math.
Gen., 29:L629, 1996.

Should turbulence researchers
dare to be dull?
Should turbulence researchers dare to be dull?
I recently read a book review in The Times which was headed
`Scientists must dare to be dull’. Well, that was attention
grabbing,  because  most  of  the  general  population  probably
think that we already are. The author of the review then went
further in a subheading: `We should listen to this warning
about how neophilia and hype is ruining research.’ Now that
does sound a bit exaggerated; and he seeks to make his case by
quoting examples from Science Fictions: Exposing Fraud, Bias,
Negligence and Hype in Science by Stuart Ritchie.

Now I’m not sure if `neophilia’ is a neologism or not (my
spell-checker doesn’t seem to like it), but clearly it is
intended to mean `love of the new’. And this, along with
`hype’, has been a feature of academic research since the
early 1980s. Before that, academic research was a gentlemanly
pursuit,  which  in  theory  academics  were  supposed  to  do.
However, when I took up my lectureship at Edinburgh in 1971,
the teaching and administration were divided up equally, and
once these chores were out of the way, one was free to do some
research  or  some  other  activity.  Alternative  activities
pursued by certain colleagues ranged from collecting antiques,
through small-boat sailing, to (and this was rather extreme)
one colleague who seemed to be turning himself into a market
gardener in his spare time.
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This all changed around the early 1980s, with the introduction
of  research  assessment  exercises,  in  which  the  government
turned  a  beady  eye  on  the  research  output  of  academics,
presumably to divert attention from its own inadequacies. From
then on, everything had to be newer, bigger and more `hype
worthy’. Then of course, in time, research had to have impact!
But we shall say no more about that. Instead let us turn to
what the effect of this has been on research in turbulence.

We should begin by observing that turbulence, like all the
rest of fluid dynamics, is dominated by research on practical
problems.  So  my  observations,  as  always,  concern  the
relatively small amount of fundamental work; and even here
there has for a long time been an excessive concentration on
newness. Given that the problems we still need to solve are
really quite old, a concentration on newness seems likely to
be counter-productive. My own experience over the years has
been  of  one  particular  referee  who  invariably  says  of  my
manuscript `there is nothing very new here’ and then turns it
down!

To  be  more  specific,  I  would  say  that  direct  numerical
simulation of the equations of motion to represent isotropic
turbulence is the most obvious example of the desire for the
new,  where  in  this  case  the  desirable  `new’  is  a  higher
Reynolds  number.  This  undoubtedly  leads  to  a  feeling  of
competition, with the achievement of a large Reynolds number
seen as an end in itself. I believe this to be detrimental to
scholarship, particularly when other desirable features of the
DNS may have been sacrificed in order to achieve it.

A particular example of this arose in 2010 when we submitted a
short  paper  in  which  we  showed  that  the  so-called  Taylor
dissipation surrogate was more likely a surrogate for the
inertial transfer [1]. This was based on theoretical arguments
and on some simulations of freely decaying turbulence, for
various Reynolds numbers up to about $R_{\lambda}\simeq 60$,
which showed the onset of asymptotic behaviour. One referee



was favourable but the other recommended rejection on the
grounds that our simulation was very much smaller that his
one. This seems to have echoes of the behaviour of small boys
in  the  school  playground,  but  it  has  nothing  to  do  with
scholarship. Fortunately the editor was easily persuaded of
this fact, and the paper was published.

A coda to this story is that we developed our simulations over
the next few years, and also introduced a theory based on an
asymptotic expansion in inverse powers of the Reynolds number,
which was exact in the limit of infinite Reynolds numbers. For
Reynolds  numbers  up  to  $R_{\lambda}\simeq  435$  in  forced
turbulence, we were able to verify our predicted $1/R$ decay
law  and  measure  the  asymptotic  value  of  the  normalised
dissipation  rate  as:  $C_{\varepsilon,\infty}  =  0.468  \pm
0.006$. Apart from supporting our results at lower Reynolds
numbers, this work drew attention to the fact that certain
high-Reynolds simulations merely provide a few outlier points
on  our  systematic  treatment  of  the  subject  [2].  How  much
better if they had started with low values of the Reynolds
number and worked up!

Turbulence is essentially an asymptotic phenomenon; a fact
that was realised by early workers in the subject who measured
mean velocity profiles in duct flows (and indeed other shear
flows)  for  huge  ranges  of  Reynolds  numbers,  and  clearly
demonstrated its asymptotic behaviour. This is what we need
today. Turbulence theory is like a jigsaw, in which not only
are  many  pieces  missing,  but  many  of  those  we  have  are
unclear. In effect, we’re not quite sure which part of the
picture they represent. In my view, what is needed is a big
collaboration to carry out simulations which we can all access
and have our questions answered. But the simulation is the
easy part of that: I believe that there are databases for
high-Re  simulations,  but  what  about  all  the  low  Reynolds
numbers which allow us to move up an asymptotic curve and
actually see what is going on?



The author of the above book review sees the need for `boring,
plodding research that merely provides a sound basis for the
continued progress of the Enlightenment’. I don’t buy that
description,  and  presumably  he  is  being  ironic,  but  I  do
accept that that is what we need. In the case of turbulence,
we would also need a sea change to more open-mindedness on the
part of many members of the community of researchers. I don’t
think that is going to happen any time soon.

[1] W. David McComb, Arjun Berera, Matthew Salewski, and Sam
R. Yoffe. Taylor’s (1935) dissipation surrogate reinterpreted.
Phys. Fluids, 22:61704, 2010.
[2] W. D. McComb, A. Berera, S. R. Yoffe, and M. F. Linkmann.
Energy  transfer  and  dissipation  in  forced  isotropic
turbulence.  Phys.  Rev.  E,  91:043013,  2015.

The modified Lin equation.
The modified Lin equation.

In my post of 27 February I discussed the importance of being
aware of the full form of the Lin equation as this reveals the
existence of a cascade in wavenumber space. In this post I
want to take this a bit further, using my resolution of the
scale-invariance paradox [1].

For me this topic first arose during a meeting in 1991 at
MSRI, Berkeley. When I had finished my talk, Bob Kraichnan
came up to me with a copy of my recently published book and
pointed out Figure 2.5, which was a plot of the terms in the
Lin equation for freely decaying turbulence. He commented on
the fact that the transfer spectrum $T(k)$ was shown as zero
for an extended range of values of $k$. He commented that
people used to think that was the case, because it would be

https://blogs.ed.ac.uk/physics-of-turbulence/2020/07/23/the-modified-lin-equation/


expected from the scale-invariance of the flux, but that in
practice it was never observed. There was always a single
zero-crossing. I was able to reassure him that figure was
based on a computation of the LET theory; that there had been
an error which had now been rectified; and that the revised
figure would show a single zero-crossing and would appear in
the paperback edition of the book to be published later that
year.

However, I was left with a nagging feeling that there was an
unresolved problem with this result. The first measurements of
$T(k)$ had been published by Uberoi [2] in 1963, and this
author had said that the single zero-crossing was probably due
to the low Reynolds number and indicated that he would expect
$T(k)=0$  over  an  extended  range  of  $k$  to  develop  with
increasing Reynolds number. Although this does not seem to
have  been  a  matter  of  widespread  concern,  over  the
1970s/80s/90s various ad hoc methods were used to cope with
this behaviour in numerical calculations: for some references
to this work, see [1]. As a matter of interest, I include both
versions of Figure 2.5 below.

Figure 2.5 from Physics of
Fluid Turbulence 1990



Figure 2.5 from Physics of
Fluid Turbulence 1991

 

 

 

 

 

 

 

 

 

 

The  Lin  equation  (see  reference  [3])  takes  the  form:
\begin{equation}  \left(  \frac{d}{dt}  +  2  \nu  k^2  \right)
E(k,t) = T(k,t)\label{enbalt}\end{equation} where $E(k,t)$ is
the energy spectrum, $T(k,t)$ is the energy transfer spectrum
and $\nu$ is the kinematic viscosity. Now let us integrate
each term of (\ref{enbalt}) with respect to wavenumber, from



zero  up  to  some  arbitrarily  chosen  wavenumber  $\kappa$:
\begin{equation} \frac{d}{dt}\int_{0}^{\kappa} dk\, E(k,t) =
\int^{\kappa}_{0} dk\, T(k,t)-2 \nu\int_{0}^{\kappa} dk\, k^2
E(k,t). \label{fluxbalt1} \end{equation} The energy transfer
spectrum  may  be  written  as  \begin{equation}  T(k,t)  =
\int^{\infty}_{0}  dj\,  S(k,j;t),  \label{ts}\end{equation}
where, as is well known, $S(k,j;t)$ can be expressed in terms
of the triple moment. Its antisymmetry under interchange of
$k$  and  $j$  guarantees  energy  conservation  in  the  form:
\begin{equation}\int^{\infty}_{0}  dk\,  T(k,t)  =0.
\label{encon}  \end{equation}

With some use of the antisymmetry of $S$, along with equation
(\ref{encon}), equation (\ref{fluxbalt1}) may be written as
\begin{equation}\frac{d}{dt}\int_{0}^{\kappa} dk\, E(k,t) = –
\int^{\infty}_{\kappa}  dk\,\int^{\kappa}_{0}  dj\,  S(k,j;t)-2
\nu\int_{0}^{\kappa}  dk\,  k^2
E(k,t).\label{fluxbalt2}\end{equation}  the  integral  of  the
transfer term is readily interpreted as the net flux of energy
from wavenumbers less than $\kappa$ to those greater than
$\kappa$, at any time $t$.

It is convenient to introduce a specific symbol $\Pi$ for this
energy  flux,  thus:  \begin{equation}\Pi  (\kappa,t)  =
\int^{\infty}_{\kappa}  dk\,  T(k,t)  =-\int^{\kappa}_{0}
dk\,T(k,t),\label{tp}\end{equation} where the second equality
follows from (\ref{encon}).

The key to resolving the paradox is to introduce transfer
spectra which have been filtered with respect to $k$ and which
have had their integration over $j$ partitioned at the filter
cut-off, i.e. $j=k_c$ [1],[4]. Beginning with the Heaviside
unit step function, defined by:
\begin{eqnarray} H(x) & = & 1 \qquad \mbox{for} \qquad x > 0;
\\& = & 0 \qquad \mbox {for} \qquad x < 0.\end{eqnarray} we
may  define  low-pass  and  high-pass  filter  functions,  thus:
\begin{equation}\theta^{-}(x)  =  1  –  H(x),\end{equation}  and
\begin{equation} \theta^{+}(x) = H(x). \end{equation} We may



then decompose the transfer spectrum, as given by (\ref{ts}),
into four constituent parts, \begin{equation}T^{–}(k|k_{c}) =
\theta^{-}(k-k_{c})\int^{k_{c}}_{0}dj\,  S(k,j);
\label{tmm}\end{equation}  \begin{equation}  T^{-+}(k|k_{c})  =
\theta^{-}(k-k_{c})\int^{\infty}_{k_{c}}dj\,  S(k,j);
\label{tmp}\end{equation}  \begin{equation}  T^{+-}(k|k_{c})  =
\theta^{+}(k-k_{c})\int^{k_{c}}_{0}dj\,  S(k,j);  \label{tpm}
\end{equation}  and  \begin{equation}T^{++}(k|k_{c})  =
\theta^{+}(k-k_{c})\int^{\infty}_{k_{c}}dj\,
S(k,j),\label{tpp}  \end{equation}  such  that  the  overall
requirement  of  energy  conservation  is  satisfied:
\begin{equation}  \int^{\infty}_{0}dk\left[T^{–}(k|k_{c})  +
T^{-+}(k|k_{c}) + T^{+-}(k|k_{c}) + T^{++}(k|k_{c})\right] =
0. \end{equation}It is readily verified that the individual
filtered/partitioned  transfer  spectra  have  the  following
properties:  \begin{equation}  \int^{k_{c}}_{0}dk\,
T^{–}(k|k_{c}) = 0; \label{mm} \end{equation} \begin{equation}
\int^{k_{c}}_{0}dk\, T^{-+}(k|k_{c}) = -\Pi(k_{c});\label{mp}
\end{equation} \begin{equation}\int^{\infty}_{k_{c}}dk\, T^{+-
}(k|k_{c})  =  \Pi(k_{c});  \label{pm}  \end{equation}  and
\begin{equation}  \int^{\infty}_{k_{c}}dk\,  T^{++}(k|k_{c})  =
0. \label{pp} \end{equation} Equation (\ref{fluxbalt1}) may be
rewritten  in  terms  of  the  filtered/partitioned  transfer
spectrum as: \begin{equation} \frac{d}{dt}\int^{k_{c}}_{0}dk\,
E(k,t)  =  -\int^{\infty}_{k_{c}}dk\,  T^{+-}(k|k_{c})
-2\nu_{0}\int^{k_{c}}_{0}dk\, k^{2}E(k,t). \label{fluxbaltmod}
\end{equation}  We  note  from  equation  (\ref{mm})  that
$T^{–}(k|k_c)$ is conservative on the interval $[0,k_c]$, and
hence  does  not  appear  in  (\ref{fluxbaltmod}),  while  $T^{-
+}(k|k_{c})$ has been replaced by $-T^{+-}(k|k_{c})$, using
(\ref{mp})  and  (\ref{pm}).  Those  working  with  DNS  or
analytical theory, can avoid the paradox by changing their
definition of energy fluxes, from those given by (\ref{tp}),
to  the  forms:  \begin{equation}  \Pi  (\kappa,t)  =
\int^{\infty}_{\kappa}  dk\,  T^{+-}(k|\kappa,t)  =-
\int^{\kappa}_{0}  dk\,  T^{-+}(k|\kappa,t),\label{tpmod}
\end{equation}  where  $T^{+-}(k|\kappa,t)$  is  defined  by



(\ref{tpm}) and $T^{-+}(k|\kappa,t)$ by (\ref{tmp}). This is
equivalent to (\ref{tp}); but, unlike it, avoids the paradox.

This behaviour is illustrated in the figure below, where we
should note that $T^{-+}(k|\kappa)$ is defined below the cut-
off wavenumber $\kappa = k_{c}$, and $-T^{+-}(k|\kappa)$ is
defined above it.

 

Modified  form  of  transfer  spectrum  to
avoid the scale-invariance paradox.

 

This  raises  the  question  of  how  exactly  the  Lin  equation
should be written, in order to emphasise these properties.
That  will  be  the  subject  of  a  paper  which  is  now  in
preparation  [5].  It  is  worth  making  the  point  that  the
filtered-partitioned forms of the transfer spectrum have only
been studied in the context of the subgrid modelling problem



[4]. Given the much more powerful computers now available, it
would undoubtedly be rewarding to study the role of these
terms in the energy balance for a range of Reynolds numbers. I
very much hope that someone will do this.

Acknowledgement:  the  above  figure  was  suggested  by  John
Morgan, who also prepared it.

[1]  David  McComb.  Scale-invariance  in  three-dimensional
turbulence: a paradox and its resolution. J. Phys. A: Math.
Theor., 41:75501, 2008.
[2] M. S. Uberoi. Energy transfer in isotropic turbulence.
Phys. Fluids, 6:1048, 1963.
[3]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
[4] W. D. McComb and A. J. Young. Explicit-Scales Projections
of  the  Partitioned  Nonlinear  Term  in  Direct  Numerical
Simulation of the Navier-Stokes Equation. In Proc. 2nd Monte
Verita  Colloquium  on  Fundamental  Problematic  Issues  in
Turbulence: available at arXiv:physics/9806029 v1, 1998.
[5] W. D. McComb. A modified Lin equation for the energy
balance  in  isotropic  turbulence.  arXiv:2007.13622v1
[physics.flu-dyn]  27  Jul  2020

 

 

 

 

 

 



Local Energy Transfer (LET):
a curate’s egg theory?
Local Energy Transfer (LET): a curate’s egg theory?
The LET theory began well as a modification to the Edwards
theory  [1,2],  which  was  a  single-time  theory,  and  then
underwent a rather heuristic extension to two-time form to
become in effect a modification of Kraichnan’s DIA theory [3].
It was successfully computed for freely decaying turbulence in
subsequent years and in one of these papers its derivation was
put on a better footing [4]. This work was later formalised
[5], and more recently the theory has been formally derived by
applying the Edwards self-consistent field method to the full
two-time pdf [6]. As the resulting set of equations for the
two-time  correlation  and  response  functions  is  a  fully
Eulerian theory which gives good results, both quantitative
and qualitative, I thought there might be some interest in a
simple outline of the twists and turns in its evolution!

In 1966 when I began my postgraduate studies, the problem with
both  the  Edwards  theory  and  DIA  was  that  they  were
incompatible with the observed $k^{-5/3}$ energy spectrum. It
was 1974 before I saw what was wrong with the Edwards theory
(and by extension DIA) was that the inertial transfer spectrum
(usually  denoted  by  $T(k)$  in  the  notation  of  the  Lin
equation) was divided into two parts, a diffusive term and a
dissipative  term  which  was  proportional  to  the  amount  of
energy in mode $k$. Now this is a form which crops up in
physics, for example the Boltzmann equation, the Fermi master
equation, and the Fokker-Planck equation, so is must have
seemed  quite  natural.  However,  the  first  measurements  of
$T(k)$ were reported in 1963, and after that it became obvious
that  the  entire  term  $T(k)$  was  either  input  or  output,
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depending on the value of the labelling wavenumber $k$. This
was what I finally managed to see in 1974 and so I proposed
that the turbulent response in the Edwards case was determined
by a local (in wavenumber) energy balance involving the whole
of $T(k)$ [1,2].

Extending this idea to Kraichnan’s two-time theory presented a
far from trivial problem. My intuitive feeling was that the
idea  of  determining  the  system  response  in  terms  of  the
relationship  between  stirring  forces  and  the  resulting
velocity field should be abandoned and instead I decided to
base  my  approach  on  the  introduction  of  a  velocity  field
propagator. I argued that in perturbation theory we would have
at  zero  order  a  relationship:  \begin{equation}  u^0(k,t)  =
R^0(k,t-s) u^0(k,s). \end{equation} Note that this is in an
updated notation, with $R$ standing for response function, and
that it is simplified with tensor indices being omitted, and
we  have  assumed  stationarity.  Corresponding  to  some
renormalization of the perturbation series I then proposed the
introduction  of  an  exact  propagator  $R$,  such  that:
\begin{equation} u(k,t) = R(k,t-s) u(k,s). \end{equation} This
allowed me to derive equations for the correlation function
$C(k;t-t’)$ and the response function $R(k;t-t’)$. These were
identical to those of Kraichnan’s DIA apart from the presence
of  an  additional  term  in  the  response  equation.  This
additional term had, of course, the crucial effect of making
the response equation compatible with the $-5/3$ spectrum.

When  the  paper  was  submitted  for  publication  it  ran  into
trouble with the referees. One of them was worried by the fact
that sometimes $R$ was treated as if statistically sharp and
at others as if it were not. I couldn’t understand that, but I
added  a  footnote  to  say  that  the  response  function  was
statistically  sharp.  The  other  referee  conceded  that  LET
should  do  better  than  DIA  at  high  Reynolds  number,  but
reckoned that DIA would be better at low Reynolds numbers and
so  publication  should  await  numerical  calculations!  I  was



quite fascinated by this report. It put me in mind of the
comedy routine of early films where some luckless person tries
to pack an overfull suitcase. He pushes in a shirt collar at
one corner and snaps the lid closed, only to notice that a tie
is peeping out at another corner. So he struggles to push that
in, again snaps the suitcase closed only to see that a sock is
sticking out at another corner. And so it goes on. Perhaps
that  was  `the  packing  a  suitcase’  method  of  assessing  a
theory?

A few years later, we published the numerical calculations and
it turned out that the LET was actually better than DIA at all
Reynolds numbers. It also turned out that DIA was not as bad
at high Reynolds numbers as had been expected. The referees
for the paper were Jack Herring and Bob Kraichnan, and I
remember Batchelor telling me that I had `stirred them up
quite a bit’ and that they would like to contact me directly.
I  recall  that  we  had  some  very  interesting  and  amicable
discussions by letter: email was still in its infancy!

Equation (2) is open to some serious criticism and we should
now consider what is wrong with it. Essentially it implies a
fixed  phase  relationship  between  two  realisations  of  the
velocity field at different times, when there is no reason to
suppose that such a relationship can exist in a mixing system
like fluid turbulence. Another way to look at this is to
rewrite (2) such that $R$ is defined as the ratio of the two
velocities,  and  we  immediately  see  that  we  should  have
$\hat{R}$: a random variable. Now to replace $\hat{R}$ by $R$
would be a mean-field approximation (there is an equivalent
step in the derivation of DIA) but that can only be done in
the context of some averaging operation. This was introduced
in [4] where the basic hypothesis underlying LET was taken to
be:  \begin{equation}  C(k;t,t’)  =  R(k;t,t’)C(k;t’,t’)  \,
\mbox{for} \, t’\leq t. \end{equation} Equation (3) is just
the fluctuation relaxation relationship (FRR) which has been
derived  in  dynamical  systems  theory  for  systems  with  a



Gaussian initial distribution. Incidentally, the fluctuation
dissipation theorem is a special case of the FRR which applies
to  small  fluctuations  about  equilibrium  in  microscopic
systems.

The FRR applied to turbulence has now been derived by a self-
consistent method in which the base distribution is Gaussian
at all times [6]. This reference gives a review of the topic
as well as that derivation. It should perhaps be noted that
the zero-order Gaussian pdf in this theory is an approximation
to the exact pdf which is chosen to give the correct value of
the covariance. It should be distinguished from the zero-order
pdf  which  is  obtained  from  the  viscous  response  function
applied to Gaussian stirring forces.

To sum up, equation (1) is a bad equation which yet provides a
heuristic derivation of a useful set of equations: the LET
theory. I think that it is analogous to a `bad proof’ as
discussed in my post of 19th March 2020. Hence, LET was a
curate’s egg theory. I think that it might now be described as
just a theory.
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Peer review: the role of the
editor.
Peer review: the role of the editor.
In  1985  I  published  a  paper  in  JFM  on  laser-doppler
measurements in drag-reducing fibre suspensions. This was the
only  paper  on  experimental  work  that  I  published  in  that
journal and the refereeing process was not without interest.
There was the usual iteration process and Referees A and B
were fine, but Referee C was something else. His comments had
a curious, slightly hysterical tinge, I felt. For instance,
`Something  is  very  far  wrong  here.’  and  `Conservation  of
energy is being violated here.’ And others like that. Each
attempt I made to reassure him, simply made matters worse. I
should just mention in parenthesis that when you get a referee
like this, they are impossible to reassure or satisfy. Editors
need  to  be  alive  to  this  fact  and  in  this  case  George
Batchelor eventually said something to the effect `I’m afraid
that C is being rather too suspicious and so I am going to
disregard his reports.’ In my view this was a perfect example
of a good editor in action. He had ample evidence from A and B
that the paper should be published and he took responsibility
for having made an unlucky choice in C.

Some years later I was again having a paper reviewed by JFM
and once again Referees A and B were fine, but this time C
objected to the fact that the LET theory was being applied to
isotropic turbulence. He said `there is far too much of this
sort  of  work  going  on’  and  `the  real  problems  are  shear
flows’. In response I argued that this work was physics and
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that, in comparison to condensed matter physics or particle
physics, the amount of work on isotropic turbulence is very
small  and  we  really  need  a  great  deal  more.  Again,  in
parenthesis, this remains my opinion. Referee C responded by
recommending  rejection,  and  this  time  the  editor  (not
Batchelor!) said `well clearly C is an idiot and I’m going to
ignore him’.

Actually this is all beginning to sound like it belongs in the
story by the Canadian humourist Stephen Leacock `A, B and C:
the  human  element  in  mathematics’  in  which  he  discusses
problems in arithmetic of the type: `A, B and C are employed
to dig a ditch. A can dig twice as fast as B and B can dig
twice as fast C etc’. In his short story Leacock speculates
about  the  three  individuals  and  their  interactions.  He
concludes that C always gets the dirty end of the stick and is
a weak, undersized individual who dies young. Poor C!

So let us therefore turn to a bimodal form of refereeing, as
practiced by the Physical Review. As I mentioned in my post of
25 June, when writing my book on HIT I found out that the
coefficient  $E_2$  in  the  Taylor  expansion  of  the  energy
spectrum  was  identically  zero.  To  my  astonishment  this
appeared to be a new result, particularly in view of the
ongoing controversy over `Saffman invariance vs Loitsianskii
invariance’. After getting it independently checked, I wrote
it up and submitted it to PRE. At the risk of spoiling the
suspense, I should say that it was ultimately accepted for
publication [1]. Nevertheless, the refereeing process had some
remarkable features and raises some questions of interest.

First, Referees 1 and 2 replied. Referee 1 was positive and 2
was not. In fact their report was an incoherent rant which I
found impossible to understand. I could manage to pick out
phrases which I recognized as being points that are made about
grid turbulence, but I was unable to discern anything relating
to my paper. Moreover the entire report was in bold italic
font, rather giving the impression of being what the police



used to call `a green ink letter’.

So the Editor commissioned reports 3 and 4, one of which was
favourable  and  the  other  was  not.  And  then  the  Editor
commissioned reports 5 and 6, one of which was favourable and
the other was not. There was also a new development in that
Referee  6  dragged  in  a  recent  disagreement  between  two
different sets of investigators.

At this stage the Editor decided to reject my manuscript. This
seemed to me to be `box ticking’ of the worst kind. Three for
and three against, so let’s be on the safe side and reject it!
Unlike in the two cases discussed above with JFM, there was no
attempt to make a judgement of the relative quality of the
referee  reports.  Naturally,  I  did  not  accept  this.  There
followed a so-called arbitration, which was no such thing, and
which I had no difficulty in shooting down. Then the Editor
proposed a compromise. If I would add some material relating
to the disagreement that Referee 6 had instanced, he would
send  it  back  to  that  referee.  However,  despite  my  adding
material relating to that disagreement, Referee 6 did not
change  his  extremely  hostile  attitude  and  recommended
rejection. This time the Editor did what he should have done
sooner and ignored this referee’s unbalanced report.

I should say that when I say Editor, I mean one of the
associate editors of PRE at that time. Also, as PRE doesn’t
come well out of this, I should mention a case where they did,
and where (refreshingly!) the villains were not members of the
turbulence community. I will keep this brief because I think
this topic merits a post to itself. Basically I had done an
analysis  which  showed  that  Galilean  invariance  did  not
suppress  vertex  renormalization  in  the  NSE  or  similar
equations which were of interest in soft condensed matter. Now
unfortunately there was a substantial body of work in soft
matter which relied very heavily on the supposition that it
did,  and  not  surprisingly  my  manuscript  got  a  hostile
reception. Any favourable reports were lukewarm (`might be of



mild interest’) and the Editor turned the MS down.

I wrote to the Editor to say that I accepted his decision but
wanted to point something out. If I was wrong, then not only
were the `soft matter’ theorists better off as a result, but
so also would I be, in that my LET theory would automatically
be correct to fourth- rather than third-order in renormalized
perturbation  theory!  The  Editor  suggested  that  I  formally
appeal against his decision, I did, and the arbitration was
very much in my favour [2].

All four of these examples worked out satisfactorily, in my
view, in that papers which should have been published were
published. But they have worked out in different ways. In
particular there is the question of should the editor pay
attention to the quality of the reports? Let us bear in mind
that editors are perhaps more reluctant to offend referees
than authors. Also, when a number of referees are positive can
that be cancelled out by a number being negative? I welcome
comments on my posts and would particular welcome comments on
these particular points.

[1] W. D. McComb. Infrared properties of the energy spectrum
in  freely  decaying  isotropic  turbulence.  Phys.  Rev.  E,
93:013103, 2016.
[2]  W.  D.  McComb.  Galilean  invariance  and  vertex
renormalization.  Phys.  Rev.  E,  71:37301,  2005.

Further  thoughts  on  free
decay  of  isotropic
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turbulence.
Further thoughts on free decay of isotropic turbulence.
In the previous post I discussed the initial value problem
posed by the free decay of the energy in isotropic turbulence,
along  with  things  that  we  ought  to  bear  in  mind  when
considering its experimental or DNS realisations. We should
also mention the more general problem of the free decay of
two-point covariances (or spectra) as that merits a few words
in  the  context  of  both  DNS  and  the  study  of  two-point
statistical  closures.  However,  before  considering  it,  we
should  first  consider  an  outstanding  question  about  the
simpler case: at what stage is the turbulence to be considered
as evolved?

The  question  arises  because  the  initial  state  of  the
turbulence is not actually a solution (or, more accurately,
derived from a solution) of the Navier-Stokes equation. For
the purely mathematical problem, we may indeed assume that the
initial field corresponds to isotropic turbulence. But for
grid turbulence, the wakes that form behind the bars of the
grid  are  expected  to  coalesce  into  a  three-dimensional
turbulent field, which dies away with downstream distance.
This stationary stream-wise decay has to be converted to decay
with time by invoking Taylor’s hypothesis, but the crucial
question is: at what distance downstream can the turbulence be
said to be evolved?

The same question must arise with DNS, where we specify an
initial  spectrum  on  a  lattice.  Such  initial  spectra  are
arbitrarily chosen to have suitable properties. In particular,
they are chosen to be peaked at low values of wavenumber, so
that the evolution of turbulence can be seen as the spectrum
not only decreases in magnitude, but also spreads out, as time
goes on. So once again we wish to know at what time the
spectrum will be representative of turbulence, rather than the
initial conditions.
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Probably  most  investigations  into  this  topic  have  been
concerned with establishing whether or not the decay follows a
power law; and, if so, what that power law is. In fact some
researchers  cite  the  onset  of  power-law  behaviour  as
indicating that the turbulence is well developed. Yet there is
at  least  once  situation  where  the  need  for  a  definite
criterion matters and this is the study of the dimensionless
dissipation in terms of its dependence on the Reynolds number.
This is known to follow a characteristic curve in which it
asymptotes  to  a  constant  value  with  increasing  Reynolds
number.

Now, for stationary turbulence, the existence of a unique
curve  is  unambiguous  on  both  experimental  (i.e.  DNS)  and
theoretical  grounds),  but  for  free  decay  there  is  a  fair
amount of scatter between the various investigations. When we
began working on this problem at Edinburgh some years ago, we
were surprised to find that most researchers seemed rather
vague about the stage of the decay process at which their
measurements were taken. It seemed to us that this was likely
to prove crucial. An investigation would consist of carrying
out a free decay simulation at a particular Reynolds number;
then repeating it for a higher Reynolds number, and so on.
Then the problem at any Reynolds number is to choose a decay
time to take measurements that corresponds in some sense to
`the same stage’ at other Reynolds numbers. This is not a
trivial problem and we decided to look into it in detail [1].

When a turbulence simulation is started from an arbitrary
initial velocity field with a Gaussian distribution, both the
inertial  transfer  and  the  skewness  grow  from  zero,  pass
through a peak and then decay. In contrast, the dissipation
rate  starts  with  a  finite  value  and  either  decays  (low
Reynolds numbers, say $R_\lambda(0) \leq 25$) or rises to a
peak and then decays (higher Reynolds numbers). The existence
of a peak offers the possibility of a well-defined criterion
which  would  allow  the  results  of  one  investigation  to  be



compared  with  another.  We  plotted  graphs  of  dimensionless
dissipation $C_\varepsilon (t_e)$ against Reynolds number for
various choices of evolved time $t_e$ (see Fig. 13) and found
that the resulting behaviour depended strongly on the choice
made. For instance, choosing $t_e$ to be either based on the
peak  skewness  or  peak  inertial  transfer  led  to  the  curve
tending to zero. As there is no peak dissipation for low
Reynolds numbers (and the variation of $ C_\varepsilon$ is
predominantly a low Reynolds number phenomenon) this appeared
to rule peak dissipation out as a criterion. However, we found
that a composite criterion, based on peak transfer at low
Reynolds numbers and on peak dissipation at larger Reynolds
numbers, where a peak existed, gave very interesting results,
with the dimensionless dissipation curve being very like the
stationary forced case, and tending to a value of about $0.5$.

I  do  not  claim  that  these  results  are  prescriptive  or
definitive  in  any  way,  although  they  are  certainly  quite
plausible.  But  I  hope  they  will  encourage  others  to
investigate  further.  If  this  is  not  done,  the  studies  in
decaying turbulence will remain a hodge-podge where variations
between investigations are often probably due to a failure to
compare like with like.

Lastly, in my previous post I said that at an early stage in
my career I resolved to stay clear of the problem of free
decay. To avoid any appearance of inconsistency I should point
out  that  this  resolution  was  limited  to  the  theoretical
problem of predicting the decay rate of the energy. In the
late 1970s we began studying the LES theory applied to the
problem of free decay of two-point, two-time statistics. This
work  was  reported  in  1984  [2],  and  involved  a  detailed
comparison  with  DIA,  using  the  same  initial  spectra  and
computational methods as previously used by Kraichnan. This
allowed `like for like’ comparisons in great detail, which was
still the case when the comparisons were extended to DNS in
later years. So the onset problem did not, as such, arise.



[1] S. R. Yoffe and W. D. McComb. Onset criteria for freely
decaying turbulence. Phys. Rev. Fluids, 3:104605, 2018.
[2]  W.  D.  McComb  and  V.  Shanmugasundaram.  Numerical
calculations of decaying isotropic turbulence using the LET
theory. J. Fluid Mech., 143:95-123, 1984.

Free  decay  of  isotropic
turbulence as a test problem.
Free decay of isotropic turbulence as a test problem.

When  I  began  my  postgraduate  research  in  1966,  I  quickly
decided that there was one problem that I would never work on.
That was the free decay of the kinetic energy of turbulence
from  some  initial  value.  Although,  as  the  subject  of  my
postgraduate  research  was  the  turbulence  closure  problem,
there didn’t seem to be any danger of my being asked to do so.

This particular free decay problem, as widely discussed in the
literature, can, if one likes, be regarded as a reduced form
of the general closure problem. Instead of trying to calculate
the  two-point  correlation  (or,  equivalently,  the  energy
spectrum), one is simply trying to calculate the decay curve
with time of the total energy. This involves making various
assumptions about the nature of the decay process and the most
crucial seemed to be that a certain integral was constant with
respect to time during the decay: this was generally referred
to as the Loitsyansky invariant.

We can introduce this by considering the behaviour of the
energy spectrum at small values of the wavenumber $k$. This
can be written as a Taylor polynomial \[E(k,t) = E_2(t)k^2 +
E_4(t)k^4 + \dots .\] Here the coefficient $E_4(t)$, when
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Fourier transformed to real space, is known as the Loitsyansky
integral, and in general it depends on time. It seemed that
this  was  indeed  invariant  during  decay  for  the  case  of
isotropic turbulence but it had been shown that this was not
necessarily  the  case  for  turbulence  that  was  merely
homogeneous.  The  problem  was  that  a  correlation  of  the
velocity with the pressure, which is suppressed by symmetry in
the isotropic case, existed in the more general case. The
difficulty here is that the pressure can be expressed as an
integral  over  the  velocity  field  and  so  the  correlation
$\langle  u  p  \rangle$  is  long-range  in  nature,  and  this
invalidates the proof of invariance of $E_4$ which works for
the isotropic case.

So far so good. What puzzled me at the time was that this
failure in the more general case somehow seemed to contaminate
the  isotropic  case.  People  working  in  this  field  seemed
unwilling  to  reply  on  the  invariance  of  $E_4$  even  for
isotropic turbulence. However, with the accretion of knowledge
over the years (I’d like to claim wisdom as well, but that
might be too big a stretch!), I believe that I understand
their concerns. At the time, the only practical application of
the  theory  was  to  grid  turbulence;  and  although  this  was
reckoned to be a good approximation to being isotropic, it
might not be perfect; and it might vary to some extent from
one experimental apparatus to another. And just to add to the
confusion, at about that time (although I didn’t know it)
Saffman  published  a  theory  of  grid  turbulence  in  which
$E_2(t)$ was an invariant. This led to controversy based on
$E_2$ versus $E_4$ which is with us to this day.

In more recent years, I have had to weaken my position on this
matter, because my students have found it interesting to do
free-decay calculations, in order to compare our simulations
with those of others. So when I was preparing my recent book
on HIT, I decided it would provide a good reason to really
look into this topic. As part of this work, I was checking



various results and to my astonishment, when I worked out
$E_2$ I found that it was exactly zero. This work has been
published and includes a new proof of the invariance of $E_4$
which is based on conservation of energy [1]. In passing, I
should note that the refereeing process for this paper was
something that I found educational and I will refer to that in
future posts when I get onto the subject of peer review.

Shortly  after  I  published  this  work,  a  paper  on  grid
turbulence appeared and it seemed that their results suggested
that $E_2$ was non-zero. I sent a copy of [1] to the author
and he replied `evidently grid turbulence is less isotropic
than we thought’. This struck me as a crucial point. If we are
to  make  progress  and  have  meaningful  discussions  on  this
topic,  we  need  to  recognise  that  free  decay  of  isotropic
turbulence and grid turbulence are two different problems. In
fact, as things have moved on from the mid-sixties, we also
have to consider DNS of free decay as being in principle a
different problem. Let us now examine the three problems in
turn, as follows:

1.  Free  decay  of  the  turbulent  kinetic  energy  is  a
mathematical problem which can be formulated precisely for
homogeneous isotropic turbulence.

2. Grid-generated turbulence evolves out of an ensemble of
wakes and is stationary with time and inhomogeneous in the
streamwise direction. In order to make comparisons with free
decay, it is necessary to invoke Taylor’s hypothesis of frozen
convection.

3. DNS of freely decaying turbulence is based on the Navier-
Stokes equations discretised on a lattice. Quite apart from
the errors involved (analogous to experimental error in the
grid-turbulence case), representation on a lattice is symmetry
breaking for all continuous symmetries. The two principal ones
in this case are Galilean invariance and isotropy.



Essentially, these are all three different problems and if we
wish to make comparisons we have to at least bear that fact in
mind. I have lost count of the many heated arguments that I
have heard or taken part in over the years which ran along the
lines: A says `The sky is blue!’ and B replies: `Oh no, I
assure you that grass is green!’ In other words they are not
talking about the same thing. That may seem rather extreme but
supposing one is momentum conservation and the other is energy
conservation. Such a waste of time and energy (and momentum,
for that matter).

[1] W. D. McComb. Infrared properties of the energy spectrum
in  freely  decaying  isotropic  turbulence.  Phys.  Rev.  E,
93:013103, 2016.

Stationary  isotropic
turbulence as a test problem.
Stationary isotropic turbulence as a test problem.

When I was first publishing, in the early 1970s, referees
would often say something like `the author uses the turbulence
in a box concept’ before going on to reveal a degree of
incomprehension about what I might be doing, let alone what I
actually was doing. A few years later, when direct numerical
simulation (DNS) had got under way, that phrase might have had
some significance; and indeed its use is now common, albeit
qualified by the word `periodic’. Of course, when Fourier
methods were introduced by Taylor in the 1930s, it was in the
form of Fourier series. But by the 1960s it was becoming usual
among theorists to briefly introduce Fourier series and then
take the infinite system limit and turn them into Fourier
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transforms: or, increasingly, just to formulate the problem
straightaway in the infinite system. However, it can be worth
one’s while starting with the finite cubic box of side L, and
thinking in terms of the basic physics, as well as the Fourier
methods.

In order to represent the velocity field in terms of Fourier
series,  we  introduce  the  wavevector
\[\mathbf{k}=(2\pi/L)\{n_1,n_2,n_3\},\]  where  the  integers
$n_1,n_2,n_3$ all lie in the range from $-\infty$ to $\infty$.
Fourier  sums  are  taken  over  the  discrete  values  of
$\mathbf{k}$. Then the transition to the continuous, infinite
system is made by taking the limit of infinite system size,
such  that  \[\lim_{L\rightarrow
\infty}\left(\frac{2\pi}{L}\right)^3\sum_{\mathbf{k}}  =  \int
d^3\,k.\] As ever in physics, we assume that everything is
well-behaved; and that both the field variables and their
transforms exist, being independent of system size as we go to
this limit.

We  do  not  have  to  restrict  these  ideas  to  the  Fourier
representation.  They  are  generally  true  when  we  make  the
transition from classical mechanics to continuum mechanics. To
do this, we begin with a finite system and replace discrete
objects by densities. A continuous (or field) representation
is introduced by defining continuous densities in the limit of
infinite  system  size.  All  physical  observables  must  be
expressed in terms of densities or rates. They cannot depend
on the size of the system, otherwise we would be unable to
take the continuum limit. So, if we formulate turbulence in
real space in terms of structure functions in a box, then
theoretical  expressions  for  the  structure  functions  (or
equivalently, the moments) must not depend on the size of the
box. This provides us with a basic first test for any theory;
and to our knowledge there have been some surprising failures
to recognise this. We will come back to two specific examples
presently. First we will look at the general question of how



to test theories.

Now,  stationary  isotropic  turbulence  can  be  rigorously
formulated as a mathematical problem, where `rigour’ is taken
to be in the sense of theoretical physics, but it does not
occur in nature or indeed in the laboratory. It is true that
it may occur to a reasonable approximation in geophysical and
astronomical flows, but at the moment it seems that DNS might
be our best bet for testing mathematical theories of isotropic
turbulence. So it behoves us to examine the question: how
representative is DNS of the mathematical problem that we are
studying?

Well, of course DNS has been an active field of research for
several decades now and this aspect has not been neglected.
Nevertheless, one is left with the impression that it is very
much  a  pragmatic  activity,  governed  by  `rule  of  thumb’
methods. For instance, when we began DNS at Edinburgh in the
1990s, I asked around for advice on the maximum value of the
wavenumber that we should use, as this seemed to vary from
less than the Kolmogorov dissipation wavenumber to very much
greater. The consensus of advice that I received was to choose
$k_{max} = 1.5 k_d$, and this is what we did. Later on, in
2001,  we  demonstrated  a  rational  procedure  for  choosing
$k_{max}$: see Figure 2 of reference [1] or Figure 1.6 of
reference [2]. One conclusion that emerges from this, is that
to resolve the dissipation rate might mean devoting one’s
entire simulation to the dissipation range of wavenumbers!

In recent years there seems to have been more emphasis on
resolving the largest scale of the turbulence, although much
of this work has been for the case of free decay. But concerns
remain, particularly in the terms of experimental error. It is
also necessary to note a fundamental problem. The mere fact of
representing  the  continuum  NSE  on  a  discrete  lattice  is
symmetry breaking for Galilean invariance and isotropy, to
name but two. I’m not sure how one can take this into account,
except by considering a transition towards the continuum limit



and  looking  for  asymptotic  behaviour.  This  could  involve
starting with a `fully resolved’ simulation and looking at
increasingly finer mesh sizes. To say the least this would be
very expensive in terms of computer storage and run time.
Naturally,  workers  in  the  field  always  want  the  highest
possible Reynolds number. But, if you begin with low Reynolds
numbers,  it  is  cheap  and  easy  to  do,  and  you  can  learn
something  from  the  variation  of  observables  with  Reynolds
number.  There  exist  some  well-known  simulations  that  have
employed vast resources to achieve enormous Reynolds numbers
and yet provide only a few spot values without any error bars,
with no indication of asymptotic behaviour, and I understand
suspicions about how well-resolved they are. An awful warning
to us all!

Lastly, two more awful warnings. First, as we discussed in the
previous post, Kraichnan’s asymptotic solution of DIA depends
on the largest scale of the system. That in itself is enough
to rule it out as unphysical, whether one accepts Kolmogorov
(1941) or not. However, as I pointed out, our computations at
Edinburgh  do  not  support  this  asymptotic  form,  which  was
obtained  analytically  using  approximations  that  Kraichnan
found plausible. A critical examination of that analysis is in
my opinion long overdue.

Secondly, we have the Kolmogorov (1962) form of the energy
spectrum,  which  also  depends  on  the  largest  scale  of  the
system. Probably few people now take this work seriously, but
its baleful presence influences the turbulence community and
lends  credence  to  the  increasingly  unrealistic  idea  of
intermittency corrections. In fact it has recently been shown
that the inclusion of the largest scale destroys the widely
observed scaling on Kolmogorov variables [3]. This should have
been obvious, without any need to plot the graphs!

[1] W. D. McComb, A. Hunter, and C. Johnston. Conditional
mode-elimination  and  the  subgrid-modelling  problem  for
isotropic turbulence. Phys. Fluids, 13:2030, 2001.



[2]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.

[3] W. D. McComb and M. Q. May. The effect of Kolmogorov
(1962)  scaling  on  the  universality  of  turbulence  energy
spectra. arXiv:1812.09174[physics.fluid-dyn], 2018.

Asymptotic  behaviour  of  the
Direct  Interaction
Approximation.
Asymptotic behaviour of the Direct Interaction Approximation.
As mentioned previously, Kraichnan’s asymptotic solution of
the DIA, for high Reynolds numbers and large wavenumbers, did
not  agree  with  the  observed  asymptotic  behaviour  of
turbulence.  His  expression  for  the  spectrum  was
$E(k)=C’\varepsilon^{1/2}U^{1/2}k^{-3/2}$,  where  $U$  is  the
root-mean-square velocity and $C’$ is a constant. In 1964 (see
[1] for the reference) he wrote: `Recent experimental evidence
gives strong support to [the Kolmogorov `-5’3’ form] and rules
out [the `-3/2’ form above] as a correct asymptotic law.’

However,  Kraichnan’s  result  is  not  actually  an  asymptotic
form. The rms velocity $U$ is in fact part of the solution,
not the initial conditions. We may underline this by writing
$U= [\int_0^\infty \, E(k)\,dk]^{1/2}$, which allows us to
rewrite  the  Kraichnan  result  as  $E(k)=C’
\varepsilon^{1/2}[\int_0^\infty  \,  E(k)\,dk]^{1/4}\,
k^{-3/2}$. So, far from being an asymptotic solution, this
appears to be a form of transcendental equation for the energy
spectrum.
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Now you may object that the dissipation rate is also part of
the solution, rather than of the initial conditions, and hence
this is also a criticism of the Kolmogorov form. But this is
not so. The dissipation only appears because it is equal to
the inertial transfer rate. From the simple physics of the
inertial range in wavenumber space, the appropriate quantity
is the maximum value of the inertial flux of energy through
modes, which we will denote by $\varepsilon_T$. Hence the
Kolmogorov  form  should  really  be  $E(k)  \sim
\varepsilon_T^{2/3}k^{-5/3}$. Of course Kolmogorov worked in
real space and derived the `2/3’ law. But in 1941 Obukhov
recognised that in wavenumber space the relevant quantity was
the scale-invariant energy flux, as did Onsager a few years
later.

A way of putting the Kraichnan result in a more asymptotic
form was given by McComb and Yoffe [1], who made use of the
asymptotic  Taylor  surrogate  for  the  dissipation  rate,
$\varepsilon = C_{\varepsilon,\infty} U^3/L$, where $L$ is the
integral length scale and $ C_{\varepsilon,\infty} = 0.468 \pm
0.006$ [2], to substitute for $U$ in the Kraichnan spectrum,
and  obtained:  $E(k)  =
C’C_{\varepsilon,\infty}^{-1/3}\varepsilon^{2/3}L^{\beta}k^{-5
/3 + \beta}$, where $\beta = 1/6$. Note that we have changed
$\mu$ in that reference to $\beta$ in order to avoid any
confusion with the so-called intermittency correction, which
normally is represented by that symbol.

Kraichnan only computed the Eulerian DIA for free decay at low
Reynolds numbers. However, in 1989 McComb, Shanmugasundaram
and Hutchinson [3] reported calculations for free decay of
both DIA and LET for Taylor-Reynolds numbers in the range $0.5
\leq R_{\lambda}(t_f ) \leq 1009$ where $t_f$ is the final
time of the computation. These results do not support the
asymptotic form of the DIA energy spectrum, as given above. It
was found that (for example) at $ R_{\lambda} ( t_f) = 533$,
the two theories were virtually indistinguishable and both



gave the Kolmogorov spectrum to within the accuracy of the
numerical methods. It was shown that this result was not an
artefact of the initial conditions, by taking $k^{-3/2}$ as
the  initial  spectrum,  whereupon  it  was  found  that  both
theories  evolved  away  from  this  form  to  once  again  give
$k^{-5/3}$ as the final spectrum.

There is much that remains to be understood about Eulerian
turbulence  theories  and  the  behaviour  of  two-time
correlations.

[1] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor., 50:375501, 2017.
[2] W. D. McComb, A. Berera, S. R. Yoffe, and M. F. Linkmann.
Energy  transfer  and  dissipation  in  forced  isotropic
turbulence.  Phys.  Rev.  E,  91:043013,  2015.
[3] W. D. McComb, V. Shanmugasundaram, and P. Hutchinson.
Velocity  derivative  skewness  and  two-time  velocity
correlations of isotropic turbulence as predicted by the LET
theory. J. Fluid Mech., 208:91, 1989.

A brief summary of two-point
renormalized  perturbation
theories.
A  brief  summary  of  two-point  renormalized  perturbation
theories.
In  the  previous  post  we  discussed  the  introduction  of
Kraichnan’s  DIA,  based  on  a  combination  of  a  mean-field
assumption and a new kind of perturbation theory, and how it
was  supported  by  Wyld’s  formalism,  itself  based  on  a
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conventional perturbation expansion of the NSE. This was not
too surprising, as Kraichnan’s mean field assumption involved
his infinitesimal response function which the Wyld comparison
showed was the same as the viscous response function, and
hence not a random variable. By 1961 it was known that the
asymptotic solution of DIA was incorrect, with implications
for both the Wyld formalism (and the MSR formalism later on:
see previous post).

The next step forward was the theory of Edwards [1] in 1964,
which  was  restricted  to  the  more  limited  single-time
covariance and also to the stationary case. This took as its
starting point the Liouville equation for $P$, the probability
distribution functional of the velocity field, and went beyond
the  mean-field  case  to  calculate  corrections  to  it  self-
consistently. That is, Edwards made the substitution $P\equiv
P_0 + (P –P_0)$ and then expanded in powers of the correction
term $\Delta P = P – P_0$. Then, taking $P_0$ to be Gaussian,
and exploiting the symmetries of the system, Edwards gave a
highly intuitive treatment of the problem, in which he drew
strongly on an analogy with the theory of Brownian motion. It
turned out that the resulting theory was closely related to
the  DIA  and,  like  it,  did  not  agree  with  the  Kolmogorov
spectrum.

The following year Herring [2], using formal methods of many-
body theory, produced a self-consistent field theory which was
much more abstract than the Edwards one, but yielded the same
energy equation. Then, in 1966 he generalised this theory to
the two-time case [3]. All three theories [1-3] led to the
same energy equation as DIA, but all differed in the form of
the response equation.

Now, it is in the introduction of the response equation that
the renormalization takes place, and it is in the form of the
response equation that the deviation from Kolmogorov lies, so
this  difference  between  these  response  equations  raises
fundamental  questions  about  all  these  theories.  Various



interpretations were offered at the time, but these were all
phenomenological  in  character.  It  was  much  later  that  a
uniform, fundamental diagnosis was offered and I will come on
to that presently. But this was the situation when I began
post-graduate research with Sam Edwards in October 1966. The
exciting developments of the previous decade seemed to be
leading to a dead end, and my first task was to choose the
response function of the Edwards theory in a new way, such
that it maximised the turbulent entropy [4].

On the basis of the Edwards analysis, his theory had failed
under the extreme circumstances of an infinite Reynolds number
limit, in which the input was modelled by a delta-function at
the origin in $k$-space and the dissipation was represented by
a  delta-function  at  $k=\infty$.  Edwards  argued  that  under
these circumstances the Kolmogorov spectrum would apply at all
wavenumbers, and in his original theory this led to an infra-
red divergence in the integral for the response function.
(Note: Kraichnan used the scale-invariance of the inertial
flux $\Pi$ as his criterion for the inertial range, but the
two  methods  are  mathematically  equivalent.)  The  `maximum
entropy’  theory  [4]  certainly  achieved  the  result  of
eliminating the infra-red divergence, but that was about as
much as one could say for it. It became clearer to me later
that it was not a very sound approach.

It is a truism in statistical physics that a system is either
dominated by entropy or energy. If we consider a system made
of many microscopic magnets on a lattice then the entropy will
determine the distribution. However if we switch on a powerful
external magnetic field, all the little magnets will line up
with it and (small fluctuations aside) entropy has no say in
the matter! It is just like that in turbulence. The system is
dominated by a symmetry breaking current of energy through the
modes, running from small to large wavenumbers, where it is
dissipated by viscosity. There is no real reason to assume
that the entropy determines the turbulence response.



When I was in my first post-doctoral job, I gave a talk to
some  theorists.  I  explained  my  early  ideas  on  how  energy
transfer might determine the turbulence response. They heard
me out politely, and then I made the mistake of mentioning the
maximum entropy work. Immediately they became enthusiastic.
‘Tell us about that’, they said. The impression they gave was
‘now that’s a real theory!’ I was in awe of them as they were
much  older  and  more  experienced  than  me,  and  talked  so
authoritatively  about  all  aspects  of  theoretical  physics.
Nevertheless,  this  was  my  first  inkling  of  conventional
thinking. The implication seemed to be: it was a text-book
method, so it must be good.

Over the next few years I developed the local energy transfer
(LET) theory [5, 6], and also offered a unified explanation of
the  failure  of  first-generation  renormalized  perturbation
theories. The further extension of this work to the two-time
case  has  had  a  rather  chequered  history  and  will  be  the
subject of further posts.

[1] S. F. Edwards. The statistical dynamics of homogeneous
turbulence. J. Fluid Mech., 18:239, 1964.
[2]  J.  R.  Herring.  Self-consistent  field  approach  to
turbulence  theory.  Phys.  Fluids,  8:2219,  1965.
[3]  J.  R.  Herring.  Self-consistent  field  approach  to
nonstationary  turbulence.  Phys.  Fluids,  9:2106,  1966.
[4] S. F. Edwards and W. D. McComb. Statistical mechanics far
from equilibrium. J.Phys.A, 2:157, 1969.
[5] W. D. McComb. A local energy transfer theory of isotropic
turbulence. J.Phys.A, 7(5):632, 1974.
[6] W. D. McComb. The inertial range spectrum from a local
energy  transfer  theory  of  isotropic  turbulence.  J.Phys.A,
9:179, 1976.



Theories versus formalisms
Theories versus formalisms.
After the catastrophe of quasi-normality, the modern era of
turbulence theory began in the late 1950s, with a series of
papers by Kraichnan in the Physical Review, culminating in the
formal  presentation  of  his  direct-interaction  approximation
(DIA) in JFM in 1959 [1].

The next step was the paper by Wyld [2], which set out a
formal treatment of the turbulence problem based on, and very
much in the language of, quantum field theory. Wyld carried
out a conventional perturbation theory, based on the viscous
response of a fluid to a random stirring force. He showed how
simple diagrams could be used with combinatorics to generate
all  the  terms  in  an  infinite  series  for  the  two-point
correlation  function.  He  also  showed  that  terms  could  be
classified  by  the  topological  properties  of  their
corresponding diagrams. In this way, he found that one class
of terms could be summed exactly and that another could be re-
expressed  in  terms  of  partially  summed  series,  thus
introducing the idea of renormalization. In other words, the
exact correlation could be expressed as an expansion in terms
of  itself  and  a  renormalized  response  function  (or
propagator). In a sense, this could be regarded as a general
solution of the problem, but obviously one that by itself does
not provide a tractable theory. In short, it is a formalism.

As an aside, I should just mention that Wyld’s paper was
evidently very much written for theoretical physicists. That
is no reason why any competent applied mathematician shouldn’t
follow it, but one suspects that few did. Also, the work has
been subject to a degree of criticism: the current version may
be found as the improved Wyld-Lee theory in #8 of the list of
My Recent Papers on this website. But this does not affect
anything I will say here and I will return to this topic in a
future blog.
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In contrast, Kraichnan began by introducing the infinitesimal
response function $\hat{G}$, which connected an infinitesimal
change in the stirring forces to an infinitesimal change in
the velocity field. He made this the basis of what he claimed
was an unconventional (superior?) perturbation theory, making
use of ideas like weak dependence, maximal randomness, and
direct interaction. Unfortunately these ideas did not attract
general agreement, and I suspect that he found the refereeing
process  with  JFM,  and  the  subsequent  experience  of  the
Marseille Conference (see the previous blog), rather bruising.
Apparently  he  said.  `The  optimism  of  British  applied
mathematicians  is  unbounded.’  Then  after  a  pause.  `From
below.’  I  was  told  this  by  Sam  Edwards  when  I  was  a
postgraduate student. Sam obviously appreciated the interplay
of wit and cynicism.

Now, in completing his theory, Kraichnan made the substitution
$\hat{G}=  G  \equiv  \langle  \hat{G}  \rangle$,  which  is  in
effect a mean-field approximation. So it is important to note
that, when the conventional perturbation formalism of Wyld is
truncated at second-order in the renormalized expansion, the
equations of Kraichnan’s DIA are recovered. This is important
because  it  suggests  that  this  particular  mean-field
approximation is in fact justified. However, we know that
Kraichnan came to the conclusion that his theory was wrong, at
least in terms of its asymptotic behaviour at high Reynolds
numbers: see the previous blog.

This has the immediate implication that Wyld’s formalism is
also wrong, when truncated at second order. Which is also true
of the later functional formalism of Martin, Siggia and Rose
[3]. Kraichnan came to the conclusion that his DIA approach
should  be  carried  out  in  a  mixed  Eulerian-Lagrangian
coordinate system; and, if correct, that would presumably also
apply  to  the  two  formalisms.  However,  there  is  also  the
question of whether or not it is appropriate to treat the
system response as one would in dynamical system theory. After



all, the stirring forces in a fluid, first have to create the
system,  and  only  then  do  they  maintain  it  against  the
dissipative  effects  of  viscosity.  We  will  return  to  this
aspect in future blogs.
[1] R. H. Kraichnan. The structure of isotropic turbulence at
very high Reynolds numbers. J. Fluid Mech., 5:497-543, 1959.
[2] H. W. Wyld Jr. Formulation of the theory of turbulence in
an incompressible fluid. Ann. Phys, 14:143, 1961.
[3] P. C. Martin, E. D. Siggia, and H. A. Rose. Statistical
Dynamics of Classical Systems. Phys. Rev. A, 8(1):423-437,
1973.

Marseille  (1961):  a
paradoxical outcome.
Marseille (1961): a paradoxical outcome.
When I was first at Edinburgh, in the early 1970s, a number of
samizdat-like  documents,  of  entirely  mysterious  provenance,
were being passed around. One that came my way, was a paper by
Lumley  which  contained  some  rather  interesting  ideas  for
treating the problem of turbulent diffusion. I expect that it
is still in my filing system; but, with the Covid-19 lockdown,
I am cut off from my university office and unable to refresh
my memory. Later on I encountered the paper by Proudman which
criticised  Kraichnan’s  theory  of  turbulence  –  the  Direct-
Interaction Approximation – and by that time I presumably had
heard about the meeting held in Marseille in 1961. Of course
my ignorance is not all that surprising, in that the meeting,
which was the source of these papers, took place five years
before I began my postgraduate research. In any case, I must
have known about it by the late 1980s, as these papers are
correctly  referenced  in  my  1990  book  on  the  physics  of
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turbulence.

An interesting and informal account of this meeting is given
by  Moffatt  in  his  review  [1],  which  is  essentially  an
appreciation of the life and work of G. K. Batchelor, and
accordingly the meeting is seen, as it were, through this
prism. Having told the story of how Batchelor discovered the
work of Kolmogorov, while searching through the literature of
turbulence  in  the  library  of  the  Cambridge  Philosophical
Society; and how he had expanded the short and rather cryptic
papers of Kolmogorov into what was to become a seminal work on
the  subject  [2],  Moffatt  sees  the  Marseille  meeting  as  a
‘watershed’ in the study of turbulence. In support of this, he
highlights two contributions to the meeting.

First,  there  is  the  report  by  Stewart  of  experimental
measurements of energy spectra carried out in the channel
between Vancouver Island and the mainland. This investigation
achieved values of the Taylor-Reynolds number up to about
3000,  and  several  decades  of  power-law  behaviour,  which
appeared to support the Kolmogorov $-5/3$ spectrum. This work
was published the following year [3].

Secondly, there was a lecture by Kolmogorov, also published in
the following year [4], in which he outlined a refinement
(sic) of his 1941 theory in response to a criticism by Landau.
His conclusion was that the power of $-5/3$ should be subject
to a small correction $\mu$; but he was unable to obtain a
value for $\mu$.
There is an element of contradiction here, but that could
possibly be resolved quite trivially if one were to find out
that the two agreed within experimental error. So that in
itself is not a paradox. The paradox that I have in mind
arises in a different way.

Moffatt discusses the fact that Batchelor essentially gave up
turbulence as his main research interest after this meeting.
His argument appears to be that Batchelor was already becoming



discouraged by the difficulties of the subject. And, given
that  a  major  part  of  his  own  research  had  been  the
interpretation  and  dissemination  of  the  Kolmogorov  (1941)
theory, he may have found that Kolmogorov’s lecture at this
meeting came as the last straw!

Another possibility, that Moffatt doesn’t mention, is that
Batcheleor may have found the new wave of theoretical physics
approaches, as initiated by Kraichnan, not only complicated
but also part of an alien culture, to the extent that this too
was discouraging. I have a personal note that I can add here.
I  only  met  Batchelor  once;  in  1967  when  he  examined  my
Master’s thesis. At one point he had some difficulty with the
units, where I was giving a quantum physics analogy, and I
pointed out that there would be a Planck’s constant involved,
but that I was working in units where Planck’s constant was
unity. At another stage he pointed out that he was, at the
risk of being accused of cynicism, no more optimistic about
these  new  quantum-inspired  approaches,  than  about  anything
else. And, that was with Sam Edwards, who had published a
theory of turbulence in JFM three years earlier, also in the
room! I am quite sure that forty (or more) years on, there
would be many in turbulence research who would eagerly say
that  he  had  proved  to  be  right.  But,  following  one’s
prejudices,  rather  than  engaging  with  a  subject,  is  the
abnegation of scholarship. Sometimes the truth lies deep.

However,  another  major  discouragement  took  place  at  this
meeting. Kraichnan was predicting an inertial-range spectrum
with an exponent of $-3/2$. Even if the results of Grant et
al. [3] were compatible with a small correction to $5/3$, they
were  certainly  good  enough  to  convincingly  rule  out
Kraichnan’s rival $3/2$ exponent. As a result, Kraichnan had
to look at his theory again, and over a period of several
years he became convinced that the problem was insoluble in
Eulerian coordinates, and that there was a need to change to a
mixed  coordinate  system  which  he  called  Lagrangian-History



coordinates. The result was an immensely complicated theory,
which  not  only  had  to  be  abridged  in  order  to  permit
computation, but also depended on the way in which the theory
was formulated. This has left a legacy of other workers who
employ a more conventional Lagrangian system.

This, then, is the paradox that I had in mind. The outcome of
the meeting, put in very broad brush terms, is that Batchelor
changed  his  mind  because  Kolmogorov  (1941)  was  wrong  and
Kraichnan changed his mind because it was correct. It cannot
be said that progress in turbulence is ever smooth.
[1] H. K. Moffatt. G. K. Batchelor and the Homogenization of
Turbulence. Ann. Rev. Fluid Mech., 34:19-35, 2002.
[2] G. K. Batchelor. Kolmogorov’s theory of locally isotropic
turbulence. Proc. Camb. Philos. Soc., 43:533, 1947.
[3] H. L. Grant, R. W. Stewart, and A. Moilliet. Turbulence
spectra from a tidal channel. J. Fluid Mech., 12:241-268,
1962.
[4] A. N. Kolmogorov. A refinement of previous hypotheses
concerning the local structure of turbulence in a viscous
incompressible fluid at high Reynolds number. J. Fluid Mech.,
13:82-85, 1962.

Which  Navier-Stokes  equation
do you use?
Which Navier-Stokes equation do you use?

In the first half of 1999, a major turbulence programme was
held at the Isaac Newton Institute in Cambridge. On those days
when there were no lectures or seminars during the morning, a
large group of us used to meet for coffee and discussions. In
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my  view  these  discussions  were  easily  the  most  enjoyable
aspect  of  the  programme.  On  one  particular  morning,  as  a
prelude to making some point, I said that I was probably
unusual in that I have taught the derivation of the Navier-
Stokes equation (NSE) as continuum mechanics to engineering
students  and  by  statistical  mechanics  to  physicists  and
mathematicians. The general reaction was that that I was not
merely unusual, but surely unique! I gathered, from comments
made, that everyone present saw the NSE as part of continuum
mechanics.

Of  course  the  two  forms  of  NSE  are  apparently  identical,
otherwise one could not refer to both as the Navier-Stokes
equation.  Nevertheless,  when  one  comes  to  consider  the
infinite Reynolds number limit, it is necessary to become
rather more particular. We can start doing this by stating the
two forms, as follows.

First, the continuum-mechanical NSE is exact for a continuous
fluid which shows Newtonian behaviour under all circumstances
of interest.

Secondly,  the  statistical-mechanical  NSE  is  the  first
approximation to the exact statistical mechanical equations of
motion. So in principal it should be followed by a statement
to the effect that there are higher-order terms.

Now strictly, if we want to consider cases where the continuum
approximation breaks down, we should be using the second of
these  forms.  Batchelor  argued  that  in  the  limit  of  zero
viscosity (at constant dissipation rate) the dissipation would
be concentrated at infinity in wavenumber space. Edwards [1]
went further and represented this dissipation by a delta-
function at $k=\infty$ and matched it with a delta-function
input of energy at $k=0$. In this way he could obtain an
infinitely long inertial range and assume that the $-5/3$
spectrum  applied  everywhere,  as  a  test  of  his  closure
approximation.



The Edwards procedure is valid, because he was applying it to
a closure of the (in effect) continuum-mechanical NSE, as
indeed  is  everyone  else  who  discusses  behaviour  at  large
Reynolds numbers; or, for that matter, statistical closures.
But the question of the validity of this model arises when
people  consider  the  breakdown  of  the  NSE.  This  actually
requires some consideration of the basic physics, which in
this case means statistical mechanics; and, essentially this
boils down to the following: The general requirement for the
continuum limit to be valid is that the smallest length-scale
of the fluid motion should be much larger than the mean free
path of the fluid’s molecules.

The only example of this being looked at quantitatively, that
I know of, may be found in Section 1.3 of the book by Leslie
[2]. He considered flow in a pipe at a Reynolds number of
$10^6$, with a pipe diameter of $10mm =10^{-2}m$, which he
described as an extreme case. In Section 2.8 of his book, he
calculates the minimum eddy size to be greater than $10^{-4}mm
=10^{-7}m$. He notes that for a liquid the mean free path is
of  the  order  of  the  atomic  dimensions  and  thus  about
$10^{-10}m$ and hence the use of a continuum form is very well
justified. He further comments: ‘It [the continuum limit] is
also satisfied, although not by such a comfortable margin, by
any gas dense enough to produce a Reynolds number of $10^6$ in
a passage only $10mm$ in diameter.’

I think that it would be a good idea if those who discuss
cases where a theory based on the Navier-Stoke equation is
supposed  to  break  down  actually  put  in  some  numbers  to
indicate where their revised theory would be applicable and
the NSE wouldn’t. Or perhaps, it might be salutary to consider
in  detail  the  variation  of  significant  quantities  with
increasing Reynolds number and identify the smooth development
of asymptotic behaviour. I will return to this point in future
posts.

Anyone  who  would  like  an  introductory  discussion  of  the



derivation of macroscopic balance equations from statistical
mechanics should consult Section 7.6 of my book Study notes
for  statistical  physics,  which  may  be  downloaded  free  of
charge from Bookboon.com.

[1] S. F. Edwards. Turbulence in hydrodynamics and plasma
physics. In Proc. Int. Conf. on Plasma Physics, Trieste, page
595. IAEA, 1965.
[2] D. C. Leslie. Developments in the theory of turbulence.
Clarendon Press, Oxford, 1973.

Turbulence as a quantum field
theory: 2
Turbulence as a quantum field theory: 2
In the previous post, we specified the problem of stationary,
isotropic turbulence, and discussed the nature of turbulence
phenomenology, insofar as it is relevant to taking our first
steps in a field-theoretic approach. Now we will extend that
specification  in  order  to  allow  us  to  concentrate  on
renormalization  group  or  RG.

RG originated in quantum field theory in the 1950s, but is
best known for its successes in critical phenomena in the
1970s,  along  with  the  creation  of  the  new  subject  of
statistical field theory. Essentially it began as a method of
exploiting  scale  invariance,  and  ended  up  as  a  method  of
detecting it, and also establishing the conditions under which
it would hold. It is most easily understood in the theory of
ferromagnetism, where we can envisage a model consisting of
lots  of  little  atomic  magnets  on  a  lattice.  These  atomic
magnets (or lattice spins) interact with each other and, if we
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call the interaction energy for any pair $J$, this energy
appears in the partition function as $J/k_B T$, where $k_B$ is
the Boltzmann constant, and $T$ is the absolute temperature.
This quantity is the coupling constant.

Now  RG  consists  of  coarse-graining  our  microscopic
description, and then re-scaling it, to see it we can get back
to where we started. If so, that would be a fixed point. In
practice, we might expect to carry out this transformation a
number of times, in order to reach such a fixed point. So in
effect we are progressively reducing the number of degrees of
freedom. This involves some sort of partial average at each
step, in contrast to a full ensemble average, which gets you
down from lots of degrees of freedom to just a few numbers
being needed to describe a system.

Actually, merely by waving our hands about, we can deduce
something about the fixed points of our lattice model of a
ferromagnet. If we consider very high temperatures, then the
coupling strength will be reduced to zero. The lattice spins
will have a Gaussian probability distribution. We can envisage
that this will be a fixed point, as no amount of coarse-
graining will change it from a purely random distribution. At
the  other  extreme,  as  the  temperature  tends  to  zero,  the
coupling  tends  to  infinity  and  there  can  be  no  random
behaviour: the spins will all line up. Once again, perfect
order cannot be changed by coarse graining, and this also is a
fixed  point.  What  happens  in  between  these  extremes  is
interesting. As the temperature is reduced from some very
large  value,  clumps  of  aligned  spins  will  occur  as
fluctuations. The size of these fluctuations is characterised
by the correlation length. As the temperature approaches some
critical value $T_c$ from above, the correlation length will
tend to infinity. When this occurs, it is no longer possible
to coarse-grain away the ordering, as it exists on all scales.
This fixed point is the critical point of the lattice.

So, RG applied to the model identifies the high- and low-



temperature fixed points, which are trivial; and the critical
fixed point which corresponds to the onset of ferromagnetism.
This is known as real space RG and I have given a fuller
account (with pictures!) elsewhere [1]. For completeness, I
should mention that the momentum-space analytical treatment
involves Gaussian perturbation theory in order to evaluate
parameters  associated  with  the  critical  point.  Also,  the
temperature in this context is known as a control parameter.

Variation  of  the  coupling  strength  with
wavenumber in isotropic turbulence.

In turbulence, the degrees of freedom are the independently
excited Fourier modes. The coupling parameter for each mode
can be identified with Batchelor’s Reynolds number (see my
earlier  post  on  23/04/20)  which  takes  the  form
$R(k)=[E(k)]^{1/2}/\nu  k^{1/2}$.  Using  the  schematic  energy
spectrum, as given in the preceding post, we can identify the
trivial fixed points where the coupling falls to zero. This is
because the spectrum is known to go to zero at least as $k^4$
as $k\rightarrow 0$ and to zero exponentially as $k\rightarrow
\infty$. By analogy with quantum field theory, we refer to
these points as being asymptotically free in the infra-red and
the  ultra-violet,  respectively.  In  order  to  compare  with
magnetism,  we  can  argue  that  the  $k=0$  fixed  point  is
analogous with the high-temperature, where the low-$k$ motion



is random (Gaussian) due to the stirring, whereas at large
$k$, the motion is damped by viscosity and is analogous to the
low-temperature fixed point. In the figure we identify another
possible,  but  non-trivial,  fixed  point  where  the  inertial
range is represented by the Kolmogorov $k^{-5/3}$ spectrum. A
power law, being scale-free, is likely to be associated with a
fixed point of the RG transformations.

In order to carry out calculations, we seek to eliminate modes
progressively in bands, first $k_1\leq k\leq k_0$, then $k_2
\leq k \leq k_1$, and so on. At the first stage, the effect of
the missing modes results in an increase to the viscosity
$\nu_0 \rightarrow \nu_1 = \nu_0 + \delta \nu_0$. We then
rescale on the increased viscosity, and repeat the process.
Note that we rename the molecular viscosity $\nu = \nu_0$ for
this purpose. Also note that it can be a little counter-
intuitive associating zero with the maximum value of $k$, but
we want an increasing index as we reduce $k$, leading on to a
recurrence relationship which may reach a fixed point.

In the theory of magnetism, the lattice spacing $a$ is used to
define the maximum wavenumber, thus $k_{max} = 2\pi/a$. In
turbulence, sometimes the Kolmogorov wavenumber is used for
the maximum, but this is likely to be incorrect by at least an
order of magnitude. A better definition has been given [2] in
terms  of  the  dissipation  integral,  thus:  $\varepsilon  =
\int_0^\infty 2\nu_0 k^2 E(k) dk \simeq \int_0^{k_{max}}2\nu_0
k^2 E(k) dk$.

I shall highlight two calculations here. Forster et al [3]
carried out an RG calculation by restricting the wavenumbers
considered to a region near the origin. This was very much a
Gaussian perturbation theory of the type used in the study of
critical phenomena. They did not refer to this as turbulence,
and  instead  considered  it  as  the  large  scale  asymptotic
behaviour of randomly stirred fluid motion.

Later, McComb and Watt [4], introduced a form of conditional



average which allowed the RG transformation to be formulated
as an approximation, valid even at large wavenumbers. They
were able to find a non-trivial fixed point which corresponded
to the onset of the inertial (power-law) range and gave a good
value of the Kolmogorov spectral constant. This work has been
carried  on  and  refined  but  is  very  largely  ignored.  In
contrast,  Forster  et  al  seem  to  have  established  a  new
paradigm  of  Gaussian  fluid  motion  which  permits  the
application of much field theoretic RG which relies on the
simplifications  of  the  paradigm.  There  is,  however,  one
difference. Nowadays people publishing in this field describe
it  as  turbulence!  The  most  up-to-date  treatment  of  the
conditional averaging method will be found in [5].

[1] W. D. McComb. Renormalization Methods. Oxford University
Press, 2004.

[2] W. D. McComb. Application of Renormalization Group methods
to  the  subgrid  modelling  problem.  In  U.  Schumann  and  R.
Friedrich,  editors,  Direct  and  Large  Eddy  Simulation  of
Turbulence, pages 67, 81. Vieweg, 1986.

[3] D. Forster, D. R. Nelson, and M. J. Stephen. Long-time
tails  and  the  large  eddy  behaviour  of  a  randomly  stirred
fluid. Phys. Rev. Lett., 36 (15):867-869, 1976.

[4]  W.  D.  McComb  and  A.  G.  Watt.  Conditional  averaging
procedure for the elimination of the small-scale modes from
incompressible  fluid  turbulence  at  high  Reynolds  numbers.
Phys. Rev. Lett., 65(26):3281-3284, 1990.

[5]  W.  D.  McComb.  Asymptotic  freedom,  non-Gaussian
perturbation theory, and the application of renormalization
group  theory  to  isotropic  turbulence.  Phys.  Rev.  E,
73:26303-26307,  2006.



Turbulence as a quantum field
theory: 1
Turbulence as a quantum field theory: 1

In  the  late  1940s,  the  remarkable  success  of  arbitrary
renormalization  procedures  in  quantum  electrodynamics  in
giving an accurate picture of the interaction between matter
and the electromagnetic field, led on to the development of
quantum field theory. The basis of the method was perturbation
theory, which is essentially a way of solving an equation by
expanding  it  around  a  similar,  but  soluble,  equation  and
obtaining the coefficients in the expansion iteratively.

As a result of these successes, perturbation theory became
part of the education of every physicist. Indeed, it is not
too much to say that it is part of our DNA. Yet, a few years
ago,  when  I  looked  at  the  website  of  an  applied  maths
department,  they  had  a  lengthy  explanation  of  what
perturbation  theory  was,  as  they  were  using  it  on  some
problem.  One  simply  couldn’t  imagine  that,  on  a  physics
department  website,  and  it  illustrates  the  cultural  voids
between different disciplines in the turbulence community. For
instance, I used to hear/read comments to the effect that
‘isotropic  turbulence  had  been  studied  for  its  potential
application to shear flows, but this proved not to be the case
and now it was of no further interest.’ From a physicist’s
point of view, the reason for studying isotropic turbulence is
the  same  as  the  motivation  for  being  the  first  to  climb
Everest. Because it is there! But, interestingly, the study of
isotropic turbulence has increased in recent years, driven by
the growth of direct numerical simulation of the equations of
motion as a discipline in its own right.

https://blogs.ed.ac.uk/physics-of-turbulence/2020/04/30/turbulence-as-a-quantum-field-theory-1/
https://blogs.ed.ac.uk/physics-of-turbulence/2020/04/30/turbulence-as-a-quantum-field-theory-1/


However,  back  to  the  sixties.  The  idea  of  applying  these
methods to turbulence caught on, and for a while things seem
to have been quite exciting. In particular, there were the
pioneering theories of Kraichnan, Edwards and Herring. There
was also, the formalism of Wyld, which was the most like
quantum field theory. At this point, I know from long and
bitter experience that there will be wiseacres muttering ‘Wyld
was wrong’. They won’t know what exactly is wrong, but they
will be quoting a well-known later formalism by Martin, Siggia
and Rose. In fact it has recently been shown that the two
formalisms are compatible, once some simple procedural changes
have been made to Wyld’s approach [1].

We will return to Wyld in a later post (and also to the
distinction between formalisms and theories). Here we want to
take a critical look at the underlying physics of applying the
methods of quantum field theory to fluid turbulence. It is one
thing  to  apply  the  iterative-perturbative  approach  to  the
Navier-Stokes  equations  (NSE),  and  another  to  justify  the
application  of  specific  renormalization  procedures  to  a
macroscopic phenomenon in classical physics. So, let’s begin
by formulating the problem of turbulence for this purpose, in
order to see whether the analogy is justified.

We consider a cubical box of side $L$, occupied by a fluid
which is stirred by random forces with a multivariate-normal
distribution and with instantaneous correlation in time. This
condition ensures that any correlations which arise in the
velocity field are due to the NSE. It also is known as the
white noise condition and allows us to work out the rate at
which  the  forces  do  work  on  the  fluid  in  terms  of  the
autocorrelation of the random forces, which is part of the
specification of the problem. (Occasionally one sees it stated
that the delta-function autocorrelation in time is needed for
Galilean invariance. I must say that I would like to see a
reasoned justification for that statement.)

By expanding the velocity field (and pressure) in Fourier



series, we can study the NSE in wavenumber $k$ space. It is
usual  nowadays  to  proceed  immediately  to  the  limit  $L
\rightarrow  \infty$  and  make  use  of  the  Fourier  integral
representation. It is important to note, that this is a limit.
It does not imply that there is a quantity $\epsilon = 1/L =
0$. It does however imply that all our procedures and results
must be independent of $L$. Then the problem may be seen as
one of strong nonlinear coupling, due to the form of the
nonlinear term in wavenumber space.

Strong nonlinear coupling? Well that’s the conventional view
and it is certainly not wrong. But let’s not be too glib about
this. It is well known, and probably has been since at latest
the early part of the last century, that making variables non-
dimensionless on specific length- and velocity-scales results
in a Reynolds number appearing in front of the nonlinear term
as a prefactor. Expressing, this in terms of quantum field
theory, the Reynolds number plays the part of the coupling
constant. In quantum-electrodynamics, the coupling constant is
the fine-structure constant with a value of about $1/137$, and
thus provides a small parameter for perturbation expansion.
While the resulting series is not strictly convergent, it does
give answers of astonishing accuracy. It is equally well known
that  attempting  perturbation  theory  in  fluid  dynamics  is
unwise  for  anything  other  than  creeping  flow,  where  the
Reynolds number is small. So applying perturbation theory to
turbulence looks distinctly unpromising.

There is also the basic phenomenology of turbulence which we
must take into account. The stirring motion of the forces will
produce  fluid  velocities  with  normal  (or  Gaussian)
distributions. Then the effect of the nonlinear coupling is to
generate modes with larger values of wavenumber than those
initially stirred. This is accompanied by the transfer of
energy from small wavenumbers to large, and if left to carry
on would lead to equipartition for any finite set of modes,
albeit  with  the  total  energy  increasing  with  time.  This



assumes  the  imposition  of  a  cut-off  wavenumber,  but  in
practice the action of viscosity is symmetry-breaking, and the
kinetic energy of turbulent motion leaves the system as heat.
The situation is as shown in the sketch which, despite our
restriction to isotropic turbulence in a box, is actually
quite illustrative of what goes on in many turbulent flows.

Sketch of the energy spectrum of
isotropic turbulence at moderate
Reynolds number.

Various characteristic scales can be defined, but the most
important  is  the  Kolmogorov  dissipation  wavenumber,  thus:
$k_d=(\varepsilon /\nu_0^3)^{1/4}$, which gives the order of
magnitude of the wavenumber at which the viscous effects begin
to dominate. For the application of renormalized perturbation
theory  (which  we  will  discuss  in  a  later  post),  this
phenomenology is important for assessment purposes. However,
when we look at the later introduction of renormalization
group theory, we have to consider this picture in rather more
detail. We will do that in the next post.

[1] A. Berera, M. Salewski, and W. D. McComb. Eulerian Field-
Theoretic Closure Formalisms for Fluid Turbulence. Phys. Rev.
E, 87:013007-1-25, 2013.



Is  there  an  alternative
infinite  Reynolds  number
limit?
Is there an alternative infinite Reynolds number limit?

I first became conscious of the term dissipation anomaly in
January 2006, at a summer school, where the lecturer preceding
me laid heavy emphasis on the term, drawing an analogy with
the concept of anomaly in quantum field theory, as he did so.
It seemed that this had become a popular name for the fact
that turbulence possesses a finite rate of dissipation in the
limit  as  the  viscosity  tends  to  zero.  I  found  the  term
puzzling, as this behaviour seemed perfectly natural to me. At
the time it occurred to me that it probably depended on how
you had first met turbulence, whether the use of this term
seemed natural or not. In my case, I had met turbulence in the
form of shear flows, long before I had been introduced to the
study of isotropic turbulence in my PhD project.

Back in the real world, the experiments of Osborne Reynolds
were conducted on pipe flow in the late 1890s, and this line
of work was continued in the 1930s and 1950s by (for example)
Nikuradse  and  Laufer  [1].  This  led  to  a  picture  where
turbulence was seen as possessing its own resistance to flow.
The  disorderly  eddying  motions  were  perceived  to  have  a
randomizing effect analogous to, but much stronger than, the
effects of the fluid’s molecular viscosity. This in turn led
to the useful but limited concept of the eddy viscosity. As
the Reynolds number was increased, the eddy viscosity became
dominant, typically being two orders of magnitude greater than
the fluid viscosity.
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In principle, there are three alternative ways of varying the
Reynolds number in pipe flow, but in practice it is just a
matter of turning up the pump speed. Certainly no one would
try to do it by decreasing the viscosity or increasing the
pipe diameter. In isotropic turbulence, the situation is not
so straightforward, as we use forms of the Reynolds number
which depend on internal length and velocity scales. Indeed
the only unambiguous characteristic which is known initially
is the fluid viscosity.

An ingenious way round this was given by Batchelor (see pp 106
–  107,  in  [2]),  who  introduced  a  Reynolds  number  for  an
individual degree for freedom (i.e. wave-number mode) as $R(k)
=  [E(k)]^{1/2}/\nu  k^{1/2}$,  in  terms  of  the  wavenumber
spectrum, the viscosity and the wave-number of that particular
degree of freedom. He argued that the effect of decreasing the
viscosity would be to increase the dominance of the inertial
forces on that particular mode, so that the region of wave-
number space which is significantly affected by viscous forces
moves out towards $k=\infty$. He concluded: `In the limit of
infinite Reynolds number the sink of energy is displaced to
infinity and the influence of viscous forces is negligible for
wave-numbers of finite magnitude.’ A similar conclusion was
reached by Edwards from a consideration of the Kolmogorov
dissipation  wave-number  [1],  who  showed  that  the  sink  of
energy  at  infinity  could  be  represented  by  a  Dirac  delta
function.

It is perhaps also worth mentioning that the use of this local
(in wave-number) Reynolds number provides a strength parameter
for the consideration of isotropic turbulence as an analogous
quantum field theory [3].
Evidently the conclusion that the infinite Reynolds limit in
isotropic  turbulence  corresponds  to  a  sink  of  energy  at
infinity  in  $k$-space  seems  to  be  well  justified.
Nevertheless,  this  use  of  the  value  infinity  in  the
mathematical sense is only justified in theoretical continuum



mechanics. In reality it cannot correspond to zero viscosity.
It can be shown quite easily from the phenomenology of the
subject  that  the  infinite  Reynolds  number  behaviour  of
isotropic turbulence can be demonstrated asymptotically to any
required accuracy without the need for zero viscosity. We
shall return to this in a later post.

1.  W.  D.  McComb.  The  Physics  of  Fluid  Turbulence.  Oxford
University Press, 1990.
2  G.  K.  Batchelor.  The  theory  of  homogeneous  turbulence.
Cambridge University Press, Cambridge, 1st edition, 1953.
3.  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.

What  relevance  has
theoretical  physics  to
turbulence theory?

What  relevance  has  theoretical
physics to turbulence theory?
The question is of course rhetorical, as I intend to answer
it. But I have to pause on the thought that it is also
unsatisfactory in some respects. So why ask it then? Well my
reply to that is that various turbulence researchers have over
the years in effect answered it for me. Their answer would be
none  at  all!  In  fact,  in  the  case  of  various  anonymous
referees, they have often displayed a marked hostility to the
idea of theoretical physicists being involved in turbulence
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research. But the reason why I find it unsatisfactory is that
it seems to assume that turbulence theory is not part of
theoretical physics, whereas I think it is; or, rather, it
should be. So let’s begin by examining that question.

As is well known, the fundamental problem of turbulence is the
statistical closure problem that is posed by the hierarchy of
moments of the velocity field. Well, molecular physics has the
same problem when the molecules interact with each other. This
takes  the  form  of  the  BBGKY  hierarchy,  although  this  is
expressed in terms of the reduced probability distribution
functions. If we consider the simpler problem, where molecules
are  non-interacting  hard  spheres,  then  we  have  classical
statistical physics. In these circumstances we can obtain the
energy of the system simply by adding up all the individual
energies.  The  partition  function  of  the  system  then
factorizes, and we can obtain the system free energy quite
trivially. However, if the individual molecules are coupled
together by an interaction potential, then this factorization
is no longer possible as each molecule is coupled to every
other molecule in the system. So it is for turbulence, if we
work in the Fourier wavenumber representation, the modes of
the velocity field are coupled together by the nonlinear term
in the velocity field, thus posing an example of what in
physics is called the many-body problem.

One could go on with other examples in microscopic physics,
for  example  the  theory  of  magnetism  which  involves  the
coupling together of all spins on lattice sites, but it really
boils down to the fact that the bedrock problem of theoretical
physics is that of strong-coupling. And turbulence formulated
in $k$-space comes into that category. The only difference is,
that turbulence is mainly studied by engineers and applied
scientists, while theorists mostly prefer to study what they
see as more fundamental problems, even if these studies become
ever more arid for lack of genuine inspiration or creativity.
But as a matter of taxonomy, not opinion, turbulence should



belong to physics as an example of the many-body problem.

Now let’s turn to our actual question. We can begin by noting
that we are talking about insoluble problems. That is, there
is no general method of obtaining an exact solution. We have
to consider approximate methods. First, there is perturbation
theory, which relies on (and is limited by) the ability to
perform  Gaussian  functional  integrals.  Secondly,  there  is
self-consistent  field  theory.  Both  of  these  rely,  either
directly or indirectly, on the concept of renormalization. In
molecular  physics,  this  involves  adding  some  of  the
interaction energy to the bare particle, in order to create a
dressed particle, also known as a quasi-particle. Such quasi-
particles do not interact with each other and so the partition
function can be evaluated by factorization, just as in the
ideal-gas case. In the case of turbulence, it is probably
quite widely recognized nowadays that an effective viscosity
may be interpreted as a renormalization of the fluid kinematic
viscosity.  However,  it  should  be  borne  in  mind  that  the
stirring forces and the interaction strength may also require
renormalization.

There is no inherent reason why the subject of statistical
turbulence theory should be mysterious and I intend to post
short discussions of various aspects. Not so much maths, as
`good versus bad’ or `justified versus unjustified’; plus tips
on how to use some common sense reasoning to cut through the
intimidatingly  complicated  mathematics  and  (in  some  cases
self-important  pomposity)  of  some  theories  which  are  not
really new turbulence theories but merely text-book material
from  quantum  field  theory  in  which  variables  have  been
relabelled, but the essential difficulties of extending to
turbulence have not been tackled.



The Kolmogorov `5/3’ spectrum
and why it is important

The Kolmogorov `5/3’ spectrum and
why it is important
An intriguing aspect of the Kolmogorov inertial range spectrum
is that it was not actually derived by Kolmogorov. This fact
was unknown to me when, as a new postgraduate student, I first
encountered the `5/3’ spectrum in 1966. At that time, all work
on the statistical theory of turbulence was in spectral or
wavenumber ($k$) space , and the Kolmogorov form was seen as
playing  an  important  part  in  deciding  between  alternative
theoretical approaches.

As is well known nowadays, in 1941 Kolmogorov derived power-
law forms for the second- and third-order structure functions
in $r$ space. In the same year, it was Obukhov [1] who worked
in $k$ space, introducing the energy flux through wavenumber
as  the  spectral  realization  of  the  Richardson-Kolmogorov
cascade, and making the all-important identification of the
scale-invariance of the energy flux as corresponding to the
Kolmogorov picture for real space. It is usual nowadays to
denote this quantity by $\Pi(k)$, and in this context scale-
invariance means that it becomes a constant, independent of
$k$.  For  stationary  turbulence  that  constant  is  the
dissipation rate. Obukhov did actually produce the `5/3’ law,
but this involved additional hypotheses about the form of an
effective viscosity, so it was left to Onsager in 1945 [2] to
combine simple dimensional analysis with the assumption of
scale-invariance of the flux to produce a spectral form on
equal terms with Kolmogorov’s `2/3’ law for $S_2(r)$. This
work was discussed (and in effect) disseminated by Batchelor
in 1947 [3], and later in his well-known monograph. Curiously
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enough, in his book, Batchelor only discussed the spectral
picture, having discussed only the real-space picture in [3].
This is something that we shall return to in later posts. But
it seems that the effect was to establish the dominance of the
spectral picture for many years.

In the early sixties, there was considerable excitement about
the new statistical theories of turbulence, but when Grant,
Stewart and Moilliet published their experimental results for
spectra, which extended over many decades of wavenumber, it
became clear beyond doubt that the Kolmogorov inertial-range
form was valid and that the theories of Kraichnan and Edwards
were not quite correct. We will write about this separately in
other posts, but for me in 1966 the challenge was to produce
an  amended  form  of  the  Edwards  theory  which  would  be
compatible with the `5/3’ spectrum. This, in other words, was
a restatement of the turbulence closure problem. It is one
that I have worked on ever since.

This is not an easy problem and progress has been slow. But
there has been progress, culminating in McComb & Yoffe (2015):
see #3 of my recent publications. However, over the years,
beginning  in  the  late  1970s,  this  work  has  increasingly
received  referee  reports  which  are  hostile  to  the  very
activity and which assert that the basic problem for closures
is not to obtain $k^{-5/3}$ but rather to obtain a value for
$\mu$, where the exponent should be $-5/3 + \mu$, due to
intermittency  corrections.  Unfortunately  for  this  point  of
view,  the  so-called  intermittency  correction  $\mu$  comes
attached to a factor $L$, representing the physical size of
the system. This means that the limit $L \rightarrow \infty$
does not exist, which is something of a snag for the modified
Kolmogorov theory.

We shall enlarge on this elsewhere. For the moment it is
interesting  to  note  that  the  enthusiasm  for  intermittency
corrections arose from the study of structure functions and in
particular their behaviour with increasing order. This became



a very popular field of research throughout the 1980s/90s and
threatened to establish a sort of standard model, from which
no one was permitted to dissent. Fortunately, there has been a
fight back over the last decade or two, and the importance of
finite  Reynolds  number  effects  (or  FRN)  is  becoming
established. In particular, the group consisting of Antonia
and co-workers has emphasised consistently (and in my view
correctly) that the Kolmogorov result $S_3 \sim (4/5)r$ (which
the Intermittentists regard as exact) is only correct in the
limit  of  infinite  Reynolds  numbers.  At  finite  viscosities
there  must  be  a  correction,  however  small.  A  similar
conclusion has been reached for the second-order structure
function  by  McComb  et  al  (2014),  who  used  a  method  for
reducing systematic errors to show that this exponent too
tended  to  the  canonical  value  in  the  limit  of  infinite
Reynolds numbers. These facts have severe consequences for the
way in which the Intermittentists analyse their data and draw
their conclusions.

This leaves us with an interesting point about the difference
between real space and wavenumber space. The above comments
are  true  for  structure  functions,  because  in  $r$-space
everything  is  local.  In  contrast,  the  nonlinear  energy
transfers  in  $k$-space  are  highly  nonlocal.  The  dominant
feature in wavenumber space is the flux of energy through the
modes, from low wavenumbers to high. The Kolmogorov picture
involves the onset of scale invariance at a critical Reynolds
number, and the increasing extent of the associated inertial
range of wavenumbers as the Reynolds number increases. The
infinite Reynolds number limit in $k$-space then corresponds
to the inertial range being of infinite extent. At finite
Reynolds numbers, it will be of merely finite extent, but
there is no reason to believe that there is any other finite
Reynolds number correction. I believe that this is more than
just a conjecture.

[1]A.  M.  Obukhov.  On  the  distribution  of  energy  in  the



spectrum of turbulent flow. C.R. Acad. Sci. U.R.S.S, 32:19,
1941.

[2] L. Onsager. The Distribution of Energy in Turbulence.
Phys. Rev., 68:281, 1945.

[3] G. K. Batchelor. Kolmogorov’s theory of locally isotropic
turbulence. Proc. Camb. Philos. Soc., 43:533, 1947.

Scientific discussion in the
turbulence community.

Scientific  discussion  in  the
turbulence community.
Shortly after I retired, I began a two-year travel fellowship,
with the hope of having interesting discussions on various
aspects of turbulence. I’m sure that I had many interesting
discussions, particularly in trying out some new and half-
baked ideas that I had about that time, but what really sticks
in my mind are certain unsatisfactory discussions.

To set the scene, I had recently become aware of Lundgren’s
(2002) paper [1] and, having worked through it in detail, I
was convinced that it offered a proof that the second-order
structure  function  took  the  Kolmogorov  `2/3’  form
asymptotically  in  the  limit  of  infinite  Reynolds  numbers.
There  is  of  course  little  or  no  disagreement  about
Kolmogorov’s derivation of the `4/5’ law for the third-order
structure  function.  For  stationary  turbulence,  it  is
undoubtedly asymptotically correct in the infinite Reynolds
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number limit. But in order to find the second-order form,
Kolmogorov had to make the additional assumption that the
skewness of the longitudinal derivative became constant in the
infinite Reynolds number limit. Introducing the skewness $S$
as $S=S_3(r)/S_2(r)^{3/2}$, and substituting the `4/5’ law for
$S_3$,  results  in  the  well-known  form
$S_2(r)=(-4/5S)^{2/3}\varepsilon^{2/3}r^{2/3}\equiv
C_2\varepsilon^{2/3}r^{2/3}$.  Numerical  results  do  indeed
suggest that the skewness becomes independent of the Reynolds
number as the latter increases, but it remains a weakness of
the theory that this assumption is needed.

Lundgren [1] started, like Kolmogorov, from the Karman-Howarth
equation (KHE), and did the following. He put the KHE in
dimensionless form by a generic change of variables based on
time-dependent length and velocity scales, $l$ and $u$. He
then  chose  to  examine:  first,  Von  Karman  scaling;  and
secondly, Kolmogorov scaling, with appropriate choices for $l$
and $u$. In both cases, he solved for the scaled second-order
structure  function  by  a  perturbation  expansion  in  inverse
powers of the Reynolds number. He then employed the method of
matched asymptotic expansions which recovered the Kolmogorov
form for $S_2$. The `4/5’ law was also recovered for $S_3$,
both results naturally following in the large Reynolds number
limit. A more extensive account of this work can be found in
Section 6.4.6 of my 2014 book.

Before setting off on my travels, I consulted a colleague who,
although specializing in soft matter, had some familiarity
with turbulence. To my surprise he seemed quite unenthusiastic
about this work. He said something to the effect that it was a
pity that Lundgren had to assume the same scaled form for both
the second-order and the third-order structure functions. Now,
on reflection I saw that this was nonsense. All Lundgren did
was  introduce  a  change  of  variables:  this  is  not  an
assumption;  it  merely  restates  the  problem,  as  it  were.
Secondly,  the  basic  Kolmogorov  theory  deals  with  the



probability distribution functional, and this means that all
the moments (and hence structure functions) will be affected
in the same way by any operation on it [2].

On the first of my visits, I began to discuss this with
Professor X, who seemed very sceptical at first, then his
comments seemed increasingly irrelevant, then he realised that
he  was  thinking  of  an  entirely  later  piece  of  work  by
Lundgren.  At  that  point  the  discussion  fizzled  out.

On a later visit to a different university, at an early stage
in  the  discussion  with  Professor  Y,  I  commented  that  the
method relied on the fact that the Karman-Howarth equation was
local in the variable $r$. To which he swiftly replied: `Yes
Tom does have to assume that.’ That effectively brought things
to a close, because once again we are faced with nonsense. In
fact this particular individual seems to believe that the
existence  of  an  energy  cascade  implies  that  the  KHE  is
nonlocal! But of course the nonlocalness is confined to the
Lin equation in wavenumber space.

On a later occasion, I tried to bring the subject up again,
but no luck. He said: `Tom just makes the same assumptions as
Kolmogorov did. So there is nothing new.’ At this point I
finally gave up. However, as we have just seen, Kolmogorov has
to  assume  that  the  skewness  $S$  becomes  constant  as  the
Reynolds number increases. In contrast, the Lundgren analysis
actually shows that this is so. In addition, it also provides
a way of assessing systematic corrections to the `4/5’ law at
large but finite Reynolds numbers.

The basic theoretical problems in turbulence are very hard and
perhaps even impossible to solve, in a strict sense. However,
the fact that lesser problems of phenomenology are plagued by
controversy,  with  issues  remaining  unresolved  for  decades,
seems to me to be a matter of attitude (and culture) that
leads to a basic lack of scholarship. I think we need to trade
in the old turbulence community and get a new one.



[1]Thomas S. Lundgren. Kolmogorov two-thirds law by matched
asymptotic expansion. Phys. Fluids, 14:638, 2002.

[2] I have to own up to an error here. For years I argued that
only  the  second-  and  third-order  structure  functions  were
involved in Kolmogorov and hence conclusions based on higher-
order  moments  were  irrelevant.  Then  (quite  recently!)  I
noticed  in  a  paper  by  Batchelor  the  comment  that  as  the
hypotheses were for the pdf, they automatically applied to
moments of all orders.

Intermittency  corrections
(sic) and the perversity of
group think

Intermittency corrections (sic) and
the perversity of group think.
In The Times of 11 January this year, there was a report by
their Science Editor which had the title Expert’s lonely 30-
year  quest  for  Alzheimer’s  cure  offers  new  hope.  Senile
dementia is the curse of the age (even if temporarily eclipsed
by the Corona virus) and the article tells how in 1905 Alois
Alzheimer made a post mortem examination of the brain of a
woman  who  in  her  later  years  had  become  confused  and
forgetful. He found two pathological features: one consisted
of clumps of plaques of a protein called beta amyloid and the
other consisted of sticky tangles of a different protein,
later identified by a Professor Claude Wischik as a protein
called tau.
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Now,  with  two  possible  causes,  you  might  imagine  that
researchers in the field would be interested in both. But you
would be wrong. It seems that the community targeted the beta
amyloid  cause  and  for  many  years  neglected  the  other
possibility.  Now,  after  decades  of  failure,  the  major
pharmaceutical companies are developing anti-tau drugs. Even
if none of these proves to be the magic bullet, it seems a
healthier  situation  that  both  symptoms  (and  the  possible
interaction between them) are being studied. The article ends
on a note of moderate optimism, but the question remains: why
was the research skewed towards just the one possibility? The
article seems to suggest that this may have been because beta
amyloid was already known and possibly implicated in another
pathology.  As  always,  in  applied  research  there  is  a
temptation  to  go  for  the  `quick  and  dirty  solution’!

The behaviour of the researchers pursuing the beta amyloid
option (to the exclusion of the equally possible tau option)
exhibits some of the characteristics of what psychologists
call  group  think.  A  similar  phenomenon  has  been  part  of
fundamental research on turbulence for at least five decades.
As is well known, it started with a remark by Landau about the
Kolmogorov (1941) theory; or K41 for short. This criticism is
based on the idea that intermittency of the dissipation rate
has implications for the K41 theory, despite the fact that the
physical basis of that theory is the inertial transfer rate,
which  is  sometimes  equal  to  the  dissipation  rate.  This
criticism, along with various others, is discussed in Chapters
4 and 6 of my 2014 book on turbulence and I will not consider
it further here. All I wish to note is that there has been an
ongoing body of work on so-called intermittency corrections,
and the strange thing is that more obvious corrections have
been largely neglected, until quite recent times. Let us now
expand on that.

Essentially  Kolmogorov  used  Richardson’s  concept  of  the
cascade  to  argue  that  energy  transfer  would  proceed  by  a



stepwise process from large scales (production range) to small
scales and this would result in a universal form for the
structure functions in these small scales. Furthermore, for
large Reynolds numbers, the effect of the viscosity would only
be appreciable at very small scales, and there would be an
intermediate subrange of scales where the local excitation
would be controlled by inertial transfer into the subrange
from  the  large  scales  and  inertial  transfer  out  of  the
subrange into the small scales where it would be dissipated by
viscous effects.

At this point, I should enter a small caveat. I feel quite
uncomfortable with what I have just written. The physical
concept of the cascade is rather ill-defined in real space. I
would be much happier talking in terms of wavenumber space
where the cascade is well defined and the key concept is
scale-invariance  of  the  inertial  flux.  This  fact  was
recognized  by  Obukhov  (1941),  by  Onsager  (1945)  and  by
Batchelor (1947), and after that very widely. It is rather as
if Kolmogorov, in choosing to work in real space, had opted
for Betamax rather than VHS!

However, ignoring my quibbles, in either space one point is
clear:  this  is  an  approximate  theory.  Either  $S_2  \sim
\varepsilon^{2/3}r^{2/3}$  or  $E(k)  \sim
\varepsilon^{2/3}k^{-5/3}$ is only asymptotically valid in the
limit  of  infinite  Reynolds  numbers.  Under  all  other
circumstances,  there  must  be  corrections  due  to  finite-
Reynolds number (FRN) effects. These corrections may be small
enough to ignore: bear in mind that on various measures an
infinite  Reynolds  number  is  not  all  that  large.  There  is
certainly no need to worry about zero viscosity (pace) Onsager
and his hagiographers! We shall return to this specific point
in later posts.

The  response  of  Kolmogorov  to  Landau’s  criticism  was  the
somewhat ad hoc K62, in which the retention of the specific
effect of the large scales of the system (in both structure



functions  and  spectra),  completely  reversed  the  original
assumption  of  the  stepwise  cascade  leading  to  universal
behaviour. For reasons that are far from clear to me, this
sparked off a positive industry of intermittency corrections,
anomalous  exponents  and  various  improvements  (sic)  on
Kolmogorov, which lasts to this day. In contrast, from the
late  1990s,  increasing  attention,  both  experimental  and
theoretical, has been given to FRN effects, and in particular
the way in which they have been ignored in assessing the
evidence  for  anomalous  exponents  and  suchlike.  We  may
highlight the situation in the field by contrasting two major
papers, both published in leading learned journals within the
last year.

The first of these is by Tang et al [1], who note in their
abstract  that  K62  `has  been  embraced  by  an  overwhelming
majority of turbulence researchers.’ This paper is one in a
series in which this group has investigated the alternative
effect of finite Reynolds number corrections. In addition to
their own analysis, they also cite many papers from recent
years  which  support  their  conclusion  that  the  failure  to
account for FRN effects has `almost invariably been mistaken
for  the  intermittency  effect’.  In  the  main  body  of  their
paper,  they  express  themselves  even  more  forcibly.  In
contrast, the paper by Dubrulle [2], which is very much in the
K62 camp, so to speak, cites not a single reference to FRN
effects.  Instead  the  author  argues  that  small-scale
intermittency is incompatible with homogeneity, and makes the
radical proposal that the Karman-Howarth equation should be
replaced by a weak form which takes account of singularities.
At this point one takes leave of continuum mechanics and much
else besides! If we consult Batchelor’s book, we find that
homogeneity is defined in terms of mean quantities and is
therefore  entirely  compatible  with  intermittency  of  the
velocity field, which is nowadays understood to be present at
all scales.



I was tempted to say that it is difficult to imagine such a
fundamental gulf in any subject other than turbulence, but
then that’s where we came in!

[1] S. Tang, R. A. Antonia, L. Djenidi, and Y. Zhou. Phys
.Rev. Fluids 4, 024607 (2019).

[2] B. Dubrulle. J. Fluid Mech. 867, P1, (2019).

Bad proofs and `curate’s egg’
theories

Bad  proofs  and  `curate’s  egg’
theories.
At about the time I took up my appointment at Edinburgh, I
heard about a pure mathematician who wanted to be remembered
for his bad proofs. Some years later I read his obituary in
The Times and this fact was mentioned again. I had thought
that I had kept the cutting but it seems not, so I’m afraid
that I don’t remember his name. But I do remember what was
meant by the term `bad proofs’. This man’s view was that many
proofs in mathematics have been polished by various hands over
the years and he wanted to be remembered for his originality.
His proofs would be unpolished and hence seen as original.

The choice of the word `bad’ is interesting, in view of its
pejorative overtones. I would be inclined to think that the
original proof would at least be valid and hence not to be
described as bad. Perhaps, later more elegant versions of the
proof would emphasise the unpolished nature of the original.
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Hence,  perhaps  `rough’  might  be  a  better  description.
Presumably  the  word  `bad’  was  chosen  to  emphasise  the
paradoxical appearance of that statement. Well, at least he is
being remembered for his quirky assertion about what he wanted
to be remembered for.

For some time I have wondered whether there is an analogous
term for turbulence theories. By which I mean attempts to
solve the statistical closure problem. This was originally
formulated by Reynolds for pipe flow, but as usual we will
consider it here as applied to isotropic turbulence. Obviously
`bad’ is no good, because we do not have the paradoxical
juxtaposition that we have with the word `proof’, which in
itself indicates success, which is certainly not bad. One
obvious possibility would be `rough’ but somehow that does not
appeal.  `Rough  theories’  does  not  sound  good.  In  fact  it
sounds bad.

Recently  I  came  up  with  the  idea  of  the  `curate’s  egg’
theories, meaning `good in parts’. This saying stems from a
cartoon which appeared in the British humorous magazine Punch
in  1895.  It  shows  a  nervous  curate  breakfasting  with  the
bishop. The bishop expresses concern that the curate’s egg is
not a good one. The curate, anxious not to make a fuss,
bravely asserts that his egg is `good in parts’. The term
passed into everyday speech and was still current when I was
young. In the 1960s I was commuting regularly by train, and I
would buy Punch to read on the journey. On one occasion there
was a commemorative issue and a facsimile of the original
cartoon was reproduced, so I was interested to see the origin
of the phrase. We didn’t have Google in those days!

The reason that I think that such a term might be helpful is
that many members of the turbulence community seem to see a
theory as being either right or wrong. And if it’s deemed to
be wrong, then it should be dismissed and never considered
again. A striking example of this kind of thing arose a few
years ago when I was trying to get a paper on the LET theory



published (see #10 in the list of recent papers)) and it had
gone to arbitration. The Associate Editor who was consulted
turned the paper down because `this is the sort of stuff
Kraichnan did and everybody has known for the last twenty
years that it’s wrong’.

This decision was easily overturned. The sheer idiocy of the
proposition that, because one person had tackled a problem and
failed, other people should be barred from making further
attempts, ensured that. But what interests me is the fact that
Kraichnan’s  work  is  reduced  to  `the  sort  of  stuff’  and
regarded as `wrong’. This was done by someone who was an
applied mathematician and not a theoretical physicist. I am
not a betting man, but I would put a small amount of money on
the assumption that this referee had very little knowledge of
Kraichnan’s vast output, and was relying on hearsay for his
opinion. I understand the difficulties facing anyone from an
engineering background in trying to get to grips with this
type  of  many-body  or  field  theory  although  there  are
accessible treatments available. But if you are unable to
understand this work in detail, then it is unlikely that you
are qualified to referee it.

If we take an example from physics, in critical phenomena
(e.g. the transition from para- to ferromagnetism) the subject
was dominated by mean-field theory up until the late 1970s,
when  renormalization  group  (RG)  was  applied  to  critical
phenomena.  This  does  not  mean  that  mean-field  theory  was
immediately  dismissed.  In  fact  it  is  still  taught  in
undergraduate  courses.  Prior  to  RG  there  was  a  balanced
understanding of the limitations and successes of mean-field
theory and no one ever thought of it as `right’, with the
corollary that no one now dismisses it as simply `wrong’.

I know what I would like to have for other subjects, such as
cosmology, particle theory or indeed musical theory. I would
like to be able to read a simple account which explains the
state of play, without going into too much detail. That is



what  I  intend  to  provide  for  statistical  theories  of
turbulence  in  future  posts.  In  my  view,  most  theories  of
turbulence can be regarded as `curate’s eggs’: they have both
good  and  bad  aspects.  The  important  thing  is  that  those
working  in  the  field  of  turbulence  should  have  some
understanding  of  the  situation  and  should  appreciate  the
importance of having further research in this area.

The  infinite-Reynolds  number
limit: a first look

The infinite-Reynolds number limit:
a first look.
I notice that MSRI at Berkeley have a programme next year on
math problems in fluid dynamics. The primary component seems
to be an examination of the relationship between the Euler and
Navier-Stokes equations, `in the zero-viscosity limit’. The
latter  is,  of  course,  the  same  as  the  limit  of  infinite
Reynolds numbers, providing that the limit is taken in the
same way with the same constraints. I think that it is a
failure to appreciate this proviso that has resulted in the
concept becoming something of a vexed question over the years.
Yet  it  was  clearly  explained  by  Batchelor  in  1953  and
elegantly re-formulated by Edwards in 1965. As a result, a
group of theorists has been quite happy about the concept, but
many other workers in the field seem to be uneasy.

I first became aware of this when talking to Bob Kraichnan at
a  meeting  in  1984.  When  I  used  the  term,  his  reaction
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surprised me. He began to hold forth on the subject. He said
that people were `frightened’ of the idea of the infinite-
Reynolds number limit. Rather defensively I said that I wasn’t
frightened by it. His reply was. `Oh, I know that you aren’t
but you would be surprised at the number of people who are!’
Since then I have indeed been surprised by how often you get a
comment from a referee which goes something like: `The authors
take the infinite-Re limit … but of course you cannot really
have zero viscosity, can you.’ This rather nervous addendum
suggests strongly that the referee does not understand the
concept of a limit.

Well, one thing I would claim to understand is the idea of a
limit in mathematical analysis. This is because the first
class of my school course on calculus dealt with nothing else.
I can remember that class period clearly, even although it was
about sixty five years ago. One example that our maths master
gave, was to imagine that you were cutting up your twelve-inch
ruler, which was standard in those days. You cut it into two
identical pieces in a perfect cutting process, with no waste.
Then you put one piece over to your right hand side, and now
cut the left hand piece into two identical pieces. One of
these you put over to the right hand side, and add it on to
the six-inch piece already there, to make a nine-inch ruler.
The remaining piece you again cut into two, and move half over
to make a ten and a half inch ruler. However much you repeat
this process, the ruler will approach but never reach twelve
inches again. In other words, twelve inches is the limit and
you can only approach it asymptotically.

Suppose  we  carry  out  a  similar  thought  experiment  on
turbulence; although you could actually do this, most readily
by DNS. What we are going to do is to stir a fluid in order to
produce stationary, isotropic turbulence. Now at this stage,
we don’t even think about dissipation. We are trying to drive
a dynamical system and we start by specifying the forcing in
terms of the rate of doing work on the fluid. We call this



quantity $\varepsilon_W$ and it is fixed. Next our dynamical
system  is  fully  specified  once  we  choose  the  boundary
conditions  and  the  kinematic  viscosity  $\nu$.  Accordingly,
providing the forcing spectrum is peaked near the origin in
wavenumber space, and there has been an appropriate choice of
value of the initial kinematic viscosity, energy will enter
the system at low wavenumbers, be transferred by conservative
inertial  processes  to  higher  wavenumbers,  and  ultimately
dissipated at the highest excited wavenumbers. Once the system
becomes stationary, the dissipation rate must be equal to the
rate  of  doing  work,  and  so  the  Kolmogorov  dissipation
wavenumber is given by $k_d = (\varepsilon_W /\nu^3)^{1/4}$.

Now  let  us  carry  out  a  sequence  of  experiments  in  which
$\varepsilon_W$ remains fixed, but we progressively reduce the
value of the kinematic viscosity. In each experiment, the
viscosity is smaller and the dissipation wavenumber is larger.
Therefore there is a greater volume of wavenumber space and it
will  take  longer  to  fill  with  energy.  Ultimately,
corresponding to the limiting case, we have an infinite volume
of wavenumber space and the system will take an infinite time
to  reach  stationarity  and  in  principle  will  contain  an
infinite  amount  of  energy.  Note  that  this  is  not  a
catastrophe! In continuum problems, a catastrophe is when you
get an infinite density of some kind. Here the work, transfer
and dissipation rates are the densities of the problem, and
they are perfectly well behaved.

At this stage, when I try to discuss the infinite Reynolds
number  limit,  people  tend  to  get  uneasy  and  talk  about
possible  singularities  or  discontinuities.  I  don’t  really
think that there is any cause for such hand-wringing. You have
to decide first, which Navier-Stokes equation (NSE) you are
using. There are two possibilities and they are identical; but
we arrive at them by different routes.

If  we  arrive  at  the  NSE  by  continuum  mechanics,  then  in
principle we can take the limit of zero viscosity without



worry. After all, this is just a model of a real viscous fluid
and, among other things, it is rigorously incompressible which
a real fluid isn’t. We accept that in practice that it is the
flow which is incompressible, not the fluid. So if the density
variations are too small to detect, we can safely use the NSE.

If you come by the statistical physics route, then you must
bound  the  smallest  length  scale  (here  the  Kolmogorov
dissipation length scale) such that it is orders of magnitude
larger than inter-molecular distances. In practice, we may see
the  asymptotic  behaviour  associated  with  small  viscosity
arising  long  before  there  is  any  danger  of  breaching  the
continuum limit. For instance, if we look at the behaviour of
the dimensionless dissipation rate as the Reynolds number is
increased (see Fig. 1 of paper #6 in my list of recent papers)
we are actually seeing the onset of the infinite Reynolds
number  limit.  The  accuracy  of  the  determinations  of
$C_{\varepsilon,\infty}$ in this work is very decent, but if
greater accuracy were required, then a bigger simulation would
provide. Just like in boundary layer theory, it is all a
matter of quite pragmatic considerations. I will give a more
pedagogic discussion of this topic in a future post.

A  first  look  at  Kolmogorov
(1941)

A first look at Kolmogorov (1941)
Around the turn of the new millennium, I attended the PhD oral
of one of my own students for the last time as Internal
Examiner. After that the regulations were changed; or perhaps
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it was frowned on for the supervisor to also be the Internal.
Later still I stopped attending in any capacity: I think it
became that the student had to invite their supervisor if they
wanted them to attend. Is this an improvement on the previous
system?  Actually,  my  own  PhD  oral  was  conducted  by  David
Leslie, who had previously been my second supervisor, and Sam
Edwards who was my first supervisor! The three of us had had
many discussions of my work in the past, so the atmosphere was
informal  and  friendly.  But  I  don’t  think  the  examination
lacked rigour and I suppose it would have been difficult to
find anyone else in the UK who could have acted as external
examiner.

However, back to my own last stint as Internal. The candidate
was  a  graduate  with  joint  honours  in  maths  and  computer
science. He was a very able young man and did good work, but
he  was  not  a  physicist  and  never  quite  engaged  with  the
physics. So when the External asked him if he could derive the
Kolmogorov spectrum, he said `No’, then added pertly `Can
you?’ Alas, the External was unable to do so. Fortunately the
Internal was able to go to the blackboard and do the needful.
The External was quite a well-known member of the turbulence
community, so we will spare his blushes. Yet, it left me
wondering how many turbulence researchers could sit down and
derive the Kolmogorov energy spectrum, or equivalently the
second-order structure function, without consulting a book?
For any such benighted souls, I will now offer a crib. Virtue
should be its own reward, but in the process of putting this
together, I think I have found the answer to something that
had puzzled me. I will return to that at the end of this post.

For simplicity, let’s work with the second-order structure
function $S_2(r)$. This is what Kolmogorov did: the form for
the energy spectrum came later. Glossing over the physical
justification, we consider the question: how do we express
$S_2(r)$ in terms of the dissipation rate $\varepsilon$ and
the  distance  between  measuring  points  $r$,  for  some



intermediate  range  of  values  of  $r$?

The first thing to notice is that $S_2$ has dimensions of
velocity  squared  (or  energy  per  unit  mass:  we  won’t  keep
repeating this) and that the dissipation is the rate of change
of the energy with time. It follows that $S_2$ depends on the
inverse of time squared whereas dissipation depends on the
inverse of time cubed. Hence, the structure function must
depend on the dissipation to the power of $2/3$. Or,

\[S_2(r) \sim \varepsilon^{2/3}.\]

This is the Kolmogorov result. Put in its most general form:
if you seek to express the energy in terms of the dissipation,
inertial  transfer,  eddy-decay  rate,  or  any  other  rate  of
change, you must have a two-thirds power from the need to have
consistency of the time dimension across both sides of the
equation.

Now what happens when we tidy up the dimensions of length? On
the  right  hand  side  of  the  equation,  we  now  have  the
dimensions of length to the power of $4/3$. In order to make
this consistent with $S_2$ on the left hand side, we must
multiply by a length to the power of $2/3$. From Kolmogorov
(1941), this length must be $r$, and if we put a constant $C$
in front, we recover the well-known K41 result

\[S_2(r) = C r^{2/3}\varepsilon^{2/3}.\]

If however, we think that it might also depend on another
length, then we only have available some length characteristic
of the size of the system, say $L_{ext}$. If we include this,
then we must multiply the right hand side by $L_{ext}^p r^m$,
where $p+m=2/3$. In other words, the power of $r$ is no longer
determined. This is, in effect, what Kolmogorov did in 1962,
albeit by a more circuitous route. And, in the process he
threw away his entire theory, which was based on the idea that
the many steps of the Richardson cascade would lead to a
universal result at small scales. In Kolmogorov (1962) that



does not happen: the final result depends on the physical size
of the system.

Let us now hark back to what had puzzled me. In a previous
post  I  mentioned  a  contumacious  referee.  In  fact  this
individual kept asserting that `$r^{2/3}$ is not Kolmogorov’.
We pressed him to explain but it was clear that he had found
his excuse for rejecting the paper and wasn’t prepared to be
more helpful (or indeed scholarly). As our paper contained a
discussion of the fact that the extended scale similarity
technique  gave  the  two-thirds  law  as  an  artifact  in  the
dissipation  range,  it  is  possible  that  he  was  actually
agreeing with us! However, taking his comment as a general
statement, I would be inclined to agree with it. From the
discussion we have given above, it should be clear that it is
the dependence on the dissipation rate to the two-thirds power
that is actually Kolmogorov. For anyone interested, the paper
is Number 7 in the list of my recent papers given on this
website.

The energy balance equation:
or what’s in a name?

The  energy  balance  equations:  or
what’s in a name? 
Over the last few years I have noticed that the Karman-Howarth
equation is sometimes referred to nowadays as the `scale-by-
scale  energy  budget  equation’.  Having  thought  about  it
carefully,  I  have  concluded  that  I  understand  that
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description; but I think the mere fact that one has to think
carefully  is  a  disadvantage.  To  Anglophone  speakers  of
English,  the  term  `budget’  suggests  some  sort  of  forward
planning. Actually I think that in physics the more correct
term would be local energy balance equation. Let us consider
the form of the KHE equation when it is written in terms of
the second-order and third-order structure functions, thus:

\[0=-\frac{2}{3}\frac{\dd  E}{\dd  t}  +  \frac{1}{2}\frac{\dd
S_2}{\dd  t}  +  \frac{1}{6r^4}\frac{\dd}{\dd  r}(r^4  S_3)  –
\frac{\nu}{r^4}\frac{\dd}{\dd  r}\left(r^4\frac{\dd  S_2}{\dd
r}\right). \]

Note that all notation and background for this post will be
found in my (2014) book on HIT. Also, I have moved the term
involving the total energy (per unit mass) to the right of the
equal sign, for a reason which will become obvious.

More recently I have seen exactly the same phrase used to
describe the Lin equation, which is just the Fourier transform
of the KHE to wavenumber space. This strikes me as even more
surprising, but again I don’t want to say that it is actually
wrong. Indeed in one sense I rather welcome it, because it
makes it clear that the concept of scale belongs equally to
wavenumber space. It can be all too easy to fall into a usage
in  which  real  space  is  regarded  as  `scale  space’  and  is
distinguished in that way from wavenumber space. But the real
problem here is that it is only valid for the simplest form of
the Lin equation, and this in itself can be misleading.

Let us now consider the Lin equation in terms of the energy
spectrum and the transfer spectrum. We may write this in its
well-known form:

\[\left(\ddt + 2\nu k^2\right)E(k,t) = T(k,t).\]

Here, as with the KHE, we assume that there are no forces
acting.



However, unlike the KHE, this is not the whole story. We may
also express the transfer spectrum in terms of its spectral
density, thus:

\[T(k,t) = \int_0^\infty\, dj \,S(k,j;t).\]

When we substitute this in, we obtain the second form of the
Lin equation, and this is actually more comparable with the
KHE as given above, because the transfer spectrum density
contains the Fourier transform of the third-order structure
function, which of course occurs explicitly in the KHE.

Now compare the two equations. The KHE holds for any value of
the independent variable. If we take some particular value of
the independent variable, then each term can be evaluated as a
number  corresponding  to  that  value  of  $r$,  and  the  above
equation becomes a set of four numbers adding up to zero. If
we consider another value of $r$, then we have a different
four numbers but they must still add up to zero. In short, KHE
is local in the independent variable.

The Lin equation, if we write it in its full form, tells us
that all the Fourier modes are coupled to each other. It is,
in  the  language  of  physics,  an  example  of  the  many  body
problem. It is in fact highly non-local as in principle it
couples every mode to every other mode.

A  corollary  of  this  is  that  the  KHE  does  not  predict  a
cascade. But the Lin equation does. This can be deduced from
the nonlinear term which couples all modes together plus the
presence of the viscous term which is symmetry-breaking. If
the viscous term were set equal to zero, then the coupled but
inviscid equation would yield equipartition states.

The well-known question at the head of this post is rhetorical
and expects the answer `A rose by any other name would smell
as sweet’. But I’m afraid that Juliet’s laissez-faire attitude
to terminology would not be widely applicable. One thinks of
the surgeon who fails to distinguish between the liver and the



spleen. Or the pilot who thinks west is just as good a name
for  east.  In  the  turbulence  community,  I  suppose  that
`locality’ for `localness’, or `inverse’ for `reverse’ arise
because they seem natural coinages to non-Anglophones. In the
wider world, the classic case since the 1960s is Karl Popper’s
idea that a scientific theory should be falsifiable. But in
everyday English speech, to falsify means to make false. For
instance, to falsify an entry in one’s accounts, means, to put
it in the demotic, to cook the books!

I shall return to this point in future posts and in particular
to the localness of the KHE.

Wavenumber  Murder  and  other
grisly tales

Wavenumber Murder and other grisly
tales.
When I was first at Edinburgh, I worked on developing a theory
of turbulent drag reduction by additives. But, instead of
considering  polymers,  I  studied  the  much  less  well-known
phenomenon involving macroscopic fibres. This was because it
seemed to me that the fibres were probably of a length which
was comparable to the size of the smallest turbulent eddies.
It also seemed to me that the interaction between fibre and
eddy would be two-dimensional and that it might be possible to
formulate an explanation of turbulent drag reduction on mainly
geometrical grounds. In particular, I had in mind that two-
dimensional eddies could have a reverse cascade, with the
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energy being transferred from high wavenumbers to small. That
is, the reverse (but not inverse) of the usual process. In
this way drag might be reduced.

I  derived  a  simple  model  for  this  process,  and  a  letter
describing it was published by Nature Physical Science in
1974. So far so good. Then I set to work writing the theory up
in more detail and submitted it to the JFM. The results were
not so good this time, and I had three referees’ reports to
consider. At least, George Batchelor did not feel the need to
suppress any of the reports on the grounds of it being too
offensive (someone I knew actually had this exeperience). But
still, they were pretty bad.

No doubt this was salutary. I didn’t dissent from the view
that the paper should be rejected. In fact I dismantled it
into  several  much  better  papers  and  got  them  published
elsewhere. But what sticks in my mind even yet is the referee
who wrote: `The author commits the usual wavenumber murder.
Who knows what unphysical assumptions are being made under the
cover of wavenumber space?’

Well, that’s for me to know and you to find out, perhaps! Of
course, now that I am older (a lot) and wiser (a little), I
realise that I could have played it better. I could have
written up the use of Fourier methods, quoted Batchelor’s book
extensively, and thus made it very difficult for the referee
to respond in that rather childish way. But why would that
even occur to me? I was used at that stage to turbulence
theorists who moved straight into wavenumber space without
seeing any need to justify it. This is a cultural factor.
Theoretical physicists are used to operating in momentum space
which, give or take Planck’s constant, is just wavenumber
space in disguise. Anyway, at the time I was surprised and
disappointed that the editor did not at least intervene on
this particular point.

I actually found that referee’s reaction quite shocking, but



in one form or another I was to encounter it occasionally over
the years, until at last it seemed to die out. Partially this
could be attributed I would guess to the growth of DNS, with
its dependence on spectral methods. Also, I think it could be
due to better educated individuals becoming attracted to the
study of turbulence.

Anyway, a few years ago, and just when I thought it was safe
to mention spectral methods again, I made a big mistake. I had
written  (with  three  co-authors)  a  paper  in  which  we  used
spectral methods to evaluate the exponents associated with
real-space  structure  functions.  It  had  been  increasingly
believed that the inertial-range exponents departed from the
Kolmogorov (1941) forms, increasingly with both order and with
Reynolds number, although it was actually realised that this
could be attributed to systematic experimental error. So we
had used a standard method of experimental physics to reduce
systematic error and found that the exponent for the second-
order structure function in fact tended to the Kolmogorov
canonical form, as the Reynolds number was increased. This is
precisely the sort of result that merits a short communication
and accordingly we submitted it as such. One of the referees
was contumacious (and I may come back to him in later blog),
the other was broadly favourable but seemed rather nervous
about various points. However, when we had responded to his
various points, he wanted one or two more changes and then he
would  recommend  it  for  publication.  At  the  same  time,  he
commented that he really did wish that we hadn’t used spectral
methods.

This was where I made my big mistake. Overcome by kindly
feelings  towards  this  ref,  and  obeying  my  pedagogical
instincts, I tried to re-assure him. I pointed out that he was
quite happy with the pseudo-spectral method of DNS, in which
the convolution sums in wavenumber space are evaluated more
economically in real space and then transformed back into
wavenumber. Now, I said, we are employing the same technique,



but the other way round. We are evaluating the convolutions
determining the structure function in real space, by going
into wavenumber space. The response had a petulant tone. We
were, he said, talking nonsense. The structure functions did
not involve convolution integrals and he was rejecting the
paper as mathematically unsound!

Later on we wrote up a longer version of the work and it was
published: see #7 in the list of recent papers on this site.
Appendix A is the place to look for the maths which bewildered
the poor benighted referee. While accepting that this degree
of detail was not given in the short communication, what is
one to make of a referee who is unaware that a structure
function can be expressed in terms of a correlation function
and that the latter is a convolution integral?

Both referees were frightened of Fourier methods and between
them almost seem to have bookended my career. But referees who
are comprehensively out of their depth have not been a rare
phenomenon over the years. The forms which this inadequacy
takes  have  been  many  and  varied  and  I  shall  probably  be
dipping into my extensive rogues’ gallery in future posts.
There is also the question of the editor’s role in finding
referees who are actually qualified to referee a specific
manuscript,  and  this  too  seems  a  fit  subject  for  further
enquiry. However, I should finish by pointing out that being
on  the  receiving  end  of  inadequate  refereeing  is  not
exclusively  my  problem.

In the first half of 1999, the Isaac Newton Institute held a
workshop on turbulence. During the opening week, we saw famous
name after famous name go up to the podium to give a talk,
which almost invariably ended with `and so I sent it off to
Physica D instead’. This last was received with understanding
nods and smiles by an audience who were clearly familiar with
the idea. This quite cheered me up, it seemed that I was not
alone. At the same time, the sheer waste of time and energy
involved seemed quite shocking. It prompted the thought: is it



the turbulence community that is the problem, rather than the
turbulence? That is something to consider further in future
posts.

HIT: Do three-letter acronyms
always win out?

HIT:  Do  three-letter  acronyms
always win out?
In 1997, I visited Delft Technical University and while I was
there gave a course of lectures on turbulence theory. During
these lectures, I mentioned that nowadays people seemed to
refer to homogeneous, isotropic turbulence; whereas, when I
started  out,  it  was  commonplace  to  simply  say  isotropic
turbulence.  The  homogeneity  was  assumed,  as  a  necessary
condition for the isotropy. After the morning session, when we
were making our way back for lunch, the postgrads who were
attending, said to me `Three-letter acronyms always win out!’.
Naturally, I pooh-poohed this, but many years on, I have to
confess that I use the three-word name of the subject (it was
the title of my 2014 book) and the acronym as well. Sometimes
it is just a matter of euphony. But does it do any harm? Well,
that’s an interesting question, but for the moment let us make
a short digression.

In recent years I have been thinking a little about cosmology
(well it makes a change from turbulence) and have learned
about  the  cosmological  principle,  which  states  that  the
universe is both homogeneous and isotropic.Homogeneous means
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that its properties are independent of position and isotropic
means that its properties are independent of orientation. In
everyday life, one might think of a piece of metal or plastic
being homogeneous and isotropic, in contrast to wood which has
a grain. So naturally when I step out into my back garden in
the evening, I can observe this for myself … or rather, I
can’t. Actually the night sky looks anything but homogeneous,
let alone isotropic. Are the cosmologists deluded?

The answer lies in the fact that the cosmological principle
applies to averaged properties. Apparently it is necessary to
take  averages  over  huge  volumes  of  space,  each  of  which
contains  vast  numbers  of  galaxies,  for  the  concepts  of
homogeneity and isotropic to apply. Evidently, to paraphrase
J. B. S. Haldane (and following in the footsteps of Werner
Heisenberg) the universe is not only bigger than we think, it
is bigger than we can think. So, if I want to behave like an
idiot, I should just go about proclaiming: `The cosmologists
are mad. You only have to look up at the night sky to see that
their  claims  about  the  uniformity  of  the  universe  are
completely unjustified.’ In doing so, I would be ignoring the
details of what the cosmologists actually said, and surely no
one would be so silly as to do that before launching into
speech? Well, in turbulence that is exactly what many people
do.

In turbulence, for many years we have had flow visualisations
based on direct numerical simulation of the equations of fluid
motion.  These  undoubtedly  show  a  spotty  distribution  of
various  characteristics  of  interest,  especially  the
dissipation rate, and this is generally taken as supporting
the idea that turbulence intermittency has implications for
statistical theories. Indeed, there are those who go further
and  see  results  like  this  as  invalidating  assumptions  of
homogeneity and isotropy. What they leave out of the reckoning
is; first, that homogeneity and isotropy are properties of
average quantities, in turbulence as in cosmology. Secondly,



the flow visualisations are snapshots or single realisations.
If you average over them, the spottiness disappears, as indeed
it has to, in order to conform to homogeneity and isotropy,
and the field becomes uniform and without structure.

If we go to the fountainhead for this subject, in Batchelor’s
classic monograph on page 3 we may read: `The possibility of
this  further  assumption  of  isotropy  exists  only  when  the
turbulence  is  already  homogeneous,  for  certain  directions
would be preferred by a lack of homogeneity’. Batchelor also
points  out  that  homogeneity  and  isotropy  are  average
properties  of  the  random  variable,  and  in  fact  they  are
defined  formally  in  terms  of  the  probability  distribution
functional (the pdf, or equivalently its moments).

So this is where I answer my own question. It does matter. It
is  needed  for  clear  thinking  and  the  best  possible
understanding  that  we  are  careful  about  the  fact  that
homogeneity is a necessary condition for isotropy. In the
process we have to be careful about definitions. In that way
one can perhaps avoid the egregious errors which occur in a
recent paper, where it is argued that intermittency at the
small  scales  is  incompatible  with  homogeneity  and  so
invalidates the energy-balance equation derived rigorously by
averaging the equations of motion. Actually, intermittency is
present at all scales and is part of the exact solution of the
equations of motion. It is not in any way incompatible with
the  pdf,  which  must  take  a  form  appropriate  to  the
intermittent  (single-realization  characteristic)  and
homogeneous (ensemble-averaged characteristic) nature of the
random field. We shall return to a more specific way to this
publication in later posts.



The First Post

The First Post
Many years ago, early in my career, I learned the hard way
that  every  paper  submitted  for  publication  should  be
ruthlessly pared down to consist solely of factual material
and  fully  justified  statements.  Any  personal  opinions,
speculations, whimsical thoughts, comments or suchlike, should
be eliminated; as, in the words of the poet John Donne, they
would offer `hostages to fortune’. That is, there would be at
least one referee who would make such an opinion (suitably
misinterpreted!)  the  basis  for  outright  rejection  of  the
manuscript,  probably  accompanied  by  gratuitously  offensive
comments. This of course raises questions about the role of
the  editor  in  this  increasingly  fraught  process  of  peer
review, and that is something to which I shall return in
future blogs.
In  the  middle  period  of  my  career,  I  would  occasionally
receive a referee’s report which expressed regret that I had
not included more of my own views, and indicated that they
would be welcome. My response to this was `No fear’, to use an
expression from my remote childhood.

Recently I gave in to the temptation to do just that and, in
what might well be my last journal submission (rejected by
four  different  journals),  I  sweepingly  dismissed  both  the
Kolmogorov (1962) `revised theory’ and Landau’s criticism of
the  Kolmogorov  (1941)  theory,  without  explaining  why.  I
suppose I was relying on the critique published in my book of
2014. But they were seized upon by one referee to reject the
paper, followed by the patronizing comment `Need I say more’.
Well, actually what he needed to do was to say less and to
think more. That too is something to which I shall return in
future blogs.

https://blogs.ed.ac.uk/physics-of-turbulence/2020/02/06/244/


Evidently my self-imposed constraints are beginning to chafe!
So, as a blog (if it is to be of any value as offering
clarification or stimulus) should in fact consist very largely
of the things that I have omitted from papers, the temptation
to blog is clear. As I began my postgraduate research in 1966,
I am now in my forty fifth year of turbulence research, so
there should be no lack of material. Oh, and it should also be
both pithy and hard-hitting. You have been warned.


