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Summary  of  the  Kolmogorov-Obukhov  (1941)  theory.  Part  2:
Kolmogorov’s theory in x-space.
Kolmogorov worked in $x$-space and his two relevant papers are
cited below as [1] (often referred to as K41A) and [2] (K41B).
We may make a pointwise summary of this work, along with more
recent developments as follows.

[a]  In  K41A,  Kolmogorov  introduced  the  concepts  of  local
homogeneity and local isotropy, as applying in a restricted
range of scales and in a restricted volume of space. He also
seems  to  have  introduced  what  we  now  call  the  structure
functions,  allowing  the  introduction  of  scale  through  the
correlations of velocity differences taken between two points
separated by a distance $r$. He used Richardson’s concept of a
cascade of eddies, in an intuitive way, to introduce the idea
of an inertial sub-range, and then used dimensional analysis
to  deduce  that  (in  modern  notation)  $S_2  \sim
\varepsilon^{2/3}r^{2/3}$.

[b] In K41B, he used an ad hoc closure of the Karman-Howarth
equation (KHE) to argue that $S_3 = 0.8 \varepsilon r$ in the
inertial range of values of $r$: the well-known ‘four-fifths
law’. He further assumed that the skewness factor was constant
and found that this led to the K41A result for $S_2$. The
closure was based on the fact that the term explicit in $S_2$
would vanish as the viscosity tended to zero, whereas its
effect could still be retained in the dissipation rate.

[c] In 1947, Batchelor [3] provided an exegesis of both these
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theories. In the case of K41A, this was only partial, but he
did make it clear that K41A relied (at least implicitly) on
Richardson’s idea of the ‘eddy cascade’. He also pointed out
that  K41B  could  not  be  readily  extended  to  higher-order
equations  in  the  statistical  hierarchy,  because  of  the
presence of the pressure term with its long-range properties
in the higher-order equations.

[d] Moffatt [4] credited this paper by Batchelor with bringing
Kolmogorov’s work to the Western world. He also, in effect,
expressed surprise that Batchelor did not include his re-
derivation of K41B in his book. This is a very interesting
point; and, in my view, is not unconnected to the fact that
Batchelor discussed K41A almost entirely in wavenumber space
in his book. I will return to this later.

[e] In 2002, Lundgren re-derived the K41B result, by expanding
the dimensionless structure functions in powers of the inverse
Reynolds  number.  By  demanding  that  the  expansions  matched
asymptotically in an overlap region between outer and inner
scaling regimes, he was also able to recover the K41A result
without the need to make an additional assumption about the
constancy of the skewness.

[f]  More  recently,  McComb  and  Fairhurst  [6]  used  the
asymptotic expansion of the dimensionless structure functions
to  test  Kolmogorov’s  hypothesis  of  local  stationarity  and
concluded that it could not be true. They found that the time-
derivative must give rise to a constant term; which, however
small, violates the K41B derivation of the four-fifths law.
Nevertheless, they noted that in wavenumber space, this term
(which plays the part of an input to the KHE) will appear as a
Dirac delta function at the origin, and hence does not violate
the derivation of the minus five-thirds law in $k$-space. We
will extend this idea further in the next post.

[1] A. N. Kolmogorov. The local structure of turbulence in
incompressible viscous fluid for very large Reynolds numbers.



C. R. Acad. Sci. URSS, 30:301, 1941. (K41A)
[2]  A.  N.  Kolmogorov.  Dissipation  of  energy  in  locally
isotropic turbulence. C. R. Acad. Sci. URSS, 32:16, 1941.
(K41B)
[3] G. K. Batchelor. Kolmogoroff’s theory of locally isotropic
turbulence. Proc. Camb. Philos. Soc., 43:533, 1947.
[4] H. K. Moffatt. G. K. Batchelor and the Homogenization of
Turbulence. Annu. Rev. Fluid Mech., 34:19-35, 2002.
[5] Thomas S. Lundgren. Kolmogorov two-thirds law by matched
asymptotic expansion. Phys. Fluids, 14:638, 2002.
[6]  W.  D.  McComb  and  R.  B.  Fairhurst.  The  dimensionless
dissipation rate and the Kolmogorov (1941) hypothesis of local
stationarity in freely decaying isotropic turbulence. J. Math.
Phys., 59:073103, 2018.
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Summary  of  Kolmogorov-Obukhov  (1941)  theory.  Part  1:  some
preliminaries in $x$-space and $k$-space.

Discussions of the Kolmogorov-Obukhov theory often touch on
the question: can the two-thirds law; or, alternatively, the
minus five-thirds law, be derived from the equations of motion
(NSE)? And the answer is almost always: ‘no, they can’t’! Yet
virtually every aspect of this theory is based on what can be
readily deduced from the NSE, and indeed has so been deduced,
many years ago. So our preliminary here to the actual summary,
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is to consider what we know from a consideration of the NSE,
in both $x$-space and $k$-space. As another preliminary, all
the notation is standard and can be found in the two books
cited below as references.

We begin with the familiar NSE, consisting of the equation of
motion, \begin{equation}\frac{\partial u_{\alpha}}{\partial t}
+  \frac{\partial  (u_{\alpha}u_\beta)}{\partial  x_\beta}  =-
\frac{1}{\rho}\frac{\partial  p}{\partial  x_\alpha}  +  \nu
\nabla^2  u_\alpha,\end{equation}which  expresses  conservation
of momentum and is local, in that it gives the relationship
between the various terms at one point in space; and the
incompressibility  condition  \begin{equation}\frac{\partial
u_\beta}{\partial x_\beta} = 0.\end{equation} It is well known
that  taking  these  two  equations  together  allows  us  to
eliminate the pressure by solving a Poisson-type equation. The
result is an expression for the pressure which is an integral
over the entire velocity field: see equations (2.3) and (2.9)
in [1].

In $k$-space we may write the Fourier-transformed version of
(1)  as:  \begin{equation}\frac{\partial
u_\alpha(\mathbf{k},t)}{\partial  t}  +  i  k_\beta\int  d^3  j
u_\alpha(\mathbf{k-j}.t)u_\beta(\mathbf{j},t)  =  k_\alpha
p(\mathbf{k},t)  -\nu  k^2  u_\alpha
(\mathbf{k},t).\end{equation} The derivation can be found in
Section 2.4 of [2]. Also, the discrete Fourier-series version
(i.e. in finite box) is equation (2.37) in [2].

The  crucial  point  here  is  that  the  modes
$\mathbf{u}(\mathbf{k},t)$ form a complete set of degrees of
freedom and that each mode is coupled to every other mode by
the  non-linear  term.  So  this  is  not  just  a  problem  in
statistical  physics,  it  is  an  example  of  the  many-body
problem.

Note that (1) gives no hint of the cascade, but (3) does. All
modes are coupled together and, if there were no viscosity



present, this would lead to equipartition, as the conservative
non-linear term merely shares out energy among the modes. The
viscous term is symmetry-breaking due to the factor $k^2$
which increases the dissipation as the wavenumber increases.
This prevents equipartition and leads to a cascade from low to
high wavenumbers. All of this becomes even clearer when we
multiply the equation of motion by the velocity and average.
We then obtain the energy-balance equations in both $x$-space
and $k$-space.

We begin in real space with the Karman-Howarth equation (KHE).
This can be written in various forms (see Section 3.10.1 in
[2]), and here we write in terms of the structure functions
for the case of free decay: \begin{equation}\varepsilon =-
\frac{3}{4}\frac{\partial  S_2}{\partial
t}+\frac{1}{4r^4}\frac{\partial  (r^4  S_3)}{\partial  r}
+\frac{3\nu}{2r^4}\frac{\partial}{\partial
r}\left(r^4\frac{\partial  S_2}{\partial
r}\right).\end{equation}Note  that  the  pressure  does  not
appear, as a correlation of the form $\langle up \rangle$
cannot contribute to an isotropic field, and that strictly the
left hand side should be the decay rate $\varepsilon_D$ but it
is usual to replace this by the dissipation as the two are
equal in free decay. Full details of the derivation can be
found in Section 3.10 of [2].

For our present purposes, we should emphasise two points.
First, this is one equation for two dependent variables and so
requires a statistical closure in order to solve for one of
the two. In other words, it is an instance of the notorious
statistical  closure  problem.  Second,  it  is  local  in  the
variable $r$ and does not couple different scales together. It
holds for any value of $r$ but is an energy balance locally at
any chosen value of $r$.

The Lin equation is the Fourier transform of the KHE. It can
be derived directly in $k$-space from the NSE (see Section
3.2.1 in [2]):\begin{equation} \left(\frac{\partial}{\partial



t}  +  2\nu  k^2\right)E(k,t)  =  T(k,t).\end{equation}  Here
$T(k,t)$ is called the transfer spectrum, and can be written
as:  \begin{equation}T(k,t)=  \int_0^\infty  dj\,
S(k,j:t),\end{equation}where  $S(k,j;t)$  is  the  transfer
spectral density and can be expressed in terms of the third-
order  moment  $C_{\alpha\beta\gamma}(\mathbf{j},\mathbf{k-
j},\mathbf{-k};t)$.

Unlike  the  KHE,  which  is  purely  local  in  its  independent
variable, the Lin equation is non-local in wavenumber. We can
define  its  associated  inter-mode  energy  flux
as:\begin{equation}\Pi  (\kappa,t)  =  \int_\kappa^\infty
dk\,T(k,t) = -\int_0^\kappa dk \, T(k,t).\end{equation}

We have now laid a basis for a summary of the Kolmogorov-
Obhukov theory and one point should have emerged clearly: the
energy cascade is well defined in wavenumber space. It is not
defined at all in the context of energy conservation in real
space. It can only exist as an intuitive phenomenon which is
extended in space and time.

[1] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[2]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
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equilibrium?
The importance of terminology: stationarity or equilibrium?
When I began my post-graduate research in 1966, I found that I
immediately  had  to  get  used  to  a  new  terminology.  For
instance,  concepts  like  homogeneity  and  isotropy  were  a
definite novelty. In physics one takes these for granted and
they are never mentioned. Indeed the opposite is the case, and
the occasional instance of inhomogeneity is encountered: I
recall that one experiment relied on an inhomogeneity in the
magnetic field. Also, in relativity one learns that a light
source can only be isotropic in its co-moving frame. In any
other frame, in motion relative to it, the source must appear
anisotropic,  as  shown  by  Lorentz  transformation.  For  the
purposes of turbulence theory (and the theory of soft matter),
exactly  the  same  consideration  must  apply  to  Galilean
transformation.  Although,  to  be  realistic,  Galilean
transformations are actually of little value in these fields,
as they are normally satisfied trivially [1].

Then there was the transition from statistical physics to,
more  generally,  the  subject  of  statistics.  The  Maxwell-
Boltzmann distribution was replaced by the normal or Gaussian
distribution; and, in the case of turbulence, there was the
additional complication of a non-Gaussian distribution, with
flatness and skewness factors looming large. (I should mention
as an aside that the above does not apply to quantum field
theory which is pretty much entirely based on the Gaussian
distribution.)

Perhaps the most surprising change was from the concept of
equilibrium to one of stationarity. In physics, equilibrium
means  thermal  equilibrium.  Of  course,  other  examples  of
equilibrium are sometimes referred to as special cases. For
instance, a body may be in equilibrium under forces. But such
references are always in context; and the term equilibrium,
when used without qualification of this kind, always means
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thermal  equilibrium.  So  any  real  fluid  flow  is  a  non-
equilibrium process, and turbulence is usually classed as far
from equilibrium. Indeed, physicists normally seem to regard
turbulence as being the archetypal non-equilibrium process.

Unsurprisingly,  the  term  has  only  rarely  been  used  in
turbulence.  I  can  think  of  references  to  the  approximate
balance between production and dissipation near the wall in
pipe flow being referred to as equilibrium; but, apart from
that, all that comes to mind is Batchelor’s use of the term in
connection with the Kolmogorov (1941) theory [2]. This was
never widely used by theorists but recently there has been
some usage of the term, so I think that it is worth taking a
look at what it is; and, more importantly, what it is not.

Batchelor was carrying on the idea of Taylor, that describing
homogeneous turbulence in the Fourier representation allowed
the topic to be regarded as a part of statistical physics. He
argued that the concept of local stationarity that Kolmogorov
had introduced could be regarded as local equilibrium, in
analogy  with  thermal  equilibrium.  The  key  word  here  is
‘local’. If we consider a flow that is globally stationary (as
nowadays we can, because we have computer simulations), then
clearly it would be nonsensical to describe such a flow as
being in equilibrium.

However, recently Batchelor’s concept of local equilibrium has
been mis-interpreted as being the same as the condition for
the existence of an inertial range of wavenumbers, where the
flux through wavenumber becomes equal to the dissipation rate.
It is important to understand that this concept is not a part
of Kolmogorov’s $x$-space theory but is part of the Obukhov-
Onsager $k$-space theory. In contrast, the concept of local
stationarity can be applied to either picture; but in my view
is best avoided altogether.

I will say no more about this topic here, as I intend to
develop it over the next few weeks. In particular, I think it



would be helpful to make a pointwise summary of Kolmogorov-
Obukhov theory, emphasising the differences between $x$-space
and $k$-space forms, clarifying the historical position and
indicating some significant and more recent developments.

[1]  W.  D.  McComb.  Galilean  invariance  and  vertex
renormalization.  Phys.  Rev.  E,  71:37301,  2005.
[2] G. K. Batchelor. The theory of homogeneous turbulence.
Cambridge University Press, Cambridge, 2nd edition, 1971.

Turbulence in a box.
Turbulence in a box.
When the turbulence theories of Kraichnan, Edwards, Herring,
and so on, began attracting attention in the 1960s, they also
attracted attention to the underlying ideas of homogeneity,
isotropy, and Fourier analysis of the equations of motion.
These  must  have  seemed  very  exotic  notions  to  the  fluid
dynamicists and engineers who worked on single-point models of
the  closure  problem  posed  by  the  Reynolds  equation.
Particularly, when the theoretical physicists putting forward
these new theories had a tendency to write in the language of
the relatively new topic of quantum field theory or possibly
the even newer statistical field theory. In fact, the only
aspect of this new approach that some people working in the
field were apparently able to grasp was the fact that the
turbulence was in a box, rather than in a pipe or wake or
shear layer.

I became aware of this situation when submitting papers in the
early 1970s, when I encountered referees who would begin their
report  with:  ‘the  author  invokes  the  turbulence  in  a  box
concept’. This seemed to me to have ominous overtones. I mean,

https://blogs.ed.ac.uk/physics-of-turbulence/2021/11/18/turbulence-in-a-box/


why comment on it? No one working in the field did: it was
taken  as  quite  natural  by  the  theorists.  However,  in  due
course it invariably turned out that the referee didn’t think
that my paper should be published. Reason? Apparently just the
unfamiliarity of the approach. Later on, with the subject of
turbulence theory having reached an impasse, they clearly felt
quite confident in turning it down. I have written before on
my experiences of this kind of refereeing (see, for example,
my post of 20 Feb 2020).

Another example of turbulence in a box is the direct numerical
simulation of isotropic turbulence, where the Navier-Stokes
equations are discretised in a cubical box in terms of a
discrete Fourier transform of the velocity field. Since Orszag
and Patterson’s pioneering development of the pseudo-spectral
method [1] in 1972, the simulation of isotropic turbulence has
grown in parallel with the growth of computers; and, in the
last few decades, it has become quite an everyday activity in
turbulence research. So, now we might expect box turbulence to
take its place alongside pipe turbulence, jet turbulence and
so on, in the jargon of the subject?

In fact this doesn’t seem to have happened. However, less than
twenty  years  ago,  a  paper  appeared  which  referred  to
simulation in a periodic box [2], and since then I have seen
references  to  this  in  microscopic  physics,  where  the
simulations are of molecular systems. I’m not sure why the
nature of the box is worth mentioning. It is, after all, a
commonplace fact of Fourier analysis, that representation of a
non-periodic  function  in  a  finite  interval  requires  an
assumption of periodic behaviour outside the interval. Much
stranger than this is that I am now seeing references to
periodic  turbulence  as,  apparently,  denoting  isotropic
turbulence that has been simulated in a periodic box. This
does not seem helpful! To most people in the field, periodic
turbulence means turbulence that is modulated periodically in
time or space. That is, the sort of turbulence that might be



found in rotating machinery or perhaps a coherent structure
[3]. We have to hope that this usage does not catch on.

[1] S. A. Orszag and G. S. Patterson. Numerical simulation of
three-dimensional  homogeneous  isotropic  turbulence.
Phys.Rev.Lett,  28:76,  1972.
[2] Y. Kaneda, T. Ishihara, M. Yokokawa, K. Itakura, and A.
Uno. Energy dissipation and energy spectrum in high resolution
direct numerical simulations of turbulence in a periodic box.
Phys. Fluids, 15:L21, 2003.
[3] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.

Large-scale  resolution  and
finite-size effects.
Large-scale resolution and finite-size effects.
This post arises out of the one on local isotropy posted on 21
October 2021; and in particular relates to the comment posted
by Alex Liberzon on the need to choose the size of volume $G$
within which Kolmogorov’s assumptions of localness may hold.
In fact, as is so often the case, this resolves itself into a
practical  matter  and  raises  the  question  of  large-scale
resolution in both experiment and numerical simulation.

In recent years there has been growing awareness of the need
to  fully  resolve  all  scales  in  simulations  of  isotropic
turbulence,  with  the  emphasis  initially  being  on  the
resolution of the small scales. In my post of 28 October 2021,
I  presented  results  from  reference  [1]  showing  that
compensating for viscous effects and the effects of forcing on
the third-order structure function $S_3(r)$ could account for
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the differences between the four-fifths law and the DNS data
at all scales. In this work, the small-scale resolution had
been judged adequate using the criteria established by McComb
et al [2].

However in [1], we noted that large-scale resolution had only
recently received attention in the literature. We ensured that
the  ratio  of  box  size  to  integral  length-scale  (i.e.
$L_{box}/L$)  was  always  greater  than  four.  This  choice
involved the usual trade-off between resolution requirements
and the magnitude of Reynolds number achieved, but the results
shown in our post of 28 October would indicate that this
criterion for large-scale resolution was perfectly adequate.
That  could  suggest  that  taking  $G\sim  (4L)^3$  might  be  a
satisfactory  criterion.  Nevertheless,  I  think  it  would  be
beneficial if someone were to carry out a more systematic
investigation of this, in the same way as reference [1] did
for the small-scale resolution.

Some attempts have been made at doing this in experimental
work on grid turbulence: see the discussion on pages 219-220
in reference [3], but it clearly is a subject that deserves
more attention. As a final point, we should note that this
topic can be seen as being related to finite-size effects
which are nowadays of general interest in microscopic systems,
because there the theory actually relies on the system size
being infinite. I suppose that we have a similar problem in
turbulence in that the derivation of the solenoidal Navier-
Stokes equation requires an infinitely large system, as does
the use of the Fourier transform.

[1] W. D. McComb, S. R. Yoffe, M. F. Linkmann, and A. Berera.
Spectral analysis of structure functions and their scaling
exponents  in  forced  isotropic  turbulence.  Phys.  Rev.  E,
90:053010, 2014.
[2] W. D. McComb, A. Hunter, and C. Johnston. Conditional
mode-elimination  and  the  subgrid-modelling  problem  for
isotropic turbulence. Phys. Fluids, 13:2030, 2001.



[3]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
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function  corrected  for
systematic error.
The second-order structure function corrected for systematic
error.

In  last  week’s  post,  we  discussed  the  corrections  to  the
third-order structure function $S_3(r)$ arising from forcing
and viscous effects, as established by McComb et al [1]. This
week we return to that reference in order to consider the
effect  of  systematic  error  on  the  second-order  structure
function, $S_2(r)$. We begin with some general definitions.

The longitudinal structure function of order $n$ is defined
by:\begin{equation}  S_n(r)  =  \left\langle  \delta  u^n_L(r)
\right\rangle,  \end{equation}  where  $\delta  u_L(r)$  is  the
longitudinal velocity difference over a distance $r$. From
purely dimensional arguments we may write: \begin{equation}
S_n(r) = C_n \varepsilon^{n/3}\,r^{n/3}, \end{equation} where
the $C_n$ are dimensionless constants.
However, as is well known, measured values imply $S_n(r)\sim
\, r^{\zeta_n}$ where the exponents $\zeta_n$ are not equal to
the dimensional result, with the one exception: $\zeta_3 = 1$.
In fact it is found that $\Delta_n = |n/3 – \zeta_n|$ is
nonzero and increases with order $n$.

It is worth pausing to consider a question. Does this imply
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that  the  measurements  give  $S_n(r)=C_n
\varepsilon^{\zeta_n}r^{\zeta_n}$?  No,  it  doesn’t.  Not  only
would this give the wrong dimensions but, more importantly,
the time dimension is controlled entirely by the dissipation
rate.  Accordingly,  we  must  have:  $S_n(r)=C_n
\varepsilon^{n/3}r^{\zeta_n}\mathcal{L}^{n/3-\zeta_n}$,  where
$\mathcal{L}$  is  some  length  scale.  Unfortunately  for
aficionados  of  intermittency  corrections  (aka  anomalous
exponents), the only candidate for this is the size of the
system  (e.g.  $\mathcal{L}  =  L_{box}$),  which  leads  to
unphysical  results.

Returning to our main theme, the obvious way of measuring the
exponent $\zeta_n$ is to make a log-log plot of $S_n$ against
$r$,  and  determine  the  local  slope:  \begin{equation}
\zeta_n(r) = d\,\log \,S_n(r)/d\, \log \,r.\end{equation} Then
the presence of a plateau would indicate a constant exponent
and hence a scaling region. In practice, however, this method
has problems. Indeed workers in the field argue that a Taylor-
Reynolds  number  of  greater  than  $R_{\lambda}\sim  500$  is
needed for this to work, and of course this is a very high
Reynolds number.

A popular way of overcoming this difficulty is the method of
extended scale-similarity (or ESS), which relies on the fact
that $S_3$ scales with $\zeta_3 =1$ in the inertial range,
indicating  that  one  might  replace  $r$  by  $S_3$  as  the
independent  variable,  thus:  \begin{equation}S_n(r)  \sim
[S_3(r)]^{\zeta_n^{\ast}},\qquad  \mbox{where}  \qquad
\zeta_n^{\ast}  =  \zeta_n/\zeta_3.\end{equation}  In  order  to
overcome problems with odd-order structural functions, this
technique was extended by using the modulus of the velocity
difference,  to  introduce  generalized  structure  functions
$G_n(r)$,  such  that:  \begin{equation}G_n(r)=\langle  |\delta
u_L(r)|^n \rangle\sim r^{\zeta_n’}, \qquad \mbox{with scaling
exponents}  \quad  \zeta’_n.  \end{equation}  Then,  by  analogy
with  the  ordinary  structure  functions,  taking  $G_3$  with



$\zeta’  =1$  leads  to  \begin{equation}  G_n(r)  \sim
[G_3(r)]^{\Sigma_n},  \qquad\mbox{with}  \quad  \Sigma_n  =
\zeta’_n /\zeta’_3 . \end{equation} This technique results in
scaling behaviour extending well into the dissipation range
which allows exponents to be more easily extracted from the
data. Of course, this is in itself an artefact, and this fact
should be borne in mind.

There is an alternative to ESS and that is the pseudospectral
method,  in  which  the  $S_n$  are  obtained  from  their
corresponding spectra by Fourier transformation. This has been
used by some workers in the field, and in [1] McComb et al
followed their example (see [1] for details) and presented a
comparison between this method and ESS. They also applied a
standard method for reducing systematic errors to evaluate the
exponent of the second-order structure function. This involved
considering the ratio $|S_n(r)/S_3(r)|$. In this procedure, an
exponent  $\Gamma_n$  was  defined  by  \begin{equation}\left  |
\frac{S_n(r)}{S_3(r)}\right  |\sim  r^{\Gamma_n},  \qquad
\mbox{where} \quad \Gamma_n= \zeta_n – \zeta_3. \end{equation}

Results were obtained only for the case $n=2$ and figures 9
and 10 from [1] are of interest, and are reproduced here. The
first  of  these  is  the  plot  of  the  compensated  ratio
$(r/\eta)^{1/3}U|S_2(r)/S_3(r)|$  against  $r/\eta$,  where
$\eta$ is the dissipation length scale and $U$ is the rms
velocity. This illustrates the way in which the exponents were
obtained.

 



Figure 9 from reference [1].

In the second figure, we show the variation of the exponent
$\Gamma_2  +  1$  with  Reynolds  number,  compared  with  the
variation of the ESS exponent $\Sigma_2$. It can be seen that
the first of these tends towards the K41 value of $2/3$, while
the ESS value moves away from the K41 result as the Reynolds
number increases.

 



Figure 10 from reference [1]

Both  methods  rely  on  the  assumption  $\zeta_3  =1$,  hence
$\Gamma_2+1 = \zeta_2$, which is why we plot that quantity. We
may note that figures 1 and 2 point clearly to the existence
of finite Reynolds number corrections as the cause of the
deviation from K41 values. Further details and discussion can
be found in reference [1].

[1] W. D. McComb, S. R. Yoffe, M. F. Linkmann, and A. Berera.
Spectral analysis of structure functions and their scaling
exponents  in  forced  isotropic  turbulence.  Phys.  Rev.  E,
90:053010, 2014.



Viscous  and  forcing
corrections  to  Kolmogorov’s
‘4/5’ law.
Viscous and forcing corrections to Kolmogorov’s ‘4/5’ law.

The  Kolmogorov  `4/5′  law  for  the  third-order  structure
function $S_3(r)$ is widely regarded as the one exact result
in  turbulence  theory.  And  so  it  should  be:  it  has  a
straightforward  derivation  from  the  Karman-Howarth  equation
(KHE),  which  is  an  exact  energy  balance  derived  from  the
Navier-Stokes  equation.  Nevertheless,  there  is  often  some
confusion  around  its  discussion  in  the  literature.  In
particular, for stationary isotropic turbulence, there can be
confusion about the effects of viscosity (small scales) and
forcing (large scales). These aspects have been clarified by
McComb et al [1], who used spectral methods to obtain $S_2$
and $S_3$ from a direct numerical simulation of the equations
of motion.

If we follow the standard treatment (see [2], Section 4.6.2),
we may write: \begin{equation} S_3(r)= -\frac{4}{5}\varepsilon
r + 6\nu\frac{\partial S_2}{\partial r}.\end{equation}
In the past, this statement has been criticised because it
omits the forcing which must be present in order to sustain a
stationary turbulent field. However, it should be borne in
mind that this is an entirely local equation; and, if the
effect of the forcing is concentrated at the largest scales,
then omission of these scales also omits the forcing. We can
shed some light on this by reproducing Figure 7 from [1],
thus:
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Variation of the third-order structure function showing
the effect of viscous corrections.

 

The  results  were  taken  at  a  Taylor-Reynolds  number
$R_{\lambda} = 435.2$, and show how the departure from the
`4/5′ law at the small scales is due to the viscous effects.
Clearly there is a range of values of $r$ where the `4/5′ law
may be regarded as exact, in the ordinary sense appropriate to
experimental work. This range of scales is, of course, the
inertial range. Note that $\eta$ is the Kolmororov length
scale.

Presumably  the  departure  from  the  `4/5′  law  at  the  large
scales is due to forcing effects, and McComb et al [1] also
shed light on this point. They did this by working in spectral
space, where stirring forces have been studied since the late
1950s  in  the  context  of  the  statistical  theories  (e.g
Kraichnan, Edwards, Novikov, Herring: see [3] for details) and
are correspondingly well understood. They began with the Lin



equation: \begin{equation} \frac{\partial E(k,t)}{\partial t}
= T(k,t) – 2\nu k^2E(k,t) + W(k), \end{equation} where in
principle the energy and transfer spectra depend on time,
whereas the spectrum of the stirring forces $W(k)$ is taken as
independent of time in order to ensure ultimate stationarity.
Thus we will drop the time dependences hereafter as we will
only consider the stationary case.

We can derive the KHE from this and the result is the usual
KHE  plus  an  input  term  $I(r)$,  defined  by:
\begin{equation}I(r)  =  \frac{3}{r^3}\int_0^r\,  dy  \,y^2\,
W(y),\end{equation}  where  $W(y)$  is  the  three-dimensional
Fourier transform of the work spectrum $W(k)$. By integrating
the KHE (as Kolmogorov did in deriving the `4/5′ law) we
obtain  the  form  for  the  third-order  structure  function
$S_3(r)$ as: \begin{equation} S_3(r)=X(r) + 6\nu\frac{\partial
S_2}{\partial r},\end{equation}where where $X(r)$ is given in
terms of the forcing spectrum by: \begin{equation} X(r) =
-12r\int_0^{\infty}\,dk W(k)\,\left[\frac{3\sin kr – 3kr \cos
kr-(kr)^2 \sin kr}{(kr)^5}\right].\end{equation}
The result of including the effect of forcing is shown in
Figure 8 of [1], which is reproduced here below.

 



Variation  of  the  third-order  structure  function  with
scale  showing  both  viscous  effects  and  those  due  to
forcing.

 

These results are taken from the same simulation as above, and
now the contributions from viscous and forcing effects can be
seen to account for the departure of $S_3$ from the `4/5′ law
at all scales.

In [1] it is pointed out that $X(r)$ is not a correction to
K41, as used in other previous studies. Instead, it replaces
the erroneous use of the dissipation rate of others’, and
contains  all  the  information  of  the  energy  input  at  all
scales.  In  the  limit  of  $\delta(k)$  forcing,  $I(y)=
\varepsilon_W  =  \varepsilon$,  such  that  $X(r)  =
-4\varepsilon\,  r/5$,  giving  K41  in  the  infinite  Reynolds
number limit. Note that $\varepsilon_W$ is the rate of doing
work by the stirring forces. Further details may be found in
[1].



[1] W. D. McComb, S. R. Yoffe, M. F. Linkmann, and A. Berera.
Spectral analysis of structure functions and their scaling
exponents  in  forced  isotropic  turbulence.  Phys.  Rev.  E,
90:053010, 2014.
[2]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
[3] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.

Local  isotropy,  local
homogeneity  and  local
stationarity.
Local isotropy, local homogeneity and local stationarity.

In  last  week’s  post  I  reiterated  the  argument  that  the
existence  of  isotropy  implies  homogeneity.  However,  Alex
Liberzon commented that there could be inhomogeneous flows
that exhibited isotropy on scales that were small compared to
the overall size of the flow. This comment has the great merit
of  drawing  attention  to  the  difference  between  a  purely
theoretical formulation and one dealing with a real practical
situation.  In  my  reply,  I  mentioned  that  Kolmogorov  had
introduced the concept of local isotropy, which supported the
view that Alex had put forward. So I thought it would be
interesting to look in detail again at what Kolmogorov had
actually said. Incidentally, Kolmogorov said it in 1941 but
for  the  convenience  of  readers  I  have  given  the  later
references,  as  reprinted  in  the  Proceedings  of  the  Royal
Society.
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Now,  although  I  like  to  restrict  the  problem  to  purely
isotropic turbulence, where it still remains controversial in
that  many  people  believe  in  intermittency  corrections  or
anomalous exponents, Kolmogorov actually put forward a theory
of  turbulence  in  general.  He  argued  that  a  cascade  as
envisaged by Richardson could lead to a range of scales where
the turbulence becomes locally homogeneous. In [1], which I
refer to as K41A, he put forward two definitions, which I
shall paraphrase rather than quote exactly.

The  first  of  these  is  as  follows:  `Definition  1.  The
turbulence is called locally homogeneous in the domain $G$ if
the probability distribution of the velocity differences is
independent of the origin of coordinates in space, time and
velocity, providing that all such points are contained within
the domain $G$.’

We should note that this includes homogeneity in time as well
as in space. In other words, Kolmogorov was assuming local
stationarity as well.

Then his second definition is: `Definition 2. The turbulence
is  called  locally  isotropic  in  the  domain  $G$,  if  it  is
homogeneous and if, besides, the distribution laws mentioned
in Definition 1 are invariant with respect to rotations and
reflections  of  the  original  system  of  coordinate  axes
$(x_1,\,x_2\,x_3)$.’

Note that the emphasis is mine.

Kolmogorov then compared his definition of isotropy to that of
Taylor, as introduced in 1935. He stated that his definition
is narrower, because he also requires local stationarity, but
wider in that it applies to the distribution of the velocity
differences, and not to the velocities themselves. Later on,
when he derived the so-called ‘$4/5$’ law [2], he had already
made the assumption that the time-derivative term could be
neglected,  and  simply  quoted  the  Karman-Howarth  equation



without it: see equation (3) in [2].

The question then arises, how far do these assumptions apply
in  any  real  flow?  In  my  post  of  11th  February  2021,  I
conjectured that this might be a matter of the macroscopic
symmetry of the flow. For instance, the Kolmogorov picture
might apply better in plane channel flow that in plane Couette
flow. I plan to return to this point some time.

[1] A. N. Kolmogorov. The local structure of turbulence in
incompressible viscous fluid for very large Reynolds numbers.
Proc. Roy Soc. Lond., 434:9-13, 1991.
[2]  A.  N.  Kolmogorov.  Dissipation  of  energy  in  locally
isotropic turbulence. Proc. Roy Soc. Lond., 434:15-17, 1991.

Is  isotropy  the  same  as
spherical symmetry?
Is isotropy the same as spherical symmetry?

To which you might be tempted to reply: ‘Who ever thought it
was?’  Well,  I  don’t  know  for  sure,  but  I’ve  developed  a
suspicion that such a misconception may underpin the belief
that it is necessary to specify that turbulence is homogeneous
as well as isotropic. When I began my career it was widely
understood that specifying isotropy was sufficient, as it was
generally realised that homogeneity was a necessary condition
for isotropy. A statement to this effect could (and can) be
found on page 3 of Batchelor’s famous monograph on the subject
[1].

I  have  posted  previously  on  this  topic  (my  second  post,
actually, on 12 February 2020) and conceded that the acronym
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HIT,  standing  of  course  for  ‘homogeneous,  isotropic
turbulence’,  has  its  attractions.  For  a  start,  it’s  the
shortest possible way of telling people that you are concerned
with  isotropic  turbulence.  I’ve  used  it  myself  and  will
probably continue to do so. So I don’t see anything wrong with
using it, as such. The problem arises, I think, when some
people think that you must use it. In other words, such people
apparently believe that there is an inhomogeneous form of
isotropic turbulence.

When you think about it that is really quite worrying. I’m not
particularly happy about someone, whose understanding is so
limited, refereeing one of my papers. Although, to be honest,
that could well explain some of the more bizarre referees’
reports over the years! Anyway, let’s examine the idea that
there may be some confusion between isotropy and spherical
symmetry.

Isotropy  just  means  that  a  property  is  independent  of
orientation. Spherical symmetry sounds quite similar and is
probably the more frequently encountered concept for most of
us (at least during our formal education). Essentially it
means that, relative to some fixed point, a field only varies
with distance from the point but not with angle. A familiar
example would be a point electric charge in free space. So we
might be tempted to visualise isotropy as a form of spherical
symmetry,  the  common  element  being  the  independence  of
orientation.

The problem with doing this, is that the property of isotropy
of  a  medium  must  apply  to  any  point  within  it.  Whereas,
spherical symmetry depends on the existence of a special point
which may be taken as the origin of coordinates. But the
existence  of  such  a  special  point  would  violate  spatial
homogeneity. So for isotropy to be true, we must have spatial
uniformity or homogeneity. I think that one can infer this
mathematically from the fact that the only isotropic tensors
are  (subject  to  a  scalar  multiplier)  the  Kronecker  delta



$\delta_{ij}$ and the Levi-Civita density $\epsilon_{ijk}$. So
any isotropic tensor must have components that are independent
of the coordinates of the system.

For this point applied to the cosmos, i.e. homogeneity is a
necessary (but not sufficient) condition for isotropy, see
Figure 2 on page 24 of [2]. It seems to be easier to visualise
these matters in terms of the night sky which is a fairly (if,
illusory)  static-looking  entity.  But  when  we  add  in  a
continuum  structure  and  random  variations  on  many  length
scales, it can be more difficult. We will come back to this
particular problem in my next post.

[1] G. K. Batchelor. The theory of homogeneous turbulence.
Cambridge University Press, Cambridge, 2nd edition, 1971.
[2] Steven Weinberg. The first three minutes: a modern view of
the origin of the universe. Basic Books, NY, 1993.

Various  kinds  of  turbulent
dissipation?
Various kinds of turbulent dissipation?

The current interest in Onsager’s conjecture (see my blog of
23 September 2021) has sparked my interest in the nature of
turbulent dissipation. Essentially a fluid only moves because
a force acts on it and does work to maintain it in motion. The
effect  of  viscosity  is  to  convert  this  kinetic  energy  of
macroscopic  motion  into  random  molecular  motion,  which  is
perceived  as  heat.  If  there  is  turbulence,  this  acts  to
transfer  the  macroscopic  kinetic  energy  to  progressively
smaller  scales,  where  the  steeper  velocity  gradients  can
dissipate it as heat.
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This  all  seems  quite  straightforward  and  well  understood.
However, Onsager’s conjecture, as a matter of physics, is less
easily understood. It interprets the infinite Reynolds number
limit as being when the continuum nature of the fluid breaks
down. It also implies that, when the Reynolds number becomes
very large, the Navier-Stokes equation somehow becomes the
Euler  equation;  which,  despite  its  inviscid  nature,
satisfactorily accounts for the dissipation. It can do this
(supposedly) because it has lost its property of conserving
energy.  In  turn,  this  is  supposed  to  happen  because  the
velocity is no longer a continuous and differentiable field.
Of course there does not seem to be any mechanism for turning
the dissipated energy into heat, so the thermodynamic aspects
of this process look distinctly dodgy.

There are two other cases where macroscopic kinetic energy is
not turned into heat.

The first of these is in large-eddy simulation, which has for
many years been widely studied for its practical significance.
This of course is not a physical situation. It is purely a
method of simulating turbulence numerically without being able
to resolve all the scales: an introduction can be found in
[1]. The central problem is to model the flow of energy to the
scales  which  are  too  small  to  be  resolved:  the  so-called
subgrid  drain.  Various  models  have  been  studied  for  the
subgrid viscosity, while a novel approach is the operational
method of Young and McComb [2]. In this latter, an algorithm
is used to feed back energy into the resolved modes, such that
the spectral shape is kept constant. In fact this method can
be interpreted in terms of an effective subgrid viscosity
which  is  very  similar  to  that  found  in  conventional
simulations when a large-eddy simulation is compared to a
fully  resolved  one.  But,  so  far  as  I  know,  no  one  has
considered modelling the temperature rise that would be due to
the viscous dissipation in these cases.

The  second  case  is  the  direct  simulation  of  the  Euler



equation.  Such  simulations  can  only  lead  to  thermal
equilibrium but naturally the simulations must be truncated to
a finite number of modes, to avoid having an infinite amount
of  energy.  However,  in  2005,  some  interesting  transient
behaviour was been found in truncated Euler simulations [3]
and confirmed the following year by the use of a closure
approximation [4]. These simulations may be divided in terms
of their energy spectra into two spectral ranges: a Kolmogorov
range and an equipartition range. A buffer range in between
these two is described by Bos and Bertoglio as a ‘quasi-
dissipative’ zone, which is another example of non-viscous
dissipation. However, it can only exist for a finite time and
ultimately the system must move to thermal equilibrium.

I think it would be interesting to see one of the proponents
of Onsager’s conjecture explain the simple physics of how the
conjectured  situation  came  about  with  increasing  Reynolds
number. All the mathematical expressions you need to do that
are available. But I don’t think I will see that any time
soon!

[1] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[2] A. J. Young and W. D. McComb. Effective viscosity due to
local turbulence interactions near the cutoff wavenumber in a
constrained  numerical  simulation.  J.  Phys.  A,  33:133-139,
2000.
[3] Cyril Cichowlas, Pauline Bonatti, Fabrice Debbasch, and
Marc  Brachet.  Effective  Dissipation  and  Turbulence  in
Spectrally Truncated Euler Flows. Phys. Rev. Lett., 95:264502,
2005.
[4] W. J. T. Bos and J.-P. Bertoglio. Dynamics of spectrally
truncated inviscid turbulence. Phys. Fluids, 18:071701, 2006.



Superstitions  in  turbulence
theory 2: that intermittency
destroys scale-invariance!
Superstitions  in  turbulence  theory  2:  that  intermittency
destroys scale-invariance!

At the moment I am busy revising a paper (see [1] below) in
order to meet the comments of the referees. As is so often the
case,  Referee  1  is  supportive  and  Referee  2  is  hostile.
Naturally, Referee 2 writes at great length, so it is really a
matter of rebuttal rather than our making changes. It seems
clear that he is far from his comfort zone and his comments
show that he has comprehensively misunderstood our paper. It
also seems to me that he has not actually read certain key
parts of the manuscript. For instance, he states: ‘The way how
the  authors  use  the  word  “scale-invariance”  should  be
clarified’  (sic).

This is despite the fact that subsection 3.1 of the paper is
titled ‘Scale-invariance of the inertial flux in the infinite
Reynolds number limit’ and consists of only three paragraphs.
It contains two equations, one of which states the criterion
for an inertial range. This is followed by a sentence ending
with “… where the fact that the criterion holds over a range
of wavenumbers is usually referred to as scale-invariance.”
Oh, and as regards ‘how the authors use the word’, we cite a
number of references to show that others use the phrase, so we
are not alone.

The next thing he says is: ‘We know from experimental evidence
(intermittency)  that  scale  invariance  is  broken  in  the
inertial  range.’  This  is  quite  simply  nonsense.  In  this
context  scale-invariance  means  that  the  inertial  range  is
characterised by a constant flux over a range of wavenumbers,

https://blogs.ed.ac.uk/physics-of-turbulence/2021/09/30/superstitions-in-turbulence-theory-2-that-intermittency-destroys-scale-invariance/
https://blogs.ed.ac.uk/physics-of-turbulence/2021/09/30/superstitions-in-turbulence-theory-2-that-intermittency-destroys-scale-invariance/
https://blogs.ed.ac.uk/physics-of-turbulence/2021/09/30/superstitions-in-turbulence-theory-2-that-intermittency-destroys-scale-invariance/


and this has been shown in many investigations. In fact there
is  no  way  in  which  intermittency,  which  is  a  single-
realization characteristic, can affect mean quantities such as
inertial flux or their properties such as scale-invariance. In
a recent paper [2], we have shown that the ensemble average of
intermittency vanishes. In the first figure below, we show the
effect of using contours of isovorticity and the progressive
effect  of  averaging  over  $N=1,\,2,\,5,\,10,\,25$  and  $46$
realizations.



The effect of ensemble averaging on contours of isovorticity
showing how increasing the number of realisations averages out
the intermittency.



The effect of the averaging out with increasing number of
realizations is evident. While the use of vorticity is more
natural, the effect can perhaps be more clearly seen using the
Q-criterion, as is done in the next figure.

 



The same procedure as in the previous figure, this time using
the Q-criterion.

Both figures are taken from the same stationary DNS of the



Navier-Stokes  equations.  Further  details  can  be  found  in
reference [2].

Over the past three decades there has been an increasing body
of evidence to the effect that intermittency does not affect
the Kolmogorov spectrum. Any deviations are in fact due to the
Kolmogorov conditions not being quite met. Presumably it will
take a long time for rational enquiry to defeat superstition
in this topic!

[1] W. D. McComb and S. R. Yoffe. The infinite Reynolds number
limit  and  the  quasi-dissipative  anomaly.
arXiv:2012.05614v2[physics.flu-dyn],  2021.
[2] S. R. Yoffe and W. D. McComb. Does intermittency affect
the inertial transfer rate in stationary isotropic turbulence?
arXiv:2107.09112v1 [physics.flu-dyn], 2021.

Superstitions  in  turbulence
theory  1:  the  infinite  Re
limit  of  the  Navier-Stokes
equation  is  the  Euler
equation!
Superstitions in turbulence theory 1: the infinite Re limit of
the Navier-Stokes equation is the Euler equation!

I recently posted blogs about the Onsager conjecture [1]; the
need  to  take  limits  properly  (Onsager  didn’t!);  and  the
programme  at  MSRI  Berkeley,  which  referred  to  the  Euler
equation as the infinite Reynolds number limit, in a series of
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posts from 5 – 19 August just past. A later notification about
the MSRI programme no longer made that claim; and I speculated
(conjectured?) that this might not be unconnected from the
appearance of the paper [2] on the arXiv! Now the Isaac Newton
Institute is having a new programme on mathematical aspects of
turbulence over the first half of next year, and their theme
dwells on how the mathematics underlying ‘the proof of the
Onsager conjecture … can bring insights into the dissipative
anomaly  conjecture,  a.k.a.  Kolmogorov’s  zeroth  law  of
turbulence’.

The idea of a dissipation (or dissipative) anomaly goes back
to  Onsager’s  conjecture  [1]  made  in  1949  when  turbulence
studies were still in their infancy. Although the alternative
expression (i.e Kolmogorov’s zeroth law) has also been used, I
have no idea who formulated it; nor of the reasoning that lies
behind  it.  While  Kolmogorov  may  have  formulated  laws  in
statistics (I am indebted to Mr Google for this information!),
his  contributions  to  turbulence  do  not  qualify  for  the
description ‘physical laws’. However, an irony about the way
in which Onsager came to his conclusion about a dissipative
anomaly recently dawned on me, and the point of this post is
to share that with you.

Onsager’s starting point was Taylor’s (1935) expression for
the  turbulent  dissipation  [3]  thus:
\begin{equation}\varepsilon  =  C_{\varepsilon}(R_L)
U^3/L,\end{equation}  where  $\varepsilon$  is  the  dissipation
rate,  $U$  is  the  root  mean  square  velocity,  $L$  is  the
integral scale, and $C_{\varepsilon}$ is a coefficient which
may depend on the Reynolds number $R_L$, which is formed from
the integral scale and the rms velocity. In 1953, Batchelor
[4] presented some results that suggested $C_{\varepsilon}$
tended  to  a  constant  with  increasing  Reynolds  number..
Nevertheless, this expression was the subject of some debate
over the years (although its equivalent for shear flows was
widely  used  in  both  research  and  practical  applications),



until Sreenivasan’s survey papers on grid turbulence [5] in
1984  and  on  direct  numerical  simulations  [6]  in  1998
established the characteristic asymptotic shape of this curve.
This work had a seminal effect on the subject and a general
account of work in this area can be found in the book [7].

However, it was suggested by McComb et al in 2010 [8] that the
Taylor’s expression for the dissipation (1) is actually a
surrogate for the peak inertial flux $\Pi_{max}$. See the
figure below, which is taken from that paper. It shows from
DNS that the group $U^3/L$ behaves like $\Pi_{max}$ for all
Reynolds numbers, whereas the behaviour of the dissipation is
quite different at low Reynolds numbers.

Variation of the dissipation rate, the peak inertial flux and
the  Taylor  dissipation  surrogate  with  increasing  Reynolds
number from direct numerical simulation [8].

It was further shown [9], using the Karman-Howarth equation
and expanding non-dimensional structure functions in inverse



powers of the Reynolds number, that this was the case, with
the  asymptotic  behaviour  $C_{\varepsilon}  \rightarrow
C_{\varepsilon,\infty}$  as  $R_L  \rightarrow  \infty$
corresponding to the onset of the Kolmogorov $`4/5’$ law.

In other words, when Onsager deduced from Taylor’s expression
that the dissipation did not depend on the viscosity, he was
actually deducing that the peak inertial flux did not depend
on the viscosity. And indeed it doesn’t!

[1] L. Onsager. Statistical Hydrodynamics. Nuovo Cim. Suppl.,
6:279, 1949.
[2] W. D. McComb and S. R. Yoffe. The infinite Reynolds number
limit  and  the  quasi-dissipative  anomaly.
arXiv:2012.05614v2[physics.flu-dyn],  2021.  28.
(N.B.  This  paper  is  presently  under  revision  and  will  be
posted again, possibly with a change of title.)
[3] G. I. Taylor. Statistical theory of turbulence. Proc. R.
Soc., London, Ser. A, 151:421, 1935.
[4] G. K. Batchelor. The theory of homogeneous turbulence.
Cambridge University Press, Cambridge, 1st edition, 1953.
[5]  K.  R.  Sreenivasan.  On  the  scaling  of  the  turbulence
dissipation rate. Phys. Fluids, 27:1048, 1984.
[6] K. R. Sreenivasan. An update on the energy dissipation
rate in isotropic turbulence. Phys. Fluids, 10:528, 1998.
[7]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
[8] W. David McComb, Arjun Berera, Matthew Salewski, and Sam
R. Yoffe. Taylor’s (1935) dissipation surrogate reinterpreted.
Phys. Fluids, 22:61704, 2010.
[9] W. D. McComb, A. Berera, S. R. Yoffe, and M. F. Linkmann.
Energy  transfer  and  dissipation  in  forced  isotropic
turbulence.  Phys.  Rev.  E,  91:043013,  2015.



Peer review: the role of the
referee.
Peer review: the role of the referee.
In earlier years I used to get the occasional phone call from
George Batchelor, at that time the editor of Journal of Fluid
Mechanics,  asking  for  suggestions  of  new  referees  on  the
statistical theory of turbulence. To avoid confusion I should
point out that by this I mean the theoretical physics approach
to the statistical closure problem, pioneered by Bob Kraichnan
and Sam Edwards, and carried on by myself and others. For
anyone interested, a review of this subject can be found in
reference [1] below.

I didn’t find this easy, as there were then (as now) very few
people working on this topic. My suggestion that Sam Edwards,
although  no  longer  active  in  this  area,  could  certainly
referee papers, was met with little enthusiasm. He was seen as
‘too kind’ or even as ‘soft-hearted’! I wasn’t surprised by
this, as Sam had explained his position on refereeing to me
and it amounted to: ‘Unless it is arrant nonsense, it should
be published.’ In contrast, the refereeing process of the JFM
was notoriously tough and this has been generally true in
turbulence research, and remains so to this day. Indeed this
is the general perception in the subject, and to quote Sam
again,  he  once  referred  to  ‘the  cut-throat  nature  of
refereeing in turbulence’. I suspect it was this perception
which put him off continuing in the subject.

I find myself somewhere between the extremes, perhaps because
this is a matter of culture and I have been both engineer and
physicist. However, while I respect the professionalism of the
engineering approach, at the same time I think it can be taken
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too far. A typical experience for me (and I believe also for
many others) is that a technical discussion can be carried on
between the authors and individual referees which is never
seen by others in the field. In my view these discussions
should be published as an appendix to the paper (assuming of
course that the paper is actually accepted for publication). I
also think that where the authors have a track record there
should be a presumption that the paper should be published. In
other words, the onus should be on the referee to come up with
definite and reasoned objections, as opposed to the vague
prejudiced waffle which is so often the case!

Another problem that arises often in the turbulence community,
is the desire of some referees to rewrite the paper. Or rather
to force the author(s) to rewrite the paper to the referee’s
prescription. It is of course legitimate to point out aspects
which are less clear than they might be, but it verges on
arrogance  to  tell  the  author  how  to  do  it.  Also,  with
electronic  publication  now  universal  the  idea  of  saving
paper/printing costs is no longer so relevant. Papers can
easily be as long as they need to be.

I  have  been  on  the  receiving  end  of  this  behaviour  on
occasion,  but  nothing  compared  to  something  I  was  told
recently; where a leading member of the community was forced
to modify his paper four times despite his own judgement that
the changes were unnecessary and his making protests to that
effect to the editor. Someone else I know, summed it up as
‘lazy editors and biased referees’. He had come from particle
physics, where his papers had generally been published ‘as
submitted’, to fluid mechanics (in the context of climatology)
where  there  was  invariably  a  battle  over  changes  being
required by the referee. Of course I trust that it is clear
that I am not referring to the minor changes that we should
all be happy to make, but to major structural changes which
may in the end be no more than one person’s opinion against
another’s. For these two individuals it was the failure by the



editors to intervene that caused the problems.

So, it really comes down to the editor in the end. It is their
job to protect their referees from unfair attack, on the one
hand; and to protect their authors from unfair refereeing, on
the other. As I have pointed out elsewhere, in practice what
breaks this symmetry is that it is more difficult for the
editor to get referees than it is to get prospective authors;
who, after all, are queuing up to apply!

[1] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor., 50:375501, 2017.

Peer review: The role of the
author.
Peer review: The role of the author.
I have previously posted on the role of the editor (see my
blog on 09/07/2020) and had intended to go on to discuss the
role of the referee. However, before doing that it occurred to
me that it might be helpful to first discuss the role of the
author. Of course probably every journal lays down rules for
author and referee alike: but who pays any attention to these?
(Just joking! Although, life is short and if you are having to
try more than one journal, then the fact that these detailed
rules vary from one journal to another can add to the labour
involved.) But what I have in mind are the unwritten rules.
These are generally taken for granted and perhaps should be
spelled out occasionally in order to ensure that everyone is
on the same wavelength.

One basic rule for authors is that they should provide some
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basic introduction to the problem, discuss previous work and
show how their own new work advances the situation. This is
very  much  in  our  own  interest,  as  it  is  a  key  part  of
demonstrating  to  our  co-workers  that  our  paper  is  worth
reading.  However,  as  I  found  out  at  the  beginning  of  my
career,  this  is  can  be  a  fraught  process.  For  instance,
writing the introduction to a paper on the statistical theory
of turbulence was perfectly straightforward, but in the case
of an attempted theory of drag reduction by additives this
turned out to be quite another matter.

My attention was drawn to this problem when I was in the
Theoretical  Physics  Division  at  Harwell.  At  first  this
involved  polymer  molecules;  but,  when  I  looked  into  it
further, I found out that there was a parallel activity based
on the use of macroscopic fibres such as wood-pulp or rayon.
This  latter  activity  generally  seemed  to  have  originated
within the relevant industry, and was often carried on without
reference to the better known use of polymer additives.

I found the fibre problem more attractive, because it seemed
easier to think about a macroscopic fibre as a linear object
which  could  only  have  two-dimensional  interactions  with  a
three-dimensional eddy of comparable size. If one added in the
possibility of elastic deformation of the fibre by the fluid,
then one could think in terms of a non-Newtonian relationship
between stress and rate of strain for the composite fluid
which could act as a model for the fibre suspension. On the
assumption  that  the  fibres  would  tend  to  be  aligned  (on
average) with the mean flow, physical reasoning led to an
expression for a nonlinear correction to the usual Newtonian
viscosity,  which  could  be  further  decomposed  into  the
difference  between  two-dimensional  and  three-dimensional
inertial transfer terms, both of which represented reversals
of the usual energy cascade. This theory offered a qualitative
explanation of the changes in turbulent intensities which had
been observed in fibre suspensions and was published as a



letter in Nature [1].

So far so good! The problems arose when I extended this work
and submitted it to JFM. All three referees were unanimous in
rejecting the paper. Part of the trouble seemed to be that the
work was carried out in spectral space. An account of this can
be found in my blog of 20/02/2020, including the infamous
description of my analysis as ‘the usual wavenumber murder’!
But, as was kindly pointed out to me by George Batchelor, the
problem was that I was ‘treading on the toes’ of those who
worked  in  this  field  (i.e.  microrheology).  This  editorial
advice was helpful; because, from my background in physics, I
knew very little about fluid mechanics and was happily unaware
that the subject of microrheology even existed.

Of course, in the spirit of ‘poacher turned gamekeeper’ I
ultimately became very keen on making sure that any paper of
mine had a proper literature survey. I owe this mainly to my
PhD students, who have always been very assiduous in tracking
down references, and who have set me a good example in this
respect!
Nowadays, in view of the great increase in publications, I
tend to take a more tolerant attitude to others who fail to
cite relevant papers. But I’m not sure that this is really
justified.  After  all,  although  we  have  had  a  positive
explosion of publications in fluid mechanics, most of this is
in practical applications. The amount of truly fundamental
work is still quite small. And we do have the power of Google
to help us find anything that is relevant to what we are
currently publishing. I must say that I am rather sceptical
about  papers  that  purport  to  present  applications  of
theoretical physics to turbulence yet do not mention the name
‘Kraichnan’. I suspect them of being fake theories. This is
something that I may expand on sometime.

For  those  who  are  interested,  a  further  account  of
developments in the study of drag reduction may be found in my
book cited as [2] below.



[1] W. D. McComb. The turbulent dynamics of an elastic fibre
suspension: a mechanism for drag reduction. Nature Physical
Science, 241(110):117-118, 1973.
[2] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.

The exactness of mathematics
and  the  inexactness  of
physics.
The exactness of mathematics and the inexactness of physics.

This post was prompted by something that came up in a previous
one (i.e. see my blog on 12 August 2021), where I commented on
the fact that an anonymous referee did not know what to make
of  an  asymptotic  curve.  The  obvious  conclusion  from  this
curve, for a physicist, was that the system had evolved! There
was  no  point  in  worrying  about  the  precise  value  of  the
Reynolds number. That is a matter of agreeing a criterion if
one needs to fix a specific value. But evidently the ratio
shown  was  constant  within  the  resolution  limits  of  the
measurements  of  the  system;  and  this  is  the  key  point.
Everything in physics comes down to experimental error: the
only  meaningful  comparison  possible  (i.e.  theory  with
experiment  or  one  experiment  with  another)  is  subject  to
experimental  error  which  is  inherent.  Strictly  one  should
always quote the error, because it is never zero.

In  everyday  life,  there  are  of  course  many  practical
expedients. For instance, radioactivity takes in principle an
infinite amount of time to decay completely, so in practice
radioisotopes are characterised by their half-life. So the
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manufacturers of smoke alarms can tell you when to replace
your alarm, as they know the half-life of the radioactive
source used in it. In acoustics or diffusion processes or
electromagnetism, exponential decays are commonplace, and it
is  usual  to  introduce  a  relaxation  time  or  length,
corresponding  to  when/where  the  quantity  of  interest  has
fallen to $1/e$ of its initial value.

In fluid mechanics, the concept of a viscous boundary layer on
a  solid  surface  is  of  great  utility  in  reconciling  the
practical consequences of a flow (such as friction drag) with
the elegance and solubility of theoretical hydromechanics. The
boundary  layer  builds  up  in  thickness  in  the  stream-wise
direction as vorticity created at the solid surface diffuses
outwards. But how do we define that thickness? A reasonable
criterion is to choose the point where the velocity in the
boundary  layer  is  approximately  equal  to  the  free-stream
velocity. From my dim memory of teaching this subject several
decades ago, a criterion of $u_1(x_2) = U_1$, where $U_1$ is
the constant free-stream velocity, was adequate for pedagogic
purposes.

An  interesting  partial  exception  arises  in  solid  state
physics, when dealing with crystal lattices. The establishment
of the lattice parameters is of course subject to the usual
caveats about experimental error, but for statistical physics
lattices are countable systems. So if one is carrying out
renormalization group calculations (e.g see [1]) then one is
coarse-graining the description by replacing the unit cell, of
side length $a$, by some larger (renormalized) unit cell. In
wavenumber  (momentum)  space,  this  means  we  start  from  a
maximum wavenumber $k_{max}=2\pi/a$ and average out a band of
wavenumber modes $k_1 \leq k \leq k_0$, where $k_0=k_{max}$.
You can see where the countable aspect comes in, and of course
the  initial  wavenumber  is  precisely  defined  (although  of
course its precise value is subject to the error made in
determining the lattice constant).



When  extending  these  ideas  to  turbulence,  the  problem  of
defining  the  maximum  wavenumber  is  not  solved  so  easily.
Originally  people  (myself  included)  used  the  Kolmogorov
dissipation  wavenumber,  but  this  is  not  necessarily  the
maximum excited wavenumber in turbulence. In 1985 I introduced
a criterion which was rather like a boundary-layer thickness,
adapting  the  definition  of  the  dissipation  rate,  thus:
\[\varepsilon = \int^{\infty}_0 \, 2\nu_0 k^2 E(k) dk \simeq
\int^{k_{max}}_0 \, 2\nu_0 k^2 E(k) dk,\] where $\nu_0$ is the
molecular viscosity and $E(k)$ is the energy spectrum [2].
When I first started using this, physicists found it odd,
because they were used to the more precise lattice case. I
should mention for completeness that it is also necessary to
use a non-trivial conditional average [3].

Recently there has been growing interest in these matters by
those  who  study  the  philosophy  of  maths  and  science.  For
instance, van Wierst [4] notes that in the theory of critical
phenomena,  phase  transitions  require  an  infinite  system,
whereas in real life they take place in finite (and sometimes
quite small!) systems. She argues that this paradox can be
resolved by the introduction of ‘constructive mathematics’,
but my view is that it can be adequately resolved by the
concept  of  scale-invariance.  Which  brings  us  back  to  the
infinite Reynolds number limit for turbulence. But, for the
moment, I have said enough on that topic in previous posts,
and will not expand on it here.

[1]  W.  D.  McComb.  Renormalization  Methods:  A  Guide  for
Beginners. Oxford University Press, 2004.
[2] W. D. McComb. Application of Renormalization Group methods
to  the  subgrid  modelling  problem.  In  U.  Schumann  and  R.
Friedrich,  editors,  Direct  and  Large  Eddy  Simulation  of
Turbulence, pages 67-81. Vieweg, 1986.
[3]  W.  D.  McComb  and  A.  G.  Watt.  Conditional  averaging
procedure for the elimination of the small-scale modes from
incompressible uid turbulence at high Reynolds numbers. Phys.



Rev. Lett., 65(26):3281-3284, 1990.
[4] Pauline van Wierst. The paradox of phase transitions in
the  light  of  constructive  mathematics.  Synthese,  196:1863,
2019.

Nightmare  on  Buccleuch
Street.
Nightmare on Buccleuch Street.
Staycation post No 4. I will be out of the virtual office
until 30 August.

I haven’t been into the university since the pandemic began
but recently I dreamt that I was in the university library, in
the section where magazines and journals are kept. In this
dream, I was sitting at one of the low tables reading a
magazine and two much younger men were also sitting there, in
a suitably, socially distanced way. As they were unknown to
me, I will call them A and B [1]. A was leafing through The
Physics of Fluids while B was staring at one particular page
of a tabloid newspaper.

After  a  while,  A  spoke.  ‘Have  you  seen  that  interesting
article about constraints on the scaling exponents in the
inertial range?’

B  shakes  his  head  and  goes  on  studying  his  tabloid.  A
continues. ‘These guys use Holder inequalities applied to the
structure  functions  and  then  to  the  generalised  structure
functions; and end up with a condition relating the exponent
for $S2$ to the exponent for $S3$. Now, if we assume that the
exponent for $S3$ is equal to $1$, then it follows that the
exponent for $S2$ is equal to $2/3$. This is exciting. Most
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people  would  agree  with  the  first  of  these,  but  not  the
second.’

B continues to stare at his newspaper and makes no response.
With a slight note of desperation in his voice, A goes on.
‘But don’t you see, this could fit in nicely with Lundgren’s
matched asymptotic expansions analysis. It could also fit in
with  that  guy’s  blog  about  the  K62  correction  being
unphysical. It looks like old Kolmogorov was right all the
time … back in 1941. Aren’t you interested, at all?’

At  last  B  looks  up.  ‘No,  why  should  I  be.  I  don’t  use
structure functions or spectra in my work. And you will go on
using Kolmogorov scaling as you have always done, because it
works. So why are you so excited?’

For a moment A just sits there. The he gets up and puts the
journal back in the rack. He stands in silence for a few
moments.  Then  he  says.  ‘You  know,  I  keep  feeling  it’s
Thursday.’

For the first time B looks animated. ‘That’s funny so do I.
Let’s go and have a drink.’

Exeunt  omnes.  It  was  only  a  dream  and  obviously  couldn’t
happen in real life. The paper to which A was referring is
cited below as [2].

[1] There is no C in this story. See my post of 9 July 2020.
[2] L. Djenidi, R. A. Antonia, and S. L. Tang. Mathematical
constraints on the scaling exponents in the inertial range of
fl uid turbulence. Phys. Fluids, 33:031703, 2021.



Why am I so concerned about
Onsager’s  so-called
conjecture?
Why am I so concerned about Onsager’s so-called conjecture?
Staycation post No 3. I will be out of the virtual office
until 30 August.

In recent years, Onsager’s (1949) paper on turbulence has been
rediscovered and its eccentricities promoted enthusiastically,
despite  the  fact  that  they  are  at  odds  with  much  well-
established research in turbulence, beginning with Batchelor,
Kraichnan, Edwards, and so on. In particular, a bizarre notion
has taken hold that the Euler equation corresponds to the
zero-viscosity limit of the Navier-Stokes equations and can be
made dissipative, in defiance of the basic physics, by some
mysterious alteration of the mathematics. The previous two
posts refer to this.
I have been intending to write about this for some time, but
the present paper [1] was prompted by an email that I received
late  in  2019  from  MSRI,  Berkeley.  This  was  an  advance
announcement of a Program: ‘Mathematical problems in fluid
dynamics’, to take place in the first half of 2021. I quote
from the description as follows:

‘The fundamental equations in this area are the well-known
Euler  equations  for  inviscid  fluids  and  the  Navier-Stokes
equations for the (sic) viscous fluids. Relating the two is
the problem of the zero-viscosity limit and its connection to
the phenomena of turbulence.’

The second sentence is nonsense and runs counter to all the
conventions of fluid dynamics, where it has long been known
that the relationship between the two equations is obtained by
setting the viscosity equal to zero. The infinite Reynolds
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number  limit,  in  contrast,  is  observed  as  an  asymptotic
behaviour of the Navier-Stokes equation; which, even at high
Reynolds numbers, remains the Navier-Stokes equation.

I was appalled by the thought of young mathematicians being
taught such unrepresentative and incorrect material. This is
what provided my immediate motivation for writing the present
paper. The first version of this paper was put on the arXiv on
12 December 2020.

In  January  of  this  year,  I  received  from  MSRI  the  final
notification of this program. The wording had changed, and
after some unexceptional statements about the equations of
motion it read:

‘Open  problems  and  connections  to  related  branches  of
mathematics  will  be  discussed,  including  the  phenomena  of
turbulence and the zero-viscosity limit. Both theoretical and
numerical aspects of these topics will be considered.’

Perhaps  it  is  just  a  coincidence  that  this  change  should
follow  the  arXiv  publication  of  [1],  but  at  least  their
statement about their course is no longer manifestly false;
although much still depends on what was actually taught. It
may be noted that Figure 2 of [1] (also see the previous post)
shows the onset of scale invariance and, in effect, the zero-
viscosity limit, in a direct numerical simulation at a Taylor-
Reynolds number of about one hundred. This is the physical
infinite Reynolds number limit as it occurs in real fluids.

Another aspect of the influence of Onsager is the use of the
term dissipation anomaly which is used instead of what some
call the dissipation law. If one criticises the term, the
mathematicians  seem  to  believe  that  one  is  denying  the
existence of the effect. Not so. At Edinburgh we have worked
on the establishing the existence of the dissipation law and
also  have  elucidated  it  as  arising  from  the  Richardson-
Kolmogorov picture [2], [3]. It is a real physical effect and



there is nothing anomalous about it.

[1] W. D. McComb and S. R. Yoffe. The infinite Reynolds number
limit  and  the  quasi-dissipative  anomaly.
arXiv:2012.05614v2[physics.flu-dyn],  2021.
[2] W. David McComb, Arjun Berera, Matthew Salewski, and Sam
R. Yoffe.
Taylor’s  (1935)  dissipation  surrogate  reinterpreted.  Phys.
Fluids, 22:61704,
2010.

[3] W. D. McComb, A. Berera, S. R. Yoffe, and M. F. Linkmann.
Energy  transfer  and  dissipation  in  forced  isotropic
turbulence.  Phys.  Rev.  E,  91:043013,  2015.

That’s the giddy limit!
That’s the giddy limit!
Staycation post No 2. I will be out of the virtual office
until 30 August.

The expression above was still in use when I was young, and
vestiges of its use linger on even today. It referred, often
jocularly, to any behaviour which was deemed unacceptable. Why
giddy? I’m afraid that the reference books are silent on that.
However, I have encountered examples of mathematical limits
which seemed to qualify for the adjective.

Shortly  before  I  retired,  I  found  myself  teaching  a
mathematics course to third-year physics students. The purpose
of this course was to try to bring our students up to speed in
maths, after the mathematics lecturers had done their best in
the previous two years. I suppose that it had a remedial
aspect,  and  at  that  time  the  talk  was  all  of  the  ‘math
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problem’. One example of a ‘giddy’ limit, which sticks in my
mind, arose when I was marking class exam papers. The question
asked the students to sketch the function $sinc \,\nu = \sin
\nu / \nu$. This required them to work out its value at $\nu
=0$,  where  of  course  direct  substitution  results  in  an
indeterminate form. I need hardly say that they had to use
either a Taylor series expansion of $sin$ or make use of
l’Hopital’s rule to reveal the correct limiting value which is
unity. Or of course they could just sketch it and infer the
limiting behaviour by eye.

One person did this beautifully, with all the zeros in the
right places and the central peak heading up to the value one
on both sides. It was as the $y$-axis was approached that
giddiness seemed to set in, and the sketched curve then shot
down to zero on both sides. The student then proudly declared
it to be an indeterminate form. One, which just happened to be
zero! This sudden abandonment of all reason was quite baffling
and I never understood the reason for it.

However, I recently saw comments by an anonymous referee which
seemed to come into a similar category. These were directed at
Figure 2 in reference [1] which was intended to demonstrate
that  the  physical  infinite  Reynolds  number  limit  was
determined by the onset of scale-invariance. We show this
below. Scale-invariance in this context is defined to be when
the maximum rate of inertial transfer $\varepsilon_T$ becomes
equal to the viscous dissipation $\varepsilon$. As we were
originally  studying  the  dependence  of  dimensionless
dissipation of Taylor-Reynolds number, we actually plot the
ratio $ \varepsilon / \varepsilon_T $, which reduces towards
unity, and this indicates the onset of scale-invariance.



Onset of the infinite Reynolds limit in stationary isotropic
turbulence.

The referee looked at the figure and asked: how is the onset
of  scale-invariance  defined?  Is  the  onset  placed  at
$R_{\lambda}=50,\,100\,150$?

This seems to me to verge on the childish. Does he have no
familiarity  with  the  intersection  between  a  mathematically
asymptotic result and a real physical system? Has he never met
viscous boundary layers, exponential decay of sound or other
radiation?  The  answer  in  all  these  cases  is  set  by  the
resolution of the physical measuring system. Once changes are
too  small  to  be  measurable,  then  the  asymptote  has  been
reached. The curve that we show in the figure, would go on at
a constant level no matter how much one increased the Reynolds
number.

The lesson to be drawn from this is that there are no further
qualitative changes in the system as you increase the Reynolds



number, and this is how real fluids behave. In the next blog
we will consider the motivation for the research reported in
[1].

[1] W. D. McComb and S. R. Yoffe. The infinite Reynolds number
limit  and  the  quasi-dissipative  anomaly.
arXiv:2012.05614v2[physics.flu-dyn],  2021.

When is a conjecture not a
conjecture?
When is a conjecture not a conjecture?
Staycation post No 1. I will be out of the virtual office
until 30 August.

That  sounds  like  the  sort  of  riddle  I  used  to  hear  in
childhood. For instance, when is a door not a door? The answer
was: when it’s ajar! [1] Well, at least we all know what a
door is, so let us begin with what a conjecture actually is.

According to my dictionary, a conjecture is simply a guess.
But in mathematics it is somehow more than that. Essentially,
the  idea  is  that  a  mathematician  can  be  guided  by  their
experience to postulate that something he/she knows to be true
under  particular  circumstances  is  in  fact  true  under  all
possible or relevant circumstances. If they can prove it, then
their conjecture becomes a theorem.

The question then arises: what is a conjecture in physics? And
if you can demonstrate its truth by measurement or reasoned
argument, does it become a theory?

Let us take as an example a system such as an electrolyte or
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plasma  containing  many  charged  particles.  The  particles
interact pairwise through the Coulomb potential and as the
Coulomb  potential  is  long-range  this  presents  a  many-body
problem.  What  happens  in  practice  is  that  a  form  of
renormalization takes place, and the Coulomb potential due to
any one electron is replaced by a potential which falls off
more rapidly due to the screening effect of the cloud of
particles surrounding it. A very simple introduction to this
idea (which is known as the Debye-Huckel theory) can be found
in Section 1.2.1 of the book cited as reference [2] below.

If we take the case of the turbulence cascade, the Fourier
wavenumber modes provide the degrees of freedom. Then, instead
of  pairwise  interactions,  we  have  the  famous  triad
interactions, each and every one of which conserves energy. If
for simplicity we consider a periodic box, then the mean flux
of energy from low wavenumbers to high can be written as the
sum of all the individual mean triadic interactions. As in
principle all modes are coupled, this is also a many-body
problem and one can expect some form of renormalization to
take  place.  In  some  simple  circumstances  this  can  be
interpreted  as  a  renormalized  viscosity  (the  effective
viscosity)  which  is  very  much  larger  than  the  molecular
viscosity. These ideas date back to the late 19th century and
are the earliest example of renormalization (although they did
not  use  this  term  which  came  much  later  on,  around  the
mid-20th century).

Now let us consider what happens as we progressively increase
the  Reynolds  number.  For  the  utmost  simplicity  we  will
restrict  our  attention  to  forced,  stationary  isotropic
turbulence. Then, if we hold the rate of energy input into the
system constant and decrease the viscosity progressively, this
increases the Reynolds number at constant dissipation rate. It
also increases the size of the largest wavenumbers of the
system. The result is a form of scale-invariance in which the
flux through wavenumbers is independent of wavenumber and the



result is the dissipation law that the scaled dissipation law
is  independent  of  the  viscosity  as  a  rigorous  asymptotic
result  [3].  It  should  perhaps  be  emphasised  that  this
asymptotic behaviour is the infinite Reynolds number limit;
but, from a practical point of view, we find that subsequent
variation  becomes  too  small  to  detect  at  Taylor-Reynolds
numbers of a few hundred and thereafter may be treated as
constant. We will return to this point in the next post, along
with an illustration.

Meanwhile, back in real space, velocity gradients are becoming
steeper as the Reynolds number increases, and this aspect
disturbed Onsager [4] (see also the review of this paper in
the  context  of  Onsager’s  life  and  work  [5]).  In  fact  he
concluded that the infinite Reynolds number limit was the same
as setting the viscosity equal to zero. In his view, the
resulting  Euler’s  equation  could  still  account  for  the
dissipation in terms of singular behaviour. But, it has to be
said that, in the absence of viscosity, there is no transfer
of  macroscopic  kinetic  energy  into  heat  (i.e.  microscopic
kinetic  energy).  I  have  seen  some  references  to  pseudo-
dissipation recently, so there is perhaps a growing awareness
that Onsager’s conjecture needs further critical thought.
Onsager’s paper concludes with the sentence: ‘The detailed
conservation of energy (i.e. the global conservation law of
the nonlinear term) does not imply conservation of the total
energy if the total number of steps in the cascade is infinite
and  the  double  sum  …  converges  only  conditionally.’  The
italicised parenthesis is mine as Onsager referred here to one
of his equation numbers. However this is merely an unsupported
assertion which is incorrect on physical grounds because:
1. The number of steps is never infinite in a real physical
flow.
2. The individual interactions are conservative so it is not
clear how mere summation can lead to overall non-conservation.
3. The physical process involves a renormalization which means
that there is a well-defined physical infinite Reynolds number



limit at quite moderate Reynolds numbers.
It is totally unclear to me what mathematical justification
there can be for this statement; and discussions of it that I
have seen in the literature seem to me to be unsound on
physical grounds. I shall return to these points in future
blogs.

[1] That is, ‘a jar’, geddit? Oh dear, I suppose I am getting
into holiday mood!
[2]  W.  D.  McComb.  Renormalization  Methods:  A  Guide  for
Beginners. Oxford University Press, 2004.
[3] W. D. McComb, A. Berera, S. R. Yoffe, and M. F. Linkmann.
Energy  transfer  and  dissipation  in  forced  isotropic
turbulence.  Phys.  Rev.  E,  91:043013,  2015.
[4] L. Onsager. Statistical Hydrodynamics. Nuovo Cim. Suppl.,
6:279, 1949.
[5] G. L. Eyink and K. R. Sreenivasan. Onsager and the Theory
of Hydrodynamic Turbulence. Rev. Mod. Phys., 87:78, 2006.

How  do  we  identify  the
presence of turbulence?
How do we identify the presence of turbulence?

In 1971, when I began as a lecturer in Engineering Science at
Edinburgh, my degree in physics provided me with no basis for
teaching  fluid  dynamics.  I  had  met  the  concept  of  the
convective derivative in statistical mechanics, as part of the
derivation of the Liouville equation, and that was about it.
And of course the turbulence theory of my PhD was part of what
we  now  call  statistical  field  theory.  Towards  the  end  of
autumn term, I was due to take over the final-year fluids
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course, but fortunately a research student who worked as a lab
demonstrator for me had previously taken the course and kindly
lent me his copy of the lecture notes. However, in my first
year, I was never more than one lecture ahead of the students!

This grounding in the subject was reinforced by practical
experience,  when  I  began  doing  experimental  work  on  drag
reduction by additives and on particle diffusion. It also
allowed me to recover quickly from an initial puzzlement, when
I saw a paper in JFM which proposed that the occurrence of
streamwise vorticity could be taken as a signal of turbulence
in duct flow.

Later on, I learned that this idea could be extended to give a
plausible picture of the turbulent bursting process, and a
discussion can be found in Section 11.4.3 of my book [1],
where the development of $\Lambda$ vortices is illustrated in
Fig. 11.1. In the book, this is preceded by a treatment of the
boundary layer on a flat plate in Section 1.4, which can help
us to understand the basic idea as follows. Suppose we have a
fluid moving with constant velocity $U_1$, incident on a flat
plate lying in the ($x_1,x_3$) plane with its leading edge at
$x_1=0$. Vorticity is generated at this point due to the no-
slip boundary condition, and diffuses out normal to the plate
in the $x_2$ direction, resulting in a velocity field of the
form $u_1(x_2)$, in the boundary layer. We can visualize the
sense of the vorticity vector by imagining the effect of a
small portion of the fluid becoming solidified. That part
nearest  the  plate  will  slow  down,  the  ‘solid  body’  will
rotate, and the spin vector will point in the $x_3$ direction.
This is the only component of vorticity in the system.

The occurrence of vorticity in the other two directions must
be a consequence of instability and almost certainly begins
with vorticity building up in the $x_1$ direction due to edge
effects. That is, in practice, the plate must be of finite
extent in the cross-stream or $x_3$ direction. A turbulence
transition could not occur if the plate (as normally assumed



for pedagogic purposes) were of infinite extent. This provides
an unequivocal criterion for the occurrence of the transition
to turbulence, but there is still the question of when the
turbulence is in some sense well-developed. And of course
other flows may require other criteria.

The question of whether a flow is turbulent or not became
something of an issue in the 1980s/90s, when there was a
growing interest in applying Renormalization Group (RG) to
turbulence. The pioneering work on applying RG to randomly
stirred  fluid  motion  was  reported  by  Forster,  Nelson  and
Stephen [2] in 1976, and you should note from the title of
their first paper that the word ‘turbulence’ does not appear.
Their work was restricted to showing that there was a fixed
point  of  the  RG  transformations  in  the  limit  of  zero
wavenumbers  (i.e.  ‘large  wavelengths’).

The  main  drive  in  turbulence  research  is  always  towards
applications, and inevitably pressure developed to seek ways
of extending the work of Forster et al. to turbulence. In the
process a distinction grew up between ‘stirred fluid motion’
and so-called ‘Navier-Stokes turbulence’. The latter should be
described by the spectral energy balance known as the Lin
equation,  whereas  the  former  just  reflects  its  Gaussian
forcing. Nowadays, in physics, the distinction has settled
down to ‘stirred hydrodynamics’ and just plain turbulence!

The  difficulty  of  defining  turbulence  in  a  concise  way
remains,  but  some  light  can  be  shed  on  these  earlier
controversies by considering a more recent discovery that we
made at Edinburgh. This was the result that a dynamical system
consisting  of  the  Navier-Stokes  equations  forced  by  the
combination  of  an  initial  Gaussian  field  and  a  negative
damping term, will at very low Reynolds numbers become non-
turbulent and take the form of a Beltrami flow [3]. In this
paper, we emphasised that at early times the transfer spectrum
$T(k,t)$ has the behaviour typically found in simulations of
isotropic turbulence but at later times tends to zero. At the



same time, the energy spectrum $E(k,t)$ tends to a unimodal
spectrum at $k=1$. An interesting point is that the fixed
point of Forster et al. $k \rightarrow 0$ is cut off by our
lattice, so that we observe a Beltrami flow instead.

[1] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[2] D. Forster, D. R. Nelson, and M. J. Stephen. Long-time
tails  and  the  large-eddy  behaviour  of  a  randomly  stirred
fluid. Phys. Rev. Lett., 36(15):867-869, 1976.
[3] W. D. McComb, M. F. Linkmann, A. Berera, S. R. Yoffe, and
B. Jankauskas. Self-organization and transition to turbulence
in isotropic fluid motion driven by negative damping at low
wavenumbers. J. Phys. A Math. Theor., 48:25FT01, 2015.

Are  Kraichnan’s  papers
difficult  to  read?  Part  2:
The DIA.
Are Kraichnan’s papers difficult to read? Part 2: The DIA.

In 2008, or thereabouts, I took part in a small conference at
the Isaac Newton Institute and gave a talk on the LET theory,
its  relationship  to  DIA,  and  how  both  theories  could  be
understood in terms of their relationship to Quasi-normality.
During my talk, I was interrupted by someone in the audience,
who said that I was wrong in discussing DIA as if Kraichnan’s
perturbation theory was the same as that of Wyld. I disagreed,
and we had a short exchange of the kind ‘Yes you did! No, I
didn’t!’, and the matter was left unresolved.

Sometime afterwards, I refreshed my memory of these matters
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and realised that I was wrong. Kraichnan’s seminal paper [1]
is  not  easy  to  understand,  but  he  was  claiming  to  be
introducing  a  new  type  of  perturbation  theory,  and  that
undoubtedly  differed  from  Wyld’s  subsequent  field-theoretic
approach [2]. In his book on the subject, Leslie had simply
chickened out and used the Wyld analysis [3]. Many of us had
then followed in his tracks, but over the years (decades!) I
had simply forgotten that fact. It was salutary to be reminded
of it, and I duly said something about it in my later book on
turbulence [4].

Again  this  draws  attention  to  the  danger  of  relying
uncritically on secondary sources, but an interesting point
emerged.  Kraichnan  made  what  was  essentially  a  mean-field
approximation in his theory. The fact that Wyld could show
that the DIA gave identical results to the same order of
truncation of conventional perturbation theory tells us that
the mean-field approximation for the response function was
justified; because the method of renormalization was the same
for both approaches. This is of further interest, in that the
recent formal derivation of the local energy-transfer (LET)
theory also relies on a mean-field approximation involving the
response  function  [5],  although  this  is  defined  in  a
completely  different  way  from  that  in  DIA.

Among the select few who actually have got to grips with the
new  perturbation  theory  in  [1],  are  my  student  Matthew
Salewski, who did that as a preliminary to the resolution of
the apparent differences between formalisms [6]; and S. Kida
who revisited DIA in order to derive a Lagrangian theory e.g.
see reference [7].

As regards the question which heads this post, we can leave
the last word with the man himself. Kraichnan told me that on
one occasion a referee had complained to him: ‘Why are your
papers so difficult to read?’ and he had replied: ‘If you
think they are hard to read, have you considered how difficult
they must be to write?’.



[1] R. H. Kraichnan. The structure of isotropic turbulence at
very high Reynolds numbers. J. Fluid Mech., 5:497-543, 1959.
[2] H. W. Wyld Jr. Formulation of the theory of turbulence in
an incompressible fluid. Ann.Phys, 14:143, 1961.
[3] D. C. Leslie. Developments in the theory of turbulence.
Clarendon Press, Oxford, 1973.
[4]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
[5] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor., 50:375501, 2017.
[6] A. Berera, M. Salewski, and W. D. McComb. Eulerian Field-
Theoretic Closure Formalisms for Fluid Turbulence. Phys. Rev.
E, 87:013007-1-25, 2013.
[7]  S.  Kida  and  S.  Goto.  A  Lagrangian  direct-interaction
approximation for homogeneous isotropic turbulence. J. Fluid
Mech., 345:307-345, 1997.

Are  Kraichnan’s  papers
difficult  to  read?  Part  1:
Galilean Invariance
Are Kraichnan’s papers difficult to read? Part 1: Galilean
Invariance.

When I was first at Edinburgh, in the early 1970s, I gave some
informal talks on turbulence theory. One of my colleagues
became sufficiently interested to start doing some reading on
the subject. Shortly afterwards he came up to me at coffee
time and said. ‘Are all Kraichnan’s papers as difficult to
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understand as this one?’ The paper which he was brandishing at
me  was  Kraichnan’s  seminal  1959  paper  which  launched  the
direct interaction approximation (DIA) [1]. I had to admit
that Kraichnan’s papers were in general pretty difficult to
read; and I think that my colleague gave up on the idea.
Shortly afterwards, Leslie’s book came out and this was very
largely devoted to making Kraichnan’s work more accessible
[2]; but I think that was too late for one disillusioned
individual.

Recently  I  was  reading  a  paper  (might  have  been  one  of
Kraichnan’s) and I was brought up short by something like ‘…
and the variance takes the form:’ followed by a displayed
mathematical expression. So it was rather like one half of an
equation, with the other (first) half being in words in the
text. So, I found that I had to remember what the variance was
in this particular context, and then complete the equation in
my mind. If I had been writing this, I would have used a
symbol  for  the  variance  (even  if  just  its  definition  as
$\langle u^2 \rangle$) and displayed an actual equation. But
what  this  reminded  me  of  was  my  own  diagnosis  of  the
difficulty with Kraichnan’s style. I suspected that he would
get tired of always writing in maths, and would feel the need
for some variety. The trouble was that sometimes he would put
the important bits in words, with a corresponding loss of
conciseness and precision. As a result there was a temptation
to rely on secondary sources such as Leslie’s book [2] or
Orszag’s review article [3]; and I was by no means the only
one to succumb to this temptation!

The fact that it could be unwise to do so emerged when we
produced a paper on calculations of the LET theory (compared
with DIA) and submitted it to the JFM [4]. We discussed the
idea of random Galilean invariance (RGI) and argued that its
averaging process violated the ergodic principle.

We set out the procedure of random Galilean transformation as
follows. Consider a velocity field $\mathbf{u}(\mathbf{x},t)$



in a frame of reference $S$. Suppose that we have a set of
reference frames $\{S_0,\,S_1,\,S_2,\, \dots\}$, moving with
velocities  $\{C_0,\,C_1,\,C_2,\,\dots\}$,  where  the  shift
velocities are all constant and the sub-ensemble is defined by
the probability distribution $P(C)$ of the shift velocities.
In practice, Kraichnan took this to be a normal or Gaussian
distribution, and averaged with respect to $C$ as well as with
respect to the velocity field.

However, Kraichnan’s response to our paper was ‘that’s not
what I mean by random Galilean transformations’. But he didn’t
enlighten us any further on the matter.

Around that time, a new research student started, and I asked
him to go through Kraichan’s papers with the proverbial fine-
tooth comb and find out what RGI really was. What he found was
that Kraichnan was working with a composite ensemble made up
from  the  members  of  the  turbulent  ensemble,  each  shifted
randomly by a constant velocity. So the turbulence ensemble
$\{\mathbf{u}^{i}(\mathbf{x},t )\}$, with the superscript $i$
taking integer values, was replaced by a composite ensemble
$\{\mathbf{u}^{i}(\mathbf{x},t  )  +  C_i\}$.  This  had  to  be
inferred  from  a  brief  statement  in  words  in  a  paper  by
Kraichnan!

The  student  then  investigated  this  choice  of  RGT  in
conjunction with the derivation of theories and concluded that
it was incompatible with the use of renormalized perturbation
theory. In other words, Kraichnan was using it as a constraint
of theory, once the theory was actually derived. But in fact
the underlying use of the composite ensemble invalidated the
actual derivation of the theory. It would be too complicated
to go further into this matter here, but a full account can be
found in Section 10.4 of my book [5], which references Mark
Filipiak’s thesis [6].

This experience illustrates the danger of relying too much on
secondary sources, however excellent they may be. I will give



another example in my next post but I can round this one off
with an anecdote. When I first met Bob Kraichnan he told me
that he had been very angered by Leslie’s book. I think that
he was unhappy at what he saw as an excessive concentration on
his work, and also the fact that Leslie had dedicated the book
to him. However, he said that various others had persuaded him
that he was wrong to react in this way. I added my own voice
to this chorus, pointing out that there was absolutely no
doubt of his dominance as the father of modern turbulence
theory;  and  the  dedication  was  no  more  than  a  personal
expression of admiration on the part of David Leslie.

[1] R. H. Kraichnan. The structure of isotropic turbulence at
very high Reynolds numbers. J. Fluid Mech., 5:497-543, 1959.
[2] D. C. Leslie. Developments in the theory of turbulence.
Clarendon Press, Oxford, 1973.
[3] S. A. Orszag. Analytical theories of turbulence. J. Fluid
Mech., 41:363, 1970.
[4] W. D. McComb, V. Shanmugasundaram, and P. Hutchinson.
Velocity  derivative  skewness  and  two-time  velocity
correlations of isotropic turbulence as predicted by the LET
theory. J. Fluid Mech., 208:91, 1989.
[5]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
[6] M. J. Filipiak. Further assessment of the LET theory. PhD
thesis, University of Edinburgh, 1992.

Hurrah for arXiv.com!
Hurrah for arXiv.com!
In my previous blog, I referred to my paper with Michael May
[1], which failed to be accepted for publication, despite my
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having  tried  several  journals.  I  suppose  that  some  of  my
choices were unrealistic (e.g Nature) and that I could have
tried more. Also, I could have specified referees, which I
don’t like doing, but now increasingly suspect that it is
prudent  to  do  so.  Anyway,  I  see  from  ResearchGate  that,
despite it only being on the arXiv, it continues to receive
some attention; and I was pleased to find that it had actually
been cited for publication.

It was only recently, when thinking of topics for another blog
on peer review, that I remembered that I already had a paper
on the arXiv; and it has been cited about a dozen times
(although two of those are by me!). This was a paper with one
of my students [2] which was presented at the Monte Verita
conference in 1998. Naturally I expected it to appear in the
conference proceedings, but it received a referee’s report
that ran something like this: ‘No doubt the authors have some
reasons of their own for doing these things but I am unable to
see any interest or value in their work’. So we had to rely on
the arXiv publication.

Now, the idea of studying the filtered/partitioned nonlinear
term,  from  the  point  of  view  of  subgrid  modelling  and
renormalization group, was quite an active field at that time,
so the referee was actually revealing his own ignorance. (In
fact, I know who it was and someone who knew him personally
told me that this is exactly the kind of person he is. Very
enthusiastic about his own topic and uninterested in other
topics.) This is an extreme deficiency of scholarship, but in
my  view  is  not  completely  untypical  of  the  turbulence
community. It is perhaps worth mentioning that one of the
results we presented was really quite profound in showing how
a subgrid eddy viscosity could represent amplitude effects but
not phase effects. Various people working in the field would
have had an inkling of this fact, but we actually demonstrated
it quantitatively by numerical simulation.

The paper also turned out to have some practical value. Later



on, I received a request from someone who was preparing a
chapter for inclusion in an encyclopaedia, for permission to
reproduce one of our figures. This was published in 2004, and
in 2017 a second edition appeared [3]. In 2004 the work was
also cited in a specialist article on large-eddy simulation
[4], and over the years it has been cited various times in
this type of article, most recently in the present year. So,
other people saw interest and value in the work, but it didn’t
appear  in  the  conference  proceedings!  The  relevant  figure
appears below.

Figure 15 from reference [2] as reproduced in reference [3].

As a final point, I have sometimes wondered about the status
of arXiv publications. An interesting point of view can be
found in the book by Roger Penrose [5]. At the beginning of
his bibliography he refers favourably to the arXiv, stating
that some people actually regard it as a source of eprints, as
an alternative to journal publication. He also notes how this
can speed up the exchange of ideas, perhaps too much so!



Of course, in his subject, speculative ideas are an everyday
fact of life. In turbulence, on the other hand, speculative
ideas have little chance of getting past the dour, ‘handbook
engineering’  mind-set  of  so  many  people  in  the  field  of
turbulence. So, let’s all post our speculative ideas on the
arXiv, where it is quite easy to find them with the aid of Mr
Google.

[1] W. D. McComb and M. Q. May. The effect of Kolmogorov
(1962)  scaling  on  the  universality  of  turbulence  energy
spectra. arXiv:1812.09174[physics.flu- dyn], 2018.
[2] W. D. McComb and A. J. Young. Explicit-Scales Projections
of  the  Partitioned  Nonlinear  Term  in  Direct  Numerical
Simulation of the Navier-Stokes Equation. Presented at 2nd
Monte Verita Colloquium on Fundamental Problematic Issues in
Turbulence: available at arXiv:physics/9806029 v1, 1998.
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a critical review Part 2
The Kolmogorov (1962) theory: a critical review Part 2

Following on to last week’s post, I would like to make a point
that, so far as I know, has not previously been made in the
literature of the subject. This is, that the energy spectrum
is (in the sense of thermodynamics) an intensive quantity.
Therefore it should not depend on the system size. This is, as
opposed to the total kinetic energy (say) which does depend on
the size of the system and is therefore extensive.

What  applies  to  the  energy  spectrum  also  applies  to  the
second-order structure function. If we now consider equation
(1)  from  the  previous  blog,  which  is
\begin{equation}S_2(r)=C(\mathbf{x},t)
\varepsilon^{2/3}r^{2/3}(L/r)^{-\mu},
\label{62S2}\end{equation}then  for  isotropic,  stationary
turbulence,  it  may  be  written  as:  \begin{equation}S_2(r)=C
\varepsilon^{2/3}r^{2/3}  (L/r)^{-\mu}.  \end{equation}  Note
that $C$ is constant, as it can no longer depend on the
macrostructure.

Of course this still contains the factor $L^{-\mu}$. Now, $L$
is only specified as the external scale in K62, but it is
necessarily related to the size of the system. Accordingly
taking the limit of infinite system size, is related to taking
the limit of infinite values of $L$, which is needed in order
to have $k=0$ and to be able to carry out Fourier transforms.
If we do this, we have three possible outcomes. If $\mu$ is
negative, then $S_2 \rightarrow \infty$, as $L \rightarrow
\infty$, whereas if $\mu$ is positive, then $S_2$ vanishes in
the limit of infinite system size. Hence, in either case, the
result  is  unphysical,  both  by  the  standards  of  continuum
mechanics and by those of statistical physics.

However, if $\mu = 0$ then there is no problem. The structure
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function (and spectrum) exist in the limit of infinite system
size. Could this be an argument for K41?

Lastly, we should mention that McComb and May [1] have used a
plausible  method  to  estimate  values  of  $L$  and,  taking  a
representative  value  of  $\mu=0.1$,  have  shown  that  the
inclusion of this factor as in K62 destroys the well-known
collapse  of  spectral  data  that  can  be  achieved  using  K41
variables.
We began with the well-known graph in which one-dimensional
projections of the energy spectrum for a range of Reynolds
numbers are normalized on Kolmogorov variables and plotted
against $k’=k/k_d$: see, for example, Figure 2.4 of the book
[2], which is shown immediately below this text.

 



Measured  one-dimensional  spectra  fro  a  wide  range  of
Reynolds numbers showing the asymptotic effect of scaling
on  K41  variablelsl.  Reproduced  from  Figure  2.4  of
Reference  2.

 

In this work, we referred to $L$ as $L_{ext}$ and we estimated
it as follows. From the above graph, we see that the universal
behaviour always occurs in the limit $R_\lambda \rightarrow
\infty$ with all spectra collapsing to a single curve at $k’=
k/k_d  =1$.  As  the  Reynolds  number  increases,  each  graph
flattens off as $k$ decreases and ultimately forms a plateau
at low wavenumbers. We argued that one can use the point where
this departure takes place $k’_{ext}$ (say) to estimate the



external length scale, thus; \[L’_{ext} = 2\pi/k’_{ext}.\]
In order to make a comparison, we chose the results for a
tidal channel at $R_{\lambda}=2000$ and for grid turbulence at
$R_{\lambda}=72$. We show these two spectra, as selected from
Fig. 1, on Figure 2 below.

 

Figure 2 from Reference 1.

 

Note  that  we  plot  the  scaled  one-dimensional  spectrum
$\psi(k’)=\phi(k’)/(\varepsilon  \nu^5)^{1/4}$.
In the next figure, we plot these two spectra in compensated
form,  where  we  have  taken  the  one-dimensional  spectral
constant to be $\alpha_{1}=1/2$, on the basis of Figure 2. In
this form the $-5/3$ power law appear as a horizontal line at
unity. We will return to this aspect later.

 



Figure 3 from Reference 1.

 

In order to assess the effect of including the K62 correction,
we estimated to be $L’_{ext}\sim 50$ for the grid turbulence
and as $L’_{ext}\sim 2000$ for the tidal channel. In fact the
spectra from the tidal channel do not actually peel off from
the $-5/3$ line at low $k$ so our estimate is actually a lower
bound for this case. This favours K62 in the comparison. We
took the value $\mu = 0.1$, as obtained by high-resolution
numerical  simulation  and  the  result  of  including  the  K62
correction is shown in Figure 4.

 



Figure 4 from Reference 1.

 

It can be seen that including the K62 corrections destroys the
collapse of the spectra which, apart from showing a slope of
$\mu  =  -0.1$  in  both  cases,  are  now  separated  and  in  a
constant ratio of $0.69$. Evidently the universal collapse of
spectra  in  Figure  1  would  not  be  observed  if  the  K62
corrections  were  in  fact  correct!
My final point is that one of the unfavourable referees for
this paper had a major concern with the fact that the results
for grid turbulence did not really show much $-5/3$ behaviour.
This is to miss the point. The K41 scaling shows a universal
form in the dissipation range, as well as in the inertial
range. The inclusion of the K62 correction destroys this, when
implemented with plausible estimates for the two parameters.

[1] W. D. McComb and M. Q. May. The effect of Kolmogorov
(1962)  scaling  on  the  universality  of  turbulence  energy



spectra. arXiv:1812.09174[physics.flu-dyn], 2018.
[2] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.

The Kolmogorov (1962) theory:
a critical review Part 1
The Kolmogorov (1962) theory: a critical review Part 1
As is well known, Kolmogorov interpreted Landau’s criticism as
referring  to  the  small-scale  intermittency  of  the
instantaneous  dissipation  rate.  His  response  was  to  adopt
Obukhov’s proposal to introduce a new dissipation rate which
had been averaged over a sphere of radius $r$, and which may
be denoted by $\varepsilon_r$. This procedure runs into an
immediate fundamental objection.

In K41A, (or its wavenumber-space equivalent) the relevant
inertial-range quantity for the dimensional analysis is the
local (in wavenumber) energy transfer. This is of course equal
to the mean dissipation rate by the global conservation of
energy (It is a potent source of confusion that these theories
are  almost  always  discussed  in  terms  of  the  dissipation
$\varepsilon$, when the proper inertial-range quantity is the
nonlinear transfer of energy $\Pi$. The inertial range is
defined by the condition $\Pi_{max} = \varepsilon$). However,
as  pointed  out  by  Kraichnan  [1]  there  is  no  such  simple
relationship  between  locally-averaged  energy  transfer  and
locally-averaged dissipation.

Although Kolmogorov presented his 1962 theory as `A refinement
of previous hypotheses …’, it is now generally understood that
this is incorrect. In fact it is a radical change of approach.
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The  1941  theory  amounted  to  a  general  assumption  that  a
cascade of many steps would lead to scales where the mean
properties of turbulence were independent of the conditions of
formation (i.e. of, essentially, the physical size of the
system). Whereas, in 1962, the assumption was, in effect, that
the mean properties of turbulence did depend on the physical
size of the system. We will return to this point presently,
but for the moment we concentrate on the preliminary steps.

The  1941  theory  relied  on  a  general  assumption  with  an
underlying physical plausibility. In contrast, the 1962 theory
involved an arbitrary and specific assumption. This was to the
effect that the logarithm of $\varepsilon(\mathbf{x},t)$ has a
normal distribution for large $L/r$ where $L$ is referred to
as an external scale and is related to the physical size of
the  system.  We  describe  this  as  `arbitrary’  because  no
physical  justification  is  offered;  but  in  any  case  it  is
certainly specific. Then, arguments were developed that led to
a modified expression for the second-order structure function,
thus:
\begin{equation}S_2(r)=C(\mathbf{x},t)\varepsilon^{2/3}r^{2/3}
(L/r)^{-\mu},  \label{62S2}\end{equation}  where
$C(\mathbf{x},t)$ depends on the macrostructure of the flow.

In  addition,  Kolmogorov  pointed  out  that  `the  theorem  of
constancy of skewness …derived (sic) in Kolmogorov (1941b)’ is
replaced  by  \begin{equation}  S(r)  =
S_0(L/r)^{3\mu/2},\end{equation} where $S_0$ also depends on
the macrostructrure.

Equation (\ref{62S2}) is rather clumsy in structure, in the
way the prefactor $C$ depends on $x$. This is because of
course we have $r=x-x’$, so clearly $C(\mathbf{x},t)$ also
depends on $r$. A better way of tackling this would be to
introduce centroid and relative coordinates, $\mathbf{R}$ and
$\mathbf{r}$,  such  that  \begin{equation}\mathbf{R}  =
(\mathbf{x}+\mathbf{x’})/2;  \qquad  \mbox{and}  \qquad
\mathbf{r}= ( \mathbf{x}-\mathbf{x’}).\end{equation} Then we



can re-write the prefactor as $C(\mathbf{R}, r; t)$, where the
dependence  on  the  macrostructure  is  represented  by  the
centroid  variable,  while  the  dependence  on  the  relative
variable holds out the possibility that the prefactor becomes
constant for sufficiently small values of $r$.

Of course, if we restrict our attention to homogeneous fields,
then there can be no dependence of mean quantities on the
centroid  variable.  Accordingly,  one  should  make  the
replacement:  \begin{equation}C(\mathbf{R},  r;  t)=C(r;
t),\end{equation}  and  the  additional  restriction  to
stationarity would eliminate the dependence on time. In fact
Kraichnan [1] went further and replaced the pre-factor with
the constant $C$: see his equation (1.9).

For sake of completeness, another point worth mentioning at
this  stage  is  that  the  derivation  of  the  `4/5′  law  is
completely unaffected by the `refinements’ of K62. This is
really rather obvious. The Karman-Howarth equation involves
only ensemble-averaged quantities and the derivation of the
`4/5′ law requires only the vanishing of the viscous term.
This fact was noted by Kolmogorov [2].

[1] R. H. Kraichnan. On Kolmogorov’s inertial-range theories.
J. Fluid Mech., 62:305, 1974.
[2] A. N. Kolmogorov. A refinement of previous hypotheses
concerning the local structure of turbulence in a viscous
incompressible fluid at high Reynolds number. J. Fluid Mech.,
13:82-85, 1962.
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and problems with averages
The Landau criticism of K41 and problems with averages

The idea that K41 had some problem with the way that averages
were taken has its origins in the famous footnote on page 126
of the book by Landau and Lifshitz [1]. This footnote is
notoriously difficult to understand; not least because it is
meaningless unless its discussion of the `dissipation rate
$\varepsilon$’ refers to the instantaneous dissipation rate.
Yet $\varepsilon$ is clearly defined in the text above (see
the equation immediately before their (33.8)) as being the
mean dissipation rate. Nevertheless, the footnote ends with
the sentence `The result of the averaging therefore cannot be
universal’.  As  their  preceding  discussion  in  the  footnote
makes clear, this lack of universality refers to ‘different
flows’: presumably wakes, jets, duct flows, and so on.

We can attempt a degree of deconstruction as follows. We will
use  our  own  notation,  and  to  this  end  we  introduce  the
instantaneous structure function $\hat{S}_2(r,t)$, such that
$\langle \hat{S}_2(r,t) \rangle =S_2(r)$. Landau and Lifshitz
consider the possibility that $S_2(r)$ could be a universal
function in any turbulent flow, for sufficiently small values
of $r$ (i.e. the Kolmogorov theory). They then reject this
possibility, beginning with the statement:

`The instantaneous value of $\hat{S}(r,t)$ might in principle
be expressed as a universal function of the energy dissipation
$\varepsilon$ at the instant considered.’

Now this is rather an odd statement. Ignoring the fact that
the dissipation is not the relevant quantity for inertial-
range behaviour, it is really quite meaningless to discuss the
universality of a random variable in terms of its relation to
a  mean  variable  (i.e.  the  dissipation).  A  discussion  of
universality  requires  mean  quantities.  Otherwise  it  is
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impossible to test the statement. The authors have possibly
relied on the qualification `at the instant considered’. But
how would one establish which instant that was for various
different flows?

They then go on:

`When we average these expressions, however, an important part
will be played by the law of variation of $\varepsilon$ over
times of the order of the periods of the large eddies (of size
$\sim L$), and this law is different for different flows.’

This seems a rather dogmatic statement but it is clearly wrong
for the the broad (and important) class of stationary flows.
In such flows, $\varepsilon$ does not vary with time.

The authors conclude (as we pointed out above) that: `The
result of the averaging therefore cannot be universal.’ One
has to make allowance for possible uncertainties arising in
translation,  but  nevertheless,  the  latter  part  of  their
argument only makes any sort of sense if the dissipation rate
is also instantaneous. Such an assumption appears to have been
made by Kraichnan [2], who provided an interpretation which
does  not  actually  depend  on  the  nature  of  the  averaging
process.

In fact Kraichnan worked with the energy spectrum, rather than
the structure function, and interpreted Landau’s criticism of
K41  as  applying  to  \begin{equation}E(k)  =
\alpha\varepsilon^{2/3}k^{-5/3}.\label{6-K41}\end{equation}
His interpretation of Landau was that the prefactor $\alpha$
may not be a universal constant because the left-hand side of
equation (\ref{6-K41}) is an average, while the right-hand
side is the 2/3 power of an average.

Any  average  involves  the  taking  of  a  limit.  Suppose  we
consider a time average, then we have \begin{equation} E(k) =
\lim_{T\rightarrow\infty}\frac{1}{T}\int^{T}_{0}\widehat{E}(k,
t)dt,  \end{equation}  where  as  usual  the  `hat’  denotes  an



instantaneous  value.  Clearly  the  statement
\begin{equation}E(k)  =  \mbox{a  constant};\end{equation}or
equally  the  statement,  \begin{equation}E(k)  =
f\equiv\langle\hat{f}\rangle, \end{equation} for some suitable
$f$, presents no problem. It is the `2/3′ power on the right-
hand side of equation (\ref{6-K41}) which means that we are
apparently equating the operation of taking a limit to the 2/3
power of taking a limit.

However, it has recently been shown [3] that this issue is
resolved  by  noting  that  the  pre-factor  $\alpha$  itself
involves an average over the phases of the system. It turns
out that $\alpha$ depends on an ensemble average to the $-2/3$
power and this cancels the dependence on the $2/3$ power on
the right hand side of (\ref{6-K41}).

[1] L. D. Landau and E. M. Lifshitz. Fluid Mechanics. Pergamon
Press, London, English edition, 1959.
[2] R. H. Kraichnan. On Kolmogorov’s inertial-range theories.
J. Fluid Mech., 62:305, 1974.
[3]  David  McComb.  Scale-invariance  and  the  inertial-range
spectrum  in  three-dimensional  stationary,  isotropic
turbulence.  J.  Phys.  A:  Math.  Theor.,42:125501,  2009.

The  Kolmogorov-Obukhov
Spectrum.
The Kolmogorov-Obukhov Spectrum.

To lay a foundation for the present piece, we will first
consider the joint Kolmogorov-Obukhov picture in more detail.
For  completeness,  we  should  begin  by  mentioning  that
Kolmogorov also used the Karman-Howarth equation, which is the
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energy balance equation connecting the second- and third-order
structure functions, to derive the so-called `$4/5$’ law for
the third-order structure function.This procedure amounts to a
de facto closure, as the time-derivative is neglected (an
exact step in our present case, as we are restricting our
attention to stationary turbulence) and the term involving the
viscosity vanishes in the limit of infinite Reynolds number.
This  is  often  referred  to  as  `the  only  exact  result  in
turbulence theory’; but increasingly it is being referred to,
perhaps  more  correctly,  as  `the  only  asymptotically  exact
result in turbulence’.

As part of this work, he also assumed that the skewness was
constant; and this provided a relationship between the second-
and  third-order  structure  functions  which  recovered  the
`$2/3$’ law. It is interesting to note that Lundgren used the
method of matched asymptotic expansions to obtain both the
`$4/5$’  and  `$2/3$’  laws,  without  having  to  make  any
assumption about the skewness. This work also offered a way of
estimating the extent of the inertial range in real space.

However,  the  Karman-Howarth  equation  is  local  in  the
independent  variables  and  therefore  does  not  describe  an
energy cascade. In contrast, the Lin equation (which is just
its Fourier transform) shows that all the degrees of freedom
in turbulence are coupled together. It takes the form, for the
energy  spectrum  $E(k,  t)$,  in  the  presence  of  an  input
spectrum  $W(k)$:  \begin{equation}\frac{\partial
E(k,t)}{\partial  t}  =  W(k)+  T(k,t)-  2\nu_{0}k^{2}E(k,
t),\label{lin}\end{equation} where $\nu_{0}$ is the kinematic
viscosity  and  the  transfer  spectrum  $T(k,t)$  is  given
by\begin{eqnarray}T(k,t)  &  =  &  2\pi  k^{2}\int  d^{3}j\int
d^{3}l\,\delta(\mathbf{k}-\mathbf{j}-
\mathbf{l})M_{\alpha\beta\gamma}(\mathbf{k})\nonumber  \\  &
\times  &
\left\{C_{\beta\gamma\alpha}(\mathbf{j},\mathbf{l},\mathbf{-
k};t)-C_{\beta\gamma\alpha}(\mathbf{-j},\mathbf{-



l},\mathbf{k};t)\right\},\end{eqnarray}with  \begin{equation}
M_{\alpha\beta\gamma}(\mathbf{k})=-
\frac{i}{2}\left[k_{\beta}P_{\alpha\gamma}(\mathbf{k})+k_{\gam
ma}P_{\alpha\beta}(\mathbf{k})\right],\label{M}\end{equation}
and  the  projector  $P_{\alpha\beta}(\mathbf{k})$  is
\begin{equation}P_{\alpha\beta}(\mathbf{k})=\delta_{\alpha\bet
a}-\frac{k_{\alpha}k_{\beta}}{|\mathbf{k}|^{2}},
\end{equation}where  $\delta_{\alpha\beta}$  is  the  Kronecker
delta, and the third-order moment $C_{\beta\gamma\alpha}$ here
takes  the  specific  form:  \begin{equation}
C_{\beta\gamma\alpha}(\mathbf{j},\mathbf{l},\mathbf{-
k};t)=\langle
u_{\beta}(\mathbf{j},t)u_{\gamma}(\mathbf{l},t)u_{\alpha}(\mat
hbf{-k},t) \rangle.\end{equation}

At  this  stage  we  also  define  the  flux  of  energy
$\Pi(\kappa,t)$ due to inertial transfer through the mode with
wavenumber  $k=\kappa$.  This  is  given  by:
\begin{equation}\Pi(\kappa,t)  =
\int_{\kappa}^{\infty}\,dk\,T(k,t).\end{equation}
Further discussion and details may be found in Section 4.2 of
the book [1].
We  now  have  a  rather  simple  picture.  In  formulating  our
problem, the shape of the input spectrum should be chosen to
be peaked near the origin, such that higher wavenumbers are
driven  by  inertial  transfer,  with  energy  being  dissipated
locally by the viscosity. Then we can define the rate at which
stirring forces do work on the system by: \begin{equation}
\int_0^\infty \, W(k)\, dk = \varepsilon_W. \end{equation}

Obukhov’s idea of the constant inertial flux can be expressed
as follows. As the Reynolds number is increased, the transfer
rate, as given by equation (6), will also increase and must
reach a maximum value, which in turn must be equal to the
viscous  dissipation.  Thus  we  introduce  the  symbol
$\varepsilon_T$  for  the  maximum  inertial  flux  as:
\begin{equation}\varepsilon_T  =



\Pi_{\mbox{max}},\end{equation} and for stationary turbulence
at sufficiently high Reynolds number, we have the limiting
condition:  \begin{equation}\varepsilon  =  \varepsilon_T  =
\varepsilon_W.\end{equation}

Thus the loose idea of a local cascade involving eddies in
real space is replaced by the precisely formulated concept of
scale invariance of the inertial flux in wavenumber space. As
is  well  known,  this  picture  leads  directly  to  the  $-5/3$
energy spectrum in the limit of large Reynolds numbers.

[1]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.

Why  do  we  call  it  ‘The
Kolmogorov Spectrum’?
Why do we call it ‘The Kolmogorov Spectrum’?
The Kolmogorov $-5/3$ spectrum continues to be the subject of
contentious debate. Despite its great utility in applications
and its overwhelming confirmation by experiments, it is still
plagued  by  the  idea  that  it  is  subject  to  intermittency
corrections. From a fundamental view this is difficult to
understand because Kolmogorov’s theory (K41a) was expressed in
terms of the mean dissipation, which can hardly be affected by
intermittency.  Another  problem  is  that  Kolmogorov  actually
derived the $2/3$ law for the structure function. Of course
one  can  derive  the  spectrum  from  this  result  by  Fourier
transformation; but this is not a completely trivial process
and we will discuss it in a future post.

The trouble seems to be that Kolmogorov’s theory, despite its
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great  pioneering  importance,  was  an  incomplete  and
inconsistent theory. It was formulated in real space; where,
although the energy transfer process can be loosely visualised
from Richardson’s idea of a cascade, the concept of such a
cascade  is  not  mathematically  well  defined.  Also,  having
introduced the inertial range of scales, where the viscosity
may be neglected, he characterised this range by the viscous
dissipation  rate,  which  is  not  only  inconsistent  but
incorrect. An additional complication, which undoubtedly plays
a  part,  is  that  his  theory  was  applied  to  turbulence  in
general. The basic idea was that the largest scales would be
affected by the nature of the flow, but a stepwise cascade
would result in smaller eddies being universal in some sense.
That is, they would have much the same statistical properties,
despite the different conditions of formation. In order to
avoid uncertainties that can arise from this rather general
idea, we will restrict our attention to stationary, isotropic
turbulence here.

To make a more physical picture we have to follow Obukhov and
work  in  $k$  space  with  the  Fourier  transform
$\mathbf{u}(\mathbf{k},t)$  of  the  velocity  field
$\mathbf{u}(\mathbf{x},t)$. This was introduced by Taylor in
order  to  allow  the  problem  of  isotropic  turbulence  to  be
formulated as one of statistical mechanics, with the Fourier
components acting as the degrees of freedom. In this way,
Obukhov identified the conservative, inertial flux of energy
through the modes as being the key quantity determining the
energy spectrum in the inertial range. It follows that, with
the input and dissipation being negligible, the flux must be
constant  (i.e.  independent  of  wavenumber)  in  the  inertial
range, with the extent of the inertial range increasing as the
Reynolds number was increased, and this was later recognized
by Osager in (1945). Later still, this property became widely
known and for many years has been referred to by theoretical
physicists as scale invariance. It should be emphasised that
the inertial flux is an average quantitiy, as indeed is the



energy spectrum, and any intermittency effects present, which
are characteristics of the instantaneous velocity field, will
inevitably be averaged out. Of course, in stationary flows the
inertial transfer rate is the same as the dissipation rate,
but in non-stationary flows it is not.

This  is  not  intended  to  minimise  the  importance  of
Kolmogorov’s pioneering work. It is merely that we would argue
that one also needs to consider Obukhov’s theory (also, in
1941), with possibly also a later contribution from Onsager
(in 1945), in order to have a complete theoretical picture. In
effect this seems to have been the view of the turbulence
community from the late 1940s onwards. Discussion of turbulent
energy transfer and dissipation in isotropic turbulence was
almost entirely in terms of the spectral picture. It was not
until  the  extensive  measurements  of  higher-order  structure
functions by Anselmet et al. (in 1984) that the real-space
picture  became  of  interest,  along  with  the  concept  of
anomalous  exponents.

I would argue that we should go back to the term ‘Kolmogorov-
Obukhov spectrum’, as indeed was quite often done in earlier
years. We will develop this idea in the next post. All source
references for this piece will be found in the book [1].

[1]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.

The  different  roles  of  the
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Gaussian pdf in Renormalized
Perturbation Theory (RPT) and
Self-Consistent  Field  (SCF)
theory.
The  different  roles  of  the  Gaussian  pdf  in  Renormalized
Perturbation  Theory  (RPT)  and  Self-Consistent  Field  (SCF)
theory.

In  last  week’s  blog,  I  discussed  the  Kraichnan  and  Wyld
approaches to the turbulence closure problem. These field-
theoretic  approaches  are  examples  of  RPTs,  while  the
pioneering theory of Edwards [1] is a self-consistent field
theory.  An  interesting  difference  between  them  is  the
different  ways  in  which  they  make  use  of  a  Gaussian  (or
normal) base distribution. Any theory is going to begin with a
Gaussian distribution, because it is tractable. We know how to
express all its moments in terms of the second-order moment.
Of  course,  we  also  know  that  it  predicts  that  odd  order
moments are zero, so some trick must be employed to get it to
tell us anything about turbulence.

As we did last week, we begin with the Fourier-transformed
solenoidal  Navier-Stokes  equation  (NSE)  written  in  an
extremely  compressed  notation  as:  \begin{equation}
\mathcal{L}_{0,k}u_k  =  \lambda  M_{0,k}u_ju_{k-
j},\end{equation} where the linear operator $\mathcal{L}_{0,k}
= \partial /\partial t + \nu_0 k^2$, $\nu_0$ is the kinematic
viscosity of the fluid, $M_{0,k}$ is the inertial transfer
operator  which  contains  the  eliminated  pressure  term,  and
$\lambda$ is a book-keeping parameter which is used to keep
track of terms during an iterative solution.

Now let us consider the closure problem. We multiply equation
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(1)  through  by  $u_{-k}$  and  average,  to  obtain:
\begin{equation}  \mathcal{L}_{0,k}\langle  u_k  u_{-k}\rangle=
\lambda  M_{0,k}\langle  u_ju_{k-j}u_{-k}\rangle,\end{equation}
where the angle brackets denote an average. Evidentally, if we
evaluate the averages here with a Gaussian pdf, the triple
moment vanishes (trivially, by symmetry)

Then we set up a perturbation-type approach by expanding the
velocity field in powers of $\lambda$ as: \begin{equation} u_k
=  u^{(0)}_k  +  \lambda  u^{(1)}_k  +  \lambda^2  u^{(2)}_k  +
\lambda^3 u^{(3)}_k + \dots, \end{equation} where $u^{(0)}_k$
is a velocity field with a Gaussian distribution. The general
procedure has two steps. First, substitute the expansion (3)
into the right hand side of equation (1) and calculate the
coefficients  iteratively  in  terms  of  the  $u^{(0)}_k$.
Secondly, substitute the explicit form of the expansion, now
entirely expressed in terms of the $u^{(0)}$ into the right
hand side of equation (2), and evaluate the averages to all
orders, using the rules for a Gaussian distribution. If we
denote  the  inverse  of  the  linear  operator  by
$\mathcal{L}^{-1}_{0,k}  \equiv  R_{0,k}$,  and  the  Gaussian
zero-order covariance by $\langle u_k u_{-k}\rangle=C_{0,k}$,
then the triple moment on the right hand of equation (2) can
be  written  to  all  orders  in  products  and  convolutions  of
$R_{0,k}$ and $C_{0,k}$.

Kraichnan introduced renormalization in this problem by making
the replacements: \[R_{0,k}\rightarrow R_{k} \quad \mbox{and}
\quad  C_{0,k}  \rightarrow  C_k,\]  to  all  orders  in  the
perturbation expansion of the triple-moment in (2). This step
involves partial summations of the perturbation expansion in
different classes of terms.
At this point it is worth noting that what happens here is
rather like in a direct-numerical simulation of the NSE. There
we begin with a Gaussian initial field. As time goes on, the
nonlinear term induces couplings between modes and the system
moves to a field which is representative of Navier-Stokes



turbulence. Of course the initial distribution is constrained
in this case to give the total energy that we require in the
simulation. Note that the zero-order field in perturbation
theory  is  in  principle  present  at  all  times  and  is  not
constrained in this way.

In  contrast,  what  Edwards  introduced  was  a  perturbation
expansion  of  the  probability  distribution  function  of  the
velocity field, not of the velocity field itself. For this
reason, he did not work directly with the NSE but instead used
it  to  derive  a  Liouville  equation  for  the  probability
distribution $P[u,t]$. It should be noted that the Liouville
equation, although containing the nonlinearity of the velocity
field, is nevertheless a linear equation for the pdf. Edwards
then  expanded  $P[u,t]$,  the  exact  pdf,  as  follows:
\begin{equation}P[u,t]  =  P^{0}[u]  +  \epsilon  P^{1}[u,t]  +
\epsilon^2 P^{2}[u,t] + \mathcal{O}(\epsilon^3),\end{equation}
where $P^{0}[u]$ is a Gaussian distribution. The significant
step here is to demand that the zero-order pdf gives the same
result for the second-order moment as the exact pdf. That is,
\begin{equation}\int \, P^{(0)}[u] \, u_ku_{-k} \mathcal{D}u =
\int  \,  P[u,t]  \,  u_ku_{-k}  \mathcal{D}u  \equiv  C_k.
\end{equation}

This is in fact the basis of the self-consistency requirement
in  the  theory.  For  further  details  the  interested  reader
should consult either of the books referenced below as [1] and
[2]. The Edwards method [3] does not rely on partially summing
infinite perturbation series, nor is it like the functional
formalisms which are equivalent to such summation procedures.
Instead  it  relies  on  the  fact  that  the  measured  pdf  in
turbulence is not very different from a Gaussian. In this
respect, it is encouraging that it gives similar results to
the  RPTs.  This  resemblance  is  heightened  in  the  recent
derivation of the LET theory as a two-time SCF [4], thus
extending the Edwards method.

[1] D. C. Leslie. Developments in the theory of turbulence.



Clarendon Press Oxford, 1973.
[2] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[3] S. F. Edwards. The statistical dynamics of homogeneous
turbulence. J. Fluid Mech., 18:239, 1964.
[4] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor., 50:375501, 2017.

What  if  anything  is  wrong
with Wyld’s (1962) turbulence
formulation?
What  if  anything  is  wrong  with  Wyld’s  (1962)  turbulence
formulation?

When I began my PhD in 1966, I found Wyld’s paper [1] to be
one of the easiest to understand. However, one feature of the
formalism struck me as odd or incorrect, so I didn’t spend any
more time on it. But I had found it very useful in helping me
to understand how a theory like Kraichnan’s DIA could work. In
short,  I  thought  that  it  had  pedagogic  value.  Some  years
later, when I wrote up my first attempt to derive a two-time
version of the LET theory [2], I made use of a variant of
Wyld’s formalism, albeit with his procedural error corrected.
I  was  surprised  by  the  hostility  of  the  referees  towards
Wyld’s  work,  which  they  said  had  been  subject  to  later
criticism. As is so often the case with referees in this
field, they accepted the criticism as utterly damning, without
apparently  any  critical  thought,  or  ability  to  produce  a
nuanced reaction, on their own part.
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My aim in this blog is to explain what I noticed about Wyld’s
formalism all those years ago, and I shall give only as much
of  his  method  as  necessary  to  make  this  a  brief  and
understandable point. We begin with the Fourier-transformed
solenoidal  Navier-Stokes  equation,  written  in  an  extremely
compressed notation as: \begin{equation} \mathcal{L}_{0,k}u_k
=  \lambda  M_{0,k}u_ju_{k-j},\end{equation}  where  the  linear
operator $\mathcal{L}_{0,k} = \partial /\partial t + \nu_0
k^2$,  $\nu_0$  is  the  kinematic  viscosity  of  the  fluid,
$M_{0,k}$ is the inertial transfer operator which contains the
eliminated  pressure  term,  and  $\lambda$  is  a  book-keeping
parameter which is used to keep track of terms during an
iterative  solution.  Properly  detailed  versions  of  these
equations may be found in either [3] or [4], but these will be
sufficient for my present purposes.

Now  let  us  begin  with  the  closure  problem.  We  multiply
equation  (1)  through  by  $u_{-k}$  and  average,  to  obtain:
\begin{equation}  \mathcal{L}_{0,k}\langle  u_k  u_{-k}\rangle=
\lambda  M_{0,k}\langle  u_ju_{k-j}u_{-k}\rangle,\end{equation}
where the angle brackets denote an average. Then we set up a
perturbation-type approach by expanding the velocity field in
powers of $\lambda$ as: \begin{equation} u_k = u^{(0)}_k +
\lambda u^{(1)}_k + \lambda^2 u^{(2)}_k + \lambda^3 u^{(3)}_k
+ \dots, \end{equation} where $u^{(0)}_k$ is a velocity field
with a Gaussian distribution.

The general procedure then has two steps. First, substitute
the expansion (3) into the right hand side of equation (1) and
calculate  the  coefficients  iteratively  in  terms  of  the
$u^{(0)}_k$. Secondly, substitute the explicit form of the
expansion, now entirely expressed in terms of the $u^{(0)}$
into the right hand side of equation (2), and evaluate the
averages  to  all  orders,  using  the  rules  for  a  Gaussian
distribution. If we denote the inverse of the linear operator
by $\mathcal{L}^{-1}_{0,k} \equiv R_{0,k}$, and the Gaussian
zero-order covariance by $\langle u_k u_{-k}\rangle=C_{0,k}$,



then the triple moment on the right hand of equation (2) can
be  written  to  all  orders  in  products  and  convolutions  of
$R_{0,k}$ and $C_{0,k}$.

Wyld  did  not  follow  this  procedure  exactly.  Instead,  he
inverted the linear operator on the left hand side of (2), and
wrote  an  expression  for  the  exact  covariance  $C_k$  as:
\begin{equation}  \langle  u_k  u_{-k}\rangle  \equiv  C_k=
R_{0,k}\lambda  M_{0,k}\langle  u_ju_{k-j}u_{-
k}\rangle.\end{equation}  Of  course,  (4)  is  mathematically
equivalent to (2), so does this matter? Well, when we consider
renormalization, it does!

Kraichnan introduced renormalization in this problem as making
the replacements: \[R_{0,k}\rightarrow R_{k} \quad \mbox{and}
\quad  C_{0,k}  \rightarrow  C_k\]  to  all  orders  in  the
perturbation expansion of the triple-moment in (2). When Wyld
used diagram methods to show how such a renormalization could
come about, by summing subsets of terms to all orders, he in
effect also renormalized both the explicit operators $R_{0,k}$
and $M_{0,k}$ on the right hand side of (4). The first of
these  erroneous  steps  created  the  famous  double-counting
problem,  while  the  second  raised  questions  about  vertex
renormalization.  A  full  account  of  this  topic  and  the
introduction of `improved Lee-Wyld theory’ can be found in
reference [5].

Lastly,  for  sake  of  completeness,  I  should  mention  that
reference [2] was superseded in 2017 by reference [6], as the
derivation of the two-time LET theory.

[1] H. W. Wyld Jr. Formulation of the theory of turbulence in
an incompressible fluid. Ann.Phys, 14:143, 1961.
[2]  W.  D.  McComb.  A  theory  of  time  dependent,  isotropic
turbulence. J.Phys.A:Math.Gen., 11(3):613, 1978.
[3] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[4]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:



Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
[5] A. Berera, M. Salewski, and W. D. McComb. Eulerian Field-
Theoretic Closure Formalisms for Fluid Turbulence. Phys. Rev.
E, 87:013007-1-25, 2013.
[6] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor., 50:375501, 2017

Is turbulence research still
in its infancy?
Is turbulence research still in its infancy?
Recently I came across the article by Lumley and Yaglom which
is cited below as [1]. I think it is new to me but quite
possibly I will find it lurking in my filing system when at
last I am able to visit my university office again. It is
always good to get something gossipy and opinionated to read
about turbulence as a welcome relief from all the worthy but
demanding research papers! In any case, their Abstract is well
worth quoting here:
‘This field does not appear to have a pyramidal structure,
like the best of physics. We have very few great hypotheses.
Most of our experiments are exploratory experiments. What does
this mean?’
They go on to answer their own question: ‘We believe it means
that, even after 100 years, turbulence studies are still in
their infancy.’

I’m not quite sure what is meant by the phrase ‘pyramidal
structure’, but overall the general sense is clear; and really
quite persuasive. Indeed, even after a further two decades,
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which have been marked by an explosive growth in research,
this  depressing  view  is  still  to  a  considerable  extent
justified. However, I think that it might be of interest to
consider in what ways it is justified and in which ways the
comparison with physics may be unfair.

There  are  of  course  the  unresolved  issues  of  fundamental
turbulence theory, but what is more compelling in my view, is
the bizarre and muddled nature of some key aspects of the
subject. To begin with, there is the Kolmogorov spectrum.
Nowadays it is probably well known that Kolmogorov worked in
real space and derived the $2/3$ law, from which the $-5/3$
spectrum  of  course  follows  by  Fourier  transformation.  Yet
beginning  with  Batchelor’s  monograph  [2],  and  for  decades
thereafter, discussion of the subject was entirely in terms of
wavenumber space. A particularly egregious example arises in
the book by Hinze [3]. After acknowledging [2], he writes:
‘These considerations have led Kolmogoroff (sic) to make the
following hypothesis.’ He then goes on to state the hypothesis
(top of page 184 in the first edition) and expresses it in
terms of wavenumber. As his statement of the hypothesis is in
inverted  commas,  I  assumed  that  it  was  a  quotation  from
Kolmogorov’s paper [4], but Kolmogorov nowhere uses the word
‘wavenumber’ in that paper!

This is not in itself a serious matter. But it is symptomatic,
and the fact remains that various commentators rely on a real-
space treatment to draw conclusions about spectra. For me, the
truly astonishing fact is that I have been unable to find an
exegesis  of  Kolmogorov’s  original  paper  anywhere.  All
treatments are brief and superficial, in contrast to his later
paper [5] in which he derived the $4/5$ law. This of course
has been widely reviewed and discussed in detail. Which is
perhaps not unconnected with the fact that it is very much
easier to understand!

There are other schools of thought that one can point to,
where the real problem is a failure to realise that the ideas



being put forward are unphysical. For instance, the uncritical
adoption of Onsager’s pioneering work in which the viscosity
is put equal to zero instead of taking the limit of zero
viscosity. The result is the unphysical idea of dissipation
taking place in the absence of viscosity, which of course it
cannot. Absorption of energy by an infinite wavenumber space
is not the same as viscous dissipation. At best it might be
described as pseudo dissipation. Further discussion of this
topic can be found in reference [6].

To  round  this  off,  there  is  Kolmogorov’s  1962  paper,
presenting what he described as ‘a refinement of previous
hypotheses’. In fact, as is increasingly recognised, it is
nothing of the sort. It is instead the wholesale abandonment
of previous hypotheses. But I have said that elsewhere. What
concerns me here is that the theory is manifestly unphysical.
The energy spectrum is (in thermodynamic terms) an intensive
quantity. Thus the factor $L^{\mu}$ which is now incorporated
into  the  power-law  form  violates  the  requirement  that  it
should not depend on the size of the system. In the limit of
infinite system size, the energy spectrum must now go to zero
if the exponent is negative and to infinity if it is positive.
Curiously, no one seems to have commented on this.

Lumley and Yaglom were referring to the problem of achieving a
fundamental  understanding  of  turbulence  and  it  is  perhaps
worth keeping in mind that the great success of physics is
based on the happy accident of linearity. On purely taxonomic
grounds, turbulence belongs to the class of many-body problems
with strong coupling. These are just as intractable in nuclear
physics, particle physics, and condensed matter physics as in
fluid turbulence. The difference is that these activities are
generally  pursued  in  a  more  scholarly  way,  with  a  more
collegial atmosphere among the participants. As a previous
generation used to say: verb. sap!

[1] J. L. Lumley and A. M. Yaglom. A Century of Turbulence.
Flow, Turbulence and Combustion, 66:241, 2001.



[2] G. K. Batchelor. The theory of homogeneous turbulence.
Cambridge University Press, Cambridge, 1st edition, 1953.
[3]  J.  O.  Hinze.  Turbulence.  McGraw-Hill,  New  York,  1st
edition, 1959.
[4] A. N. Kolmogorov. The local structure of turbulence in
incompressible viscous fluid for very large Reynolds numbers.
C. R. Acad. Sci. URSS, 30:301, 1941.
[5]  A.  N.  Kolmogorov.  Dissipation  of  energy  in  locally
isotropic turbulence. C. R. Acad. Sci. URSS, 32:16, 1941.
[6] W. D. McComb and S. R. Yoffe. The infinite Reynolds number
limit  and  the  quasi-dissipative  anomaly.
arXiv:2012.05614v2[physics.flu-dyn],  2021.

Culture  wars:  applied
scientists  versus  natural
scientists.
Culture wars: applied scientists versus natural scientists.

In  my  early  years  at  Edinburgh,  I  attended  a  seminar  on
polymer drag reduction; and, as I was walking back with a
small group, we were discussing what we had just learned. In
response to a comment made by one member of the group, I
observed that it made the problem seem horribly complicated.
The  others  nodded  in  agreement;  with  the  exception  of  an
American who was visiting the Chemical Engineering department.
He turned on me and said reprovingly. ‘You mean that it’s
beautifully complicated.’ The implication was very much that
this problem was a foe worthy of his intellectual steel, so to
speak. Well, I wonder how he got on with that?

It struck me at the time as an indication of a different
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culture. Physicists and mathematicians seem to see beauty in
simplicity, even to the point of regarding it as evidence in
favour  of  a  particular  theory.  Do  applied  scientists  and
engineers really see beauty in complication? Even engineering
structures as different as a bridge, a motor car or a ship are
often held to conform to the old engineering adage: if it
looks right, it is right! That surely is an appreciation of
simplicity of design, is it not?

Nevertheless, the idea that there are different cultures came
to me early on in my career. I can remember when I started out
in the nuclear power industry, a colleague who was a chemical
engineer (this is just coincidence: I haven’t got it in for
chemical engineers!) said to me. ‘I don’t see any point in
physics as a discipline. What’s the use of it?’ So I pointed
out that we both owed our employment to physics and he had to
reluctantly  concede  that  perhaps  nuclear  physics  had  some
point after all! That was in the early 1960s, and since then
developments in condensed matter physics have, through the
agency of materials science, chemistry and microelectronics,
transformed the world that we live in.

Over the years I have heard many comments like that made by
engineers about physics but I cannot recall any physicist
making a similar comment about engineering. Generally, the
attitude  that  I  have  picked  up  is  a  sort  of  respectful
assumption that the engineer has other skills which generally
produce impressive results. Perhaps the difference here is
that the physicists are clear about their own ignorance of the
details  of  engineering  science  whereas  engineers  tend  to
assume that what they don’t know doesn’t exist?

Shortly after my first book on turbulence was published [1], I
received a letter (yes, not an email!) from the late Stan
Corrsin, who commented on it and also sent a copy of a review
that he had written of David Leslie’s earlier book [2]. I
found his review very interesting because it addressed the
problem that seems to be ignored by most people: that when



theoretical physicists start tackling turbulence the results
should  be  of  interest  to  engineers  but  may  in  fact  be
unintelligible to them. This is not a matter of not being able
to follow the mathematics so much as ‘not sharing assumptions
about  what  is  natural  or  appropriate  to  do  in  any  given
circumstance’. In other words, what I am trying to describe by
the word ‘culture’. This is about all I can remember from the
review. I may still have it in my office, but that has been
off limits to me for more than a year now, and I have been
unable to find the review online. One other phrase that I do
recall, is that Corrsin said, in effect, that Leslie’s book
did help to bridge this gap, but that ‘it was no Rosetta
stone.’

Sometimes I think that it is impossible to provide a Rosetta
stone  for  this  purpose  and  it  is  only  when  theoretical
physicists become tired of staring at their own navels, that
we will see a flowering of theory in turbulence and other
practical problems. That will happen when they become bored
with strings, multiverses, dark matter, quantum gravity and
similar fantasy physics.

[1] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[2] D. C. Leslie. Developments in the theory of turbulence.
Clarendon Press, Oxford, 1973.

‘A  little  learning  is  a
dangerous  thing!’  (Alexander
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Pope, 1688-1744)
‘A little learning is a dangerous thing!’ (Alexander Pope,
1688-1744)
I  have  written  about  the  problems  posed  by  the  different
cultures  to  be  found  in  the  turbulence  community;  and  in
particular of the difficulties faced by some referees when
confronted by Fourier methods. My interest in the matter is of
course the difficulties faced by the author who dares to use
Fourier transforms when he encounters such an individual. In
my post on 20 April 2020, I told of the referee who described
Fourier analysis as ‘the usual wavenumber murder’. Thinking of
this  brought  back  a  rather  strange  incident  from  the
mid-1970s, and it occurs to me that it really underlines my
point.

In those days, we used to get visitors from the United States,
who would come for a day and ask various people about their
work. I seem to recall that they were sponsored by the Office
for Naval Research and, as we benefited from a huge flow of
NASA  reports,  stemming  from  their  various  programmes,  it
seemed only fair to send something back.

One particular visitor was a fluid dynamicist who worked on
the  lubrication  of  journal  bearings.  He  was  known  to  my
colleagues in this area, who told me that he was eminent in
that field. So, once he was settled in my office and we had
got over the usual preliminaries, he asked me to explain my
theoretical research to him. I went to the blackboard and
happily began explaining about eliminating the pressure from
the Navier-Stokes equation and then how to Fourier transform
it.

I hadn’t got very far, when he held up his hand and said.
‘Stop right there! I wouldn’t use Fourier transforms with a
nonlinear problem like turbulence.’
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I was a little bit taken aback, but my main reaction was that
this was a chance for me to learn something, because it was at
that time that I was receiving reports from JFM referees which
were hostile to the use of Fourier methods.
I didn’t waste time in asking him why. I just asked what he
would use instead. His reply astonished me. ‘I would use the
Green’s function method.’

In the circumstances I saw no point in continuing and changed
the topic to talk about my other work. He seemed quite happy
about  that.  Perhaps  it  was  just  a  cunning  plan  to  avoid
listening to some boring mathematics for an hour or so?
At this stage it will be clear to many people why I did not
continue the discussion. But for those who don’t know, there
were two points:
A. My visitor was wrong at the most fundamental level. Green’s
functions  are  only  applicable  to  linear  problems.  For
instance, we can eliminate the pressure field from the NSE,
because it satisfies a Poisson’s equation, which is of course
linear.
B. As a sort of corollary of awfulness, a standard method of
evaluating  Green’s  functions  is  by  the  use  of  Fourier
transforms!
These  matters  are  discussed  in  detail  in  Appendix  D  of
reference [1] below.

The title of the poem by Alexander Pope has passed into the
language as a caution against being too authoritative when one
is not really an expert. The question of who does more harm,
someone who thinks he knows all about Fourier methods; or
someone who is frightened of them and behaves in a childish
way, is really a moot point.

[1] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press,
1990.



Intermittency, intermittency,
intermittency!
Intermittency, intermittency, intermittency!
It is well known that those who are concerned with the sale of
property say that the three factors determining the value of a
house are: location, location, location. In fact I believe
that there is a television programme with that as a title.
This trope has passed into the general consciousness; so much
so,  that  a  recent  prime  minister  declared  his  principal
objectives  in  government  to  be:  education,  education,
education. (Incidentally, I wonder how that worked out?)

My use of the title here is not to suggest that I think that
intermittency  is  the  dominant  feature  of  the  turbulent
velocity field, or indeed of any particular importance, so
much as to draw attention to the fact that there are three
types of turbulent intermittency. Of course in complicated
situations such as in turbomachinery, an anemometer signal can
be interrupted by the passage of a rotor, say. That would be a
form of intermittency. However, by intermittency, what I have
in mind is something intrinsic to the turbulent field and not
caused by some external behaviour. I believe that is what most
people would mean by it.
For  convenience,  we  may  list  these  different  types,  as
follows:

1.  Free  surface  intermittency.  This  form  of  intermittency
occurs in flows like wakes and unconfined jets. It arises from
the  irregular  nature  of  the  boundary  of  the  flow.  An
anemometer positioned at the edge of the flow will sometimes
register a turbulent signal and sometimes not. There is also a
dynamical problem posed by the interaction between the flow of
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the  wake  or  jet  and  the  ambient  fluid,  but  that  is  not
something that we will pursue here.

2. The bursting process in pipe flow. This was discovered in
the  1960s,  when  it  was  found  that  a  short-sample-time
autocorrelation could show a near-sinusoidal variation with
time, corresponding to a sequence of events in which turbulent
energy  was  generated  locally  in  both  space  and  time.
Measurement  of  the  bursting  period  was  helpful  in
understanding  the  mechanism  of  drag  reduction  by  polymer
additives.

3. Internal intermittency. This is the apparent inability of
the  eddying  motions  of  turbulence  to  fill  space,  even  in
isotropic turbulence. Originally it was referred to as the
dissipation  intermittency  and  then  later  on  as  the  fine-
structure  intermittency.  In  recent  years  it  has  been
established that by means of high-Reynolds number simulations
that this inability to fill space is in fact present at all
length scales. Thus the growing modern practice is to describe
it as internal which distinguishes it from the two types of
intermittency above.

An account of all three types may be found in Section 3.2 of
the book [1], although at that time I used the term fine-
structure intermittency, in line with other writers at that
time. I should also point out that I would no longer give the
same prominence to the instantaneous dissipation. I am now
clear that the failure to distinguish between this and its
mean value; combined with the failure to recognise that the
significant  quantity  in  determining  the  inertial-range
spectrum/structure-function  is  the  inertial  transfer  rate,
underpins  much  of  the  confusion  over  the  $k^{-5/3}$  (or
$r^{2/3}$) result for the inertial range. I have written quite
a lot about this matter in recent years and expect to write a
great deal more.

[1] W. D. McComb. The Physics of Fluid Turbulence. Oxford



University Press, 1990.

Does  the  failure  to  use
spectral  methods  harm  one’s
understanding of turbulence?
Does  the  failure  to  use  spectral  methods  harm  one’s
understanding  of  turbulence?

Vacation post No. 3: I will be out of the virtual office until
Monday 19 April.

As described in the previous post, traditional methods of
visualising  turbulence  involve  vaguely  specified  and  ill-
defined eddying motions whereas Fourier methods lead to a
well-defined problem in many-body physics. This seems to be a
perfectly straightforward situation; and one might wonder: in
what way do fluid dynamicists feel that the Fourier wavenumber
space representation is obscuring the physics? Given that they
regard  a  vortex-based  picture,  however  imprecise,  as  `the
physics’, I suspect (a suspicion based on many discussions
over the years!) that the problem arises when they try to
reconcile the two formulations. Of course, in an intuitive
way, one may associate large wavenumbers with small spatial
separations. That is, `high k’ corresponds to `small r’ and
vice versa. But those attempts, which one sees from time to
time,  to  interpret  the  $k$-space  picture  in  terms  of
arbitrarily  prescribed  vortex  motions  in  real  space,  seem
positively designed to cause confusion. It is important to
bear in mind that the Fourier representation reformulates the
problem, and you should study it on its own terms, even if you
long for vortices!

https://blogs.ed.ac.uk/physics-of-turbulence/2021/04/15/does-the-failure-to-use-spectral-methods-harm-ones-understanding-of-turbulence/
https://blogs.ed.ac.uk/physics-of-turbulence/2021/04/15/does-the-failure-to-use-spectral-methods-harm-ones-understanding-of-turbulence/
https://blogs.ed.ac.uk/physics-of-turbulence/2021/04/15/does-the-failure-to-use-spectral-methods-harm-ones-understanding-of-turbulence/


Does this matter? I think it does. For example, I can point to
the  strange  situation  in  which  (it  seems)  most  fluid
dynamicists  believe  that  there  should  be  intermittency
corrections to the exponent of Kolmogorov’s $k^{-5/3}$ energy
spectrum, whereas it seems that most theoretical physicists
(who work in wavenumber space) do not. The hidden point here,
is  that  Kolmogorov  worked  in  real  space,  and  derived  the
$r^{2/3}$ form of the second-order structure function, for an
intermediate range of values of $r$ where the form of the
input  term  and  the  viscous  dissipation  could  both  be
neglected, thus introducing the inertial range. His theory was
inconsistent;  in  that  he  then  considered  the  structure
function to depend on the dissipation rate, even although this
had been excluded from the inertial range. It is this step
which  gives  some  credibility  to  the  possibility  of
intermittency effects, particularly as there may be some doubt
about whether or not the dissipation rate in the theory is the
average value or not.

The surprising thing is that, at much the same time, Obukhov
worked in $k$-space, and identified the conservative, inertial
flux of energy through the modes as being the key quantity
determining the energy spectrum in the inertial range. It
follows  that,  with  the  production  and  dissipation  being
negligible in this range of wavenumbers, the flux must be
constant  (i.e.  independent  of  wavenumber)  in  the  inertial
range This was later recognized by Osager. Later still, this
property  became  widely  known  and  for  many  years  has  been
referred to by theoretical physicists as scale invariance.
Scale invariance is a general mathematical property and can
refer to various things in turbulence research. It simply
means that something which might depend on an independent
variable, in either real space or wavenumber space, is in fact
constant. It should be emphasised that the inertial flux is an
average quantity, as indeed is the energy spectrum, and any
intermittency must necessarily be averaged out. In fact a
modern analysis leading to the $k^{-5/3}$ spectrum would start



from  the  Lin  equation.  Therefore  it  is  hard  to  see  how
internal intermittency, which is incidentally present on all
scales can affect this derivation.

Does  the  use  of  spectral
methods  obscure  the  physics
of turbulence?
Does  the  use  of  spectral  methods  obscure  the  physics  of
turbulence?

Vacation post No. 2: I will be out of the virtual office until
Monday 19 April.

Recently, someone who posted a comment on one of my early
blogs about spectral methods (see the post on 20 February
2020), commented that a certain person has said `spectral
methods obscure the physics of turbulence’. They asked for my
opinion on this statement and I gave a fairly robust and
concise reply. However, on reflection, I thought that a more
nuanced response might be helpful. As the vast majority of
turbulence researchers work in real space, it seems probable
that many would share that sentiment, or something very like
it.

In fact, I will begin by challenging the second part of the
statement. What precisely is meant by the phrase `the physics
of turbulence’? In order to answer this question, let us begin
by examining the concept of the turbulence problem in both
real space and Fourier wavenumber space. Note that in what
follows, all dependent variables are understood to be per unit
mass of fluid, and we restrict our attention to incompressible
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fluid motion.

In  real  space,  we  have  the  velocity  field
$\mathbf{u}(\mathbf{x},t)$, which satisfies the Navier-Stokes
equation  (NSE).  This  equation  expresses  conservation  of
momentum and is local in $x$. It is also nonlinear and is
therefore, in general, insoluble. From it we can derive the
Karman-Howarth equation (KHE), which expresses conservation of
energy and relates the second-order moment to the third-order
moment. This is also local in $x$, and is also insoluble, as
it embodies the statistical closure problem of turbulence. If
we wish, we can change from moments to structure functions,
but the KHE remains local in $r$, the distance between the two
measuring  points.  This  formulation  gives  no  hint  of  a
turbulence  cascade  as  it  is  entirely  local  in  nature.

The situation is radically different in Fourier wavenumber
($k$)  space.  Here  we  have  a  velocity  field
$\mathbf{u}(\mathbf{k},t)$ which now satisfies the NSE in $k$-
space. This is still insoluble, and when we derive the Lin
equation from it (or by Fourier transformation of the KHE),
this again expresses conservation of energy, and is again
subject to the closure problem. However, there is a major
difference. As pointed out by Batchelor [1], Taylor introduced
the Fourier representation in order to turn turbulence into a
problem  in  statistical  physics,  with  the
$\mathbf{u}(\mathbf{k},t)$ playing the part of the degrees of
freedom. The nonlinear term takes the form of a convolution in
wavenumber space and this couples each degree of freedom to
every other. In the absence of viscosity, this process leads
to equipartition, rather as in an ideal gas. However, the
viscous term is symmetry-breaking, with its factor of $k^2$
skewing its effect to high wavenumbers, so that energy must
flow through the modes of the system from low wavenumbers to
high. We may complete the picture by injecting energy at low
wavenumbers. The result is a physical system which has been
discussed in many papers and books and has been studied by



theoretical physicists over the decades since the 1950s. In
short, Fourier transformation reveals a physical system which
is not apparent from the equations of motion in real space.

What, then, do those working in real space mean by the physics
of turbulence? Presumably they rely on ideas about vortex
motion, as established by flow visualisation; and here the
difficulty  lies.  Richardson  put  forward  the  concept  of  a
cascade  in  terms  of  `’whirls”  (not,  incidentally,  whorls!
[2]);  and  certainly  this  has  gripped  the  imagination  of
generations of workers in the field. In a general, qualitative
way  it  is  easy  to  understand;  and  one  can  envisage  the
transfer of eddying motions from large scales to small scales.
But  when  it  comes  to  a  quantitative  point  of  view,  the
resulting  picture  is  very  vague  and  imprecise.  Of  course
attempts  have  been  made  to  make  it  more  precise  and
researchers have considered assemblies of well-defined vortex
motions.  This  is  a  perfectly  reasonable  way  for  fluid
dynamicists to go about things, but it involves a considerable
element of guess work. In contrast, Fourier wavenumber space
gives a precise representation of the physical system and
essentially  formulates  the  basic  problem  as  a  statistical
field theory.

So, spectral methods actually expose the underlying physics of
turbulence, rather than obscuring it. It is my view that those
who are not comfortable with them must necessarily have a very
restricted and limited understanding of the subject. I shall
illustrate that in my next post.

[1] G. K. Batchelor. The theory of homogeneous turbulence.
Cambridge University Press, Cambridge, 2nd edition, 1971.
[2]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.



Stirring  forces  and  the
turbulence response.
Stirring forces and the turbulence response.

Vacation post No. I: I will be out of the office until Monday
19 April.

In my previous post, I argued that there seems to be really no
justification for regarding the stirring forces that we invoke
in isotropic turbulence as mysterious, at least in the context
of statistical physics. However, when I was thinking about it,
I remembered that Kraichnan had introduced stirring forces in
quite a different way from Edwards and it occurred to me that
this might be worth looking at again. Edwards had introduced
them  in  order  to  study  stationary  turbulence,  but  in
Kraichnan’s case they were central to the basic idea for his
turbulence theory. In that way, Kraichnan’s formulation was
more in the spirit of dynamical systems theory, rather than
statistical physics.

Following  Kraichnan,  let  us  consider  the  case  where  the
Navier-Stokes  equation  (NSE)  is  subject  to  random  force
$f_{\alpha}(\mathbf{k},t)$, where the Greek indices take the
usual values of $1,\,2,\,3$ corresponding to Cartesian tensor
notation.  If  the  force  undergoes  a  fluctuation
\[f_{\alpha}(\mathbf{k},t)  \rightarrow
f_{\alpha}(\mathbf{k},t)  +\delta  f_{\alpha}(\mathbf{k},t),\]
then  we  may  expect  the  velocity  field  to  undergo  a
corresponding  fluctuation  \[u_{\alpha}(\mathbf{k},t)
\rightarrow  u_{\alpha}(\mathbf{k},t)  +\delta
u_{\alpha}(\mathbf{k},t).\]  If  the  increments  are  small
enough, we may neglect the second order of small quantities,
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then  we  may  introduce  the  infinitesimal  response  function
$\hat{R}_{\alpha\beta}(\mathbf{k};t,t’)$,  such  that  \[\delta
u_{\alpha}(\mathbf{k},t)  =  \int_{-
\infty}^t\,\hat{R}_{\alpha\beta}(\mathbf{k};t,t’)\delta
f_{\beta}(\mathbf{k},t’)\,dt’.\]

Kraichnan linearised the NSE in order to derive a governing
equation  for  the  infinitesimal  response  function.  Then  he
introduced  the  ensemble-averaged  form
\[\langle\hat{R}_{\alpha\beta}(\mathbf{k};t,t’)\rangle
=R_{\alpha\beta}(\mathbf{k};t,t’),\]  where
\[R_{\alpha\beta}(\mathbf{k};t,t)=1,\]  in  order  to  make  a
statistical closure. The result was the Direct Interaction
Approximation (DIA) and it is worth noting in passing that its
derivation  contains  the  step  $\langle  uu\hat{R}  \rangle  =
\langle uu \rangle \langle \hat{R}\rangle$, which makes the
theory a mean-field approximation.

The failure of DIA was attributed by Kraichnan to the use of
an Eulerian coordinate system and he responded by generalising
DIA to what he called Lagrangian-history coordinates, leading
to a much more complicated formulation. This step inspired
others to DIA-type methods in more conventional Lagrangian
coordinates.  However,  the  fact  remains  that  the  purely
Eulerian LET (or local energy transfer) does not fail in the
same way as DIA. It is worth noting that unsuccessful theories
in Eulerian coordinates are invariably Markovian in wavenumber
(this should be distinguished from a Markovian property in
time).

An  alternative  explanation  for  the  failure  of  Markovian
theories  is  that  the  basic  ansatz,  in  the  steps  outlined
above, may not identify the correct response for turbulence.
In dynamical systems the dissipation occurs where the force
acts. In turbulence it occurs at a distance in space and time.
When  the  force  acts  to  stir  the  fluid,  the  energy  is
transferred to higher wavenumbers by a conservative process,
until  it  comes  into  detailed  balance  with  the  viscous



dissipation. Arguably the system response needs to include
some further effect, connecting one velocity mode to another,
as happens in the LET theory [1].

In all theories, the direct action of the stirring force is
both to create the modes and then populate them with energy.
In DIA, the way in which energy is put into the modes (i.e.
the input term) can be calculated exactly by renormalized
perturbation theory in terms of the ensemble-averaged response
function . However, the general closure of the statistical
equations  for  the  velocity  moments  is  equivalent  to  an
assumption that the same procedure will work for it, which is
really  only  an  assumption.  So  it  may  be  that  it  is  the
turbulence response which is mysterious, and not the stirring
forces as such.

General treatments of these matters will be found in the books
[2,3]. It should be noted that I’ve used a modern notation for
the response function (e.g. see [4]).

[1] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor., 50:375501, 2017.
[2] D. C. Leslie. Developments in the theory of turbulence.
Clarendon Press, Oxford, 1973.
[3] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990
[4]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.



The  mysterious  stirring
forces
The mysterious stirring forces
In the late 1970s there was an upsurge in interest in the
turbulence problem among theoretical physicists. This arose
out of the application of renormalization group (RG) methods
to the problem of stirred fluid motion. As this problem was
restricted to a very low wavenumber cutoff, these approaches
had nothing to say about real fluid turbulence. Nevertheless,
the work on RG stimulated a lot of speculative discussion, and
one paper referred to `the mysterious stirring forces’. I
found this rather unsettling, because I had been familiar with
the  concept  of  stirring  forces  from  the  start  of  my  PhD
project in 1966. Why, I wondered, did some people find them
mysterious?

As time passed, I came to the conclusion that it was just lack
of familiarity on the part of these theorists, although they
seemed quite happy to launch into speculation on a subject
that  they  knew  very  little  about.  (Well,  it  was  just  a
conference paper!) So I was left with the feeling that one day
it might be worth writing something to debunk this comment.
Recently it occurred to me that it would make a good topic for
a blog.

The standard form used nowadays for the stirring forces was
introduced by Sam Edwards in 1964 and has its roots in the
study  of  Brownian  motion,  and  similar  problems  involving
fluctuations about equilibrium. Let us consider the motion of
a colloidal particle under the influence of molecular impacts
in a liquid. For simplicity, we specialise to one-dimensional
motion with velocity $u$. The particle will experience Stokes
drag with coefficient $\eta$, per unit mass. Accordingly, we
can use Newton’s second law to write its macroscopic equation
of motion as: \begin{equation} \partial u/\partial t =-\eta \,
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u. \end{equation} At the microscopic level, the particle will
experience the individual molecular impacts as a random force
$f(t)$, say. So the microscopic equation of motion becomes:
\begin{equation}\partial  u/\partial  t  =-\eta  \,  u  +  f(t).
\end{equation}  This  equation  is  known  as  the  Langevin
equation. In order to solve it, we need to specify $f$ in
terms of a physically plausible model.

We begin by noting that the average effect of the molecular
impacts on the colloidal particle must be zero, thus we have:
\begin{equation}\langle f(t) \rangle =0. \end{equation} As a
result, the average of equation (2) reduces to equation (1),
which is consistent. Then in order to represent the irregular
nature of the molecular impacts, we assume that $f(t)$ is only
correlated with itself at very short times $t\leq t_c$, where
$t_c$ is the duration of a collision. We can express this in
terms of the autocorrelation function $w$ as: \begin{equation}
\langle  f(t)f(t’)  \rangle  =  w(t-t’),  \end{equation}  and
\begin{equation}  W(t)  =  \int_0^t\,w(\tau)\,d\tau,
\end{equation} where \begin{equation} W(\tau)\rightarrow W =
\mbox{constant}.\end{equation}

We can go on to solve the Langevin equation (2) for the short-
time and long-time behaviour of the particle velocity $u(t)$,
much  as  in  Taylor’s  Lagrangian  analysis  of  turbulent
diffusion.  We  can  also  derive  the  fluctuation-dissipation
relation: see reference [1] for details.

In his self-consistent field theory of turbulence, Edwards
drew various analogies with the theory of Brownian motion [2].
In particular, he went further than in equations (4) to (6),
and chose the stirring forces to be instantaneously correlated
with themselves; or: \begin{equation}w(t-t’) = W \delta(t-t’),
\end{equation} where $\delta$ is the Dirac delta function. In
the study of stochastic dynamical systems, this is known as
`white noise forcing’. It allows one to express the rate at
which the stirring force does work on the turbulent fluid in
terms of the autocorrelation of the stirring forces [3].



It  also  provides  a  criterion  for  the  detection  of  `fake
theories’. These are theories which are put out by people with
skill in quantum field theory and which purport to be theories
of  turbulence.  Such  theories  do  not  engage  with  the
established body of work in the theory of turbulence, nor do
they mention how they overcome the problems that have proved
to be a stumbling block for legitimate theories. Invariably,
they attribute the purpose of the delta function to be to
maintain Galiean invariance and clearly do not know what it is
actually used for. In fact, the Navier-Stokes equations are
trivially Galilean-invariant and adding an external force to
them cannot destroy that [4].

[1] W. David McComb. Study Notes for Statistical Physics: A
concise, unified overview of the subject. Bookboon, 2014.
[2] S. F. Edwards. The statistical dynamics of homogeneous
turbulence. J. Fluid Mech., 18:239, 1964.
[3] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[4]  W.  D.  McComb.  Galilean  invariance  and  vertex
renormalization.  Phys.  Rev.  E,  71:37301,  2005.

Is the entropy of turbulence
a maximum?
Is the entropy of turbulence a maximum?
In  1969  I  published  my  first  paper  [1],  jointly  with  my
supervisor Sam Edwards, in which we maximised the turbulent
entropy, defined in terms of the information content, in order
to obtain a prescription for $\omega(k)$, the renormalized
decay  time  for  the  energy  contained  in  the  mode  with
wavenumber  $k$.  Of  course,  in  statistical  mechanics,  one
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associates  the  maximum  of  the  entropy  with  thermal
equilibrium. So, in the circumstances, we were very frank
about possible problems with this approach, having actually
stated  in  the  title  that  our  system  was  ‘far  from
equilibrium’. Before we examine this aspect further, it may be
of interest to look at the background to the work.

By  the  mid-nineteen  sixties,  there  had  been  a  number  of
related theories of turbulence, but the most important were
probably Kraichnan’s direct-interaction approximation (DIA) in
1959 and the Edwards self-consistent field theory in 1964. At
this time there seems to have been a mixture of excitement and
frustration. It had become clear from experiment that the
Kolmogorov $-5/3$ power law (or something very close to it)
was the correct inertial-range form, and none of the various
theories  was  compatible  with  it.  Kraichnan  ultimately
concluded that he needed to change to a so-called Lagrangian-
history coordinatate system, but otherwise could retain all
the features of the DIA; whereas Edwards concluded that he
needed  to  find  a  different  way  of  choosing  the  response
function, which in his case depended on $\omega(k)$. In my
view,  and  irrespective  of  the  merits  or  otherwise  of  the
‘maximum entropy’ method, Edwards made the right decision.

When I began my PhD research in 1966, my first job was to work
out  the  turbulent  entropy,  using  Shannon’s  definition,  in
terms  of  the  turbulent  probability  distribution;  and  then
carry  out  a  functional  differentiation  with  respect  to
$\omega(k)$, in order to establish the presence of a maximum.
What I didn’t know, was that Sam had himself carried out this
calculation but had got stuck. In order to take the limit of
infinite Reynolds numbers, he had to show that his theory was
well behaved at three particular points in wavenumber space:
$k=0$, $k=\infty$ and $|\mathbf{k}+\mathbf{j}|=0$, where $j$
is a dummy wavenumber. He had been able to show the first two,
but not the third. Not knowing that there was a problem, I
soon discovered it, but by means of a trick involving dividing



up the range of integration, I managed to show that it was
well behaved. However, the prediction of the value of the
Kolmogorov  constant  was  not  good,  and  this  was  not
encouraging.

In later years, when I had a lot more experience of both
turbulence and statistical physics, I thought more critically
about this way of treating turbulence. The maximum entropy
method is the canonical way of solving problems in thermal
equilibrium where there are only either weak or very local
interactions. If we take the para-ferromagnetic transition as
an example, we can think of the temperature being reduced and
an assembly of molecular magnets (i.e. spins on a lattice)
tending  to  line  up  as  the  effective  coupling  increases.
However, this process would be swamped by the imposition of a
powerful  external  magnetic  field.  Similarly,  the  molecular
diffusion process can be swamped by vigorous stirring. In the
case  of  turbulence,  it  is  possible  to  study  absolute
equilibrium  ensembles  by  considering  an  initially  stirred
inviscid fluid in a finite system. If we replace the Euler
equation by the Navier-Stokes equation, then the effect of the
viscosity is symmetry-breaking and the system is dominated by
a flow of energy through the modes.

This, of course is a truism of statistical physics: a system
is either controlled by entropy or energy conservation. In the
case of turbulence, it is always the latter. Turbulence is
always  a  driven  phenomenon.  So  while  perhaps  entropy  is
actually a maximum with respect to variation of $\omega(k)$,
it may be too broad a maximum allow an accurate determination
of $\omega(k)$. Also, it is worth bearing in mind, that it is
not precisely turbulence but the statistical theory we are
approximating  it  by,  which  needs  to  show  the  requisite
behaviour.

In any case, in 1974 I published my local energy transfer
theory of turbulence [2], which is in good accord with the
basic physics of the turbulent cascade.



[1] S. F. Edwards and W. D. McComb. Statistical mechanics far
from equilibrium. J.Phys.A, 2:157, 1969.
[2] W. D. McComb. A local energy transfer theory of isotropic
turbulence. J.Phys.A, 7(5):632, 1974.

Analogies  between  critical
phenomena and turbulence: 2
Analogies between critical phenomena and turbulence: 2

In  the  previous  post,  I  discussed  the  misapplication  to
turbulence of concepts like the relationship between mean-
field theory and Renormalization Group in critical phenomena.
This week I have the concept of ‘anomalous exponents’ in my
sights!

This term appears to be borrowed from the concept of anomalous
dimension in the theory of critical phenomena, so we start
from a consideration of dimension, bearing in mind that the
dimension  of  the  space  can  be  anything  from  $d=1$  up  to
$d=\infty$, and is not necessarily an integer. In critical
phenomena  it  is  usual  to  define  three  different  kinds  of
dimensionality, as follows:

[a] Scale dimension. This is defined as the dimension of a
physical quantity as established from the effect of a scaling
transformation. Confusingly, this is normally just referred to
as dimension.

[b]  Normal  (canonical)  dimension.  This  is  the  (scale)
dimension as established by simple dimensional analysis.

[c] Anomalous dimension. This is the dimension as established
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under RG transformation.

In this context, normal dimension is regarded as the naïve
dimension and anomalous dimension is regarded as the actual or
correct dimension. In turbulence we don’t have dimensionality
as a playground, so the merry band of would-be turbulence
theorists have extended the concept to the exponents of power-
law forms of the moments of the velocity field plotted against
order. The Kolmogorov forms (dimensional analysis) are seen as
canonical and the actual (i.e. measured) exponents are seen as
anomalous. The former are seen as wrong and the latter as
correct.  Naturally,  the  true  believers  in  intermittency
corrections  have  seized  on  this  nomenclature  as  adding
something to their case. (Also, see my post of 21 January
2021).

Let us actually apply the concept of scale dimension $d_s$
(say) in three-dimensional turbulence (i.e. $d=3$), using the
procedures from critical phenomena (see Section 9.3 of [1]) to
the energy spectrum $E(k)$. That is, we express the spectrum
in terms of the total energy $E$, thus \[\int\,d^3k\,E(k) = E
\quad \mbox{hence} \quad E(k) \sim E\,k^{-3}.\] So, bearing in
mind that wavenumber has dimensions of inverse length, it
follows that the canonical scale dimension is $d_s = 3$ in
$d=3$.

If we now consider the Kolmogorov spectrum based on scale
invariance  and  an  inertial  transfer  rate  $\varepsilon_T$,
dimensional  analysis  gives  us  \[E(k)  \sim
\varepsilon_T\,k^{-5/3} .\] As this result can also be got
from RG transformation, properly formulated for macroscopic
fluid turbulence, and employing rational approximations (see
[2] – [5]), it follows that K41 corresponds to the anomalous
dimension $d_E = 5/3$. So much for inept comparisons with
critical phenomena.

[1]  W.  D.  McComb.  Renormalization  Methods:  A  Guide  for
Beginners. Oxford University Press, 2004.



[2]  W.  D.  McComb  and  A.  G.  Watt.  Conditional  averaging
procedure for the elimination of the small-scale modes from
incompressible  fluid  turbulence  at  high  Reynolds  numbers.
Phys. Rev. Lett., 65(26):3281-3284, 1990.
[3] W. D. McComb, W. Roberts, and A. G. Watt. Conditional-
averaging  procedure  for  problems  with  mode-mode  coupling.
Phys. Rev. A, 45(6):3507-3515, 1992.
[4]  W.  D.  McComb  and  A.  G.  Watt.  Two-field  theory  of
incompressible-fluid  turbulence.  Phys.  Rev.  A,
46(8):4797-4812,  1992.
[5]  W.  D.  McComb.  Asymptotic  freedom,  non-Gaussian
perturbation theory, and the application of renormalization
group  theory  to  isotropic  turbulence.  Phys.  Rev.  E,
73:26303-26307,  2006.

Analogies  between  critical
phenomena and turbulence: 1
Analogies between critical phenomena and turbulence: 1
In the late 1970s, application of Renormalization Group (RG)
to stirred fluid motion led to an upwelling of interest among
theoretical  physicists  in  the  possibility  of  solving  the
notorious turbulence problem. I remember reading a conference
paper which included some discussion that was rather naïve in
tone. For instance, why did turbulence theorists study the
energy  spectrum  rather  than  something  else?  Also,  rather
unsettlingly,  there  was  a  reference  to  the  ‘mysterious
stirring forces’ (sic): I shall return to that comment in a
future post. However, although no turbulence theory emerged
from this activity, a way of thinking did, and this found a
receptive  audience  in  those  members  of  the  turbulence
community  who  believe  in  intermittency  corrections.  In  my
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view, one set of views is as unjustified as the other, and I
shall now explain why I think this.

To understand how these views came about, we need to consider
the  background  in  critical  phenomena.  During  the  1960s,
theorists in this area began to use concepts like scaling and
self-similarity to derive exact relationships between critical
exponents. (In passing, I note that in fluid dynamics these
tools had already been in active use for more than half a
century!) In this way, the six critical exponents of a typical
system could be reduced to just two to be determined. At first
the gap was bridged by mean-field theory, but then RG came
along and the problem was solved.

It  is  important  to  know  that  RG  can  be  viewed,  in  some
respects, as a correction to mean-field theory. As a result,
theorists in this field essentially ended up taking the view:
‘mean-field theory, bad! RG good!’, and this had a tendency to
spill over into other areas as a sort of judgement. In general
this was the attitude during the 1980s/90s, and few paused to
reflect  that  other  phenomena  might  belong  to  a  different
universality class. For instance, should the self-consistent
field theory of multi-electron atoms be ruled out, because RG
is  better  than  mean-field  theory  at  describing  the  para-
ferromagnetic  phase  transition?  Fortunately,  this  sort  of
thinking has presumably died out by now, but it has left an
unhelpful residue in turbulence theory.

One form of this is the assertion that the Kolmogorov ‘$-5/3$’
energy  spectrum  is  a  mean-field  theory,  and  that  an  RG
calculation  would  lead  to  an  exponent  of  the  form
‘$-5/3+\mu$’;  precisely  what  the  ‘intermittency  correction’
enthusiasts had been saying all along! The snag with this is
that the derivation of the Kolmogorov spectrum does not rely
on  a  mean-field  step,  nor  indeed  on  the  invariable
accompaniment of a self-consistent field step. In fact, this
can be a problem in critical phenomena. People tend to refer
loosely to mean-field theories, without mentioning that they



are also self-consistent theories. Actually in turbulence we
have  various  self-consistent  field  theories  which  do  not
predict the Kolmogorov exponent and one which does [1].
In my next post, I will develop this topic further. In the
meantime, a general background account of these matters may be
found in the book cited below as [2].
[1] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor., 50:375501, 2017.
[2]  W.  D.  McComb.  Renormalization  Methods:  A  Guide  for
Beginners. Oxford University Press, 2004.

Compatibility  of  temporal
spectra  with  Kolmogorov
(1941):  the  Taylor
hypothesis.
Compatibility of temporal spectra with Kolmogorov (1941): the
Taylor hypothesis.

Earlier this year I received an enquiry from Alex Liberzon,
who was puzzled by the fact that some people plot temporal
frequency spectra with a $-5/3$ power law, but he was unable
to reconcile the dimensions. This immediately took me back to
the  1970s  when  I  was  doing  experimental  work  on  drag-
reduction,  and  we  used  to  measure  frequency  spectra  and
convert  them  to  one-dimensional  wavenumber  spectra  using
Taylor’s hypothesis of frozen convection [1]. It turned out
that Alex’s question was more complicated than that and I will
return to it at the end. But I thought my own treatment of
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this topic in [1] was terse, to say the least, and that a
fuller treatment of it might be of general interest. It also
has the advantage of clearing the easier stuff out of the way!

Consider  a  turbulent  velocity  field  $u(x,t)$  which  is
stationary and homogeneous with rms value $U$. According to
Kolmogorov  (1941)  [2],  the  mean  square  variation  in  the
velocity field over a distance $r$ from a point $x$ is given
by:\begin{equation}\langle  \Delta  u^2_r  \rangle  \sim
(\varepsilon r)^{2/3}.\end{equation} If we now consider the
turbulence to be convected by a uniform velocity $U_c$ in the
$x$-direction,  then  the  K41  result  for  the  mean  square
variation  in  the  velocity  field  over  an  interval  of  time
$\tau$ at a point $x$ is given by: \begin{equation}\langle
\Delta  u^2_\tau  \rangle  \sim  (\varepsilon
U_c\tau)^{2/3}.\end{equation}The  dimensional  consistency  of
the two forms is obvious from inspection.

Next let us examine the dimensions of the temporal and spatial
spectra. We will use the angular frequency $\omega = 2\pi f$,
where  $f  $  is  the  frequency  in  Hertz,  in  order  to  be
consistent  with  the  definition  of  wavenumber  $k_1$,  where
$k_1$ is the component of the wavevector in the direction of
$x$.  Integrating  both  forms  of  the  spectrum,  we  have  the
condition: \begin{equation} \int^\infty_0 E(\omega) d\omega =
\int_0^\infty E_{11}(k_1) dk_1 = U^2. \end{equation} Evidently
the dimensions are given by: \begin{equation}\mbox{Dimensions
of}\,  E(\omega)d\omega  =  \mbox{Dimensions  of}\,  E_{11}(k_1)
dk_1 = L^2 T^{-2};\end{equation} or velocity squared.

Then  we  introduce  Taylor’s  hypothesis  in  the  form:
\begin{equation}  \frac{\partial}{\partial  t}  =  U_c
\frac{\partial}{\partial x}, \quad \mbox{thus} \quad \omega =
U_c  k_1;\end{equation}  and  hence:  \begin{equation}k_1=
\frac{\omega}{U_c}  \quad  \mbox{and}  \quad  dk_1  =
\frac{d\omega}{U_c}.  \end{equation}
The  Kolmogorov  wavenumber  spectrum  (in  the  one-dimensional
form  that  is  usually  measured)  is  given



by:\begin{equation}E_{11}(k_1)  =  \alpha_1  \varepsilon^{2/3}
k^{-5/3}_1 dk_1.\end{equation}We should note that $\alpha_1$
is the constant in the one-dimensional spectrum and is related
to  the  three-dimensional  form  $\alpha$  by  $\alpha_1  =
(18/55)\alpha $. Substituting for the wavenumbers from (6)
into  (7)  we  find:\begin{equation}  E_{11}(k_{1})dk_{1}  =
\alpha_1  (\varepsilon  U_c)^{2/3}\omega^{5/3}  d\omega  \equiv
E(\omega)d\omega, \end{equation} which is easily shown to have
the correct dimensions of velocity squared.

After seeing this analysis, Alex came back with: but what
about  when  the  field  is  homogeneous  and  isotropic,  with
$U_c=0$? That’s a very good question and takes us into a topic
which originated with Kraichnan’s analysis of the failure of
DIA in (1964) [1]: the importance of sweeping effects on the
decay of the velocity correlation. There are now numerous
papers which address this topic and they continue to appear.
So it does not give the impression of being settled. From my
point of view, this is important in the context of closure
approximations;  but  I  understand  that  the  answer  to  the
question of $f^{-5/3}$ or $f^{-2}$ depends on the importance
or otherwise of sweeping effects.

I intend to return to this, but not necessarily next week!

[1] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[2] A. N. Kolmogorov. The local structure of turbulence in
incompressible viscous fluid for very large Reynolds numbers.
C. R. Acad. Sci. URSS, 30:301, 1941.



The  concept  of  universality
classes  in  critical
phenomena.
The concept of universality classes in critical phenomena.
The universality of the small scales, which is predicted by
the Richardson-Kolmogorov picture, is not always observed in
practice;  and  in  the  previous  post  I  conjectured  that
departures from this might be accounted for by differences in
the spatial symmetry of the large scale flow. To take this
idea a step further, I now wonder whether it would be worth
exploring  how  the  idea  of  universality  classes  could  be
applied to the turbulent cascade? First, I should explain what
universality classes actually are.

In the study of critical phenomena, we are concerned with
changes  of  phase  or  state  which  can  occur  at  a  critical
temperature,  which  is  invariably  denoted  by  $T_c$.  For
instance, the transition from liquid to gas, or the transition
from para- to ferromagnetism. In general, it is found that the
thermodynamic  variables  (e.g.  heat  capacity,  magnetic
susceptibility) of a system either tend to zero, or tend to
infinity, as the system approaches the critical temperature.
If we represent any such macroscopic variable by $F(T)$ and
introduce the reduced temperature $\Theta_c$ by \[\Theta_c =
\frac{T-T_c}{T_c}.\] Then, as $T\rightarrow T_c$ and $\Theta_c
\rightarrow 0$, we have \[F(\Theta_c) = A \Theta^{-n},\] where
$A$ is a constant and $n$ is the critical exponent. Obviously
the  critical  exponent  will  be  negative  when  $F(0)=0$  and
positive when $F(0)=\infty$.

Here  the  constant  $A$  and  the  critical  temperature  $T_c$
depend on the details of the system at the molecular level and
therefore vary from one system to another. These quantities
must be determined experimentally. However, in practice it is
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found that sometimes different systems have the same values of
critical  exponents  and  this  depends  only  on  symmetry
properties  of  the  microscopic  energy  function  (or
Hamiltonian). When this is found to be the case, the two
systems are said to be in the same universality class.

Accordingly,  in  my  view  it  would  be  worth  reviewing  the
different investigations in order to find out if one could
organise results for the inertial-range exponent into some
kind of universality classes, although allowance should be
made for experimental error, which tends to be much greater in
fluid dynamics than in microscopic physics. I would be tempted
to take a look through my files, but unfortunately I remain
cut off from my university office by the pandemic.

Further  details  about  critical  phenomena  may  be  found  in
reference [1] below.

[1]  W.  D.  McComb.  Renormalization  Methods:  A  Guide  for
Beginners. Oxford University Press, 2004.

Macroscopic  symmetry  and
microscopic universality.
Macroscopic symmetry and microscopic universality.
The  concepts  of  macroscopic  and  microscopic  are  often
borrowed, in an unacknowledged way, from physics, in order to
think about the fundamentals of turbulence. By that, I mean
that there is usually no explicit acknowledgement, nor indeed
apparent realization, that the ratio of large scales to small
scales  is  many  orders  of  magnitude  smaller  in  turbulence
(which is at all scales actually a macroscopic phenomenon)
than it is in microscopic physics.
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This idea began with Kolmogorov in 1941, when he employed
Richardson’s concept of a cascade of energy from large eddies
to small; to argue that, after a sufficiently large number of
steps,  there  could  be  a  range  of  eddy  sizes  which  were
statistically independent of their large-scale progenitors. In
passing, it should be noted that the concept of ‘eddy’ can be
left rather intuitive, and we could talk equally vaguely about
‘scales’. However, combining the cascade idea with Taylor’s
earlier  introduction  of  Fourier  modes  as  the  degrees  of
freedom  of  a  turbulent  system,  leads  to  a  much  more
satisfactory analogy with statistical physics, with the onset
of  scale  invariance  strengthening  the  analogy  to  the
microscopic theory of critical phenomena. As is well known,
that leads to the `$5/3$’ spectrum, which was expected to be
universal.

My own view is that it would be good to get it settled that
the Kolmogorov spectrum holds for isotropic turbulence. There
is still an absence of consensus about that. But the broader
claim of universality has been supported by measurements of
spectra in a vast variety of flow configurations; although,
inevitably  there  have  been  instances  where  it  is  not
supported. So we end up with yet another unresolved issue in
turbulence. Is small-scale turbulence universal or not?

In order to consider whether or not the concept of symmetry
could assist with this, it may be helpful to think in terms of
definite examples. First, let us consider laminar flow in the
$x_1$  direction  between  fixed  parallel  plates  situated  at
$x_2=\pm a$. The velocity distribution between the plates will
be a symmetric function of the variable $x_2$. If now we
consider a flow where one plate is moving with respect to the
other, and this is the only cause of fluid motion, then we
have plane Couette flow and, as is well known, the velocity
profile  will  now  be  an  antisymmetric  function  of  $x_2$.
However,  the  molecular  viscosity  of  the  fluid  will  be
unaffected by the different macroscopic symmetries and will be



the same in both cases.

If we now extend this discussion to the case of turbulent mean
velocities and inquire about the behaviour of the effective
turbulent  viscosity  ($\nu_t$,  say:  for  a  definition  see
Section 1.5 of reference [1]), it is clear that this will be
very different in the two cases, and arguably that should
apply to the cascade process as well.

In isotropic turbulence, the cascade is described by the Lin
equation, with the key quantity being the transfer spectrum
$T(k)$. Its extension to an inhomogeneous case will bring in a
number of transfer spectra, such as $T_{11}$, $T_{12}$ and so
on.  In  order  to  cope  with  the  dependence  on  spatial
coordinates,  the  introduction  of  centroid  and  relative
coordinates  that  we  used  in  the  previous  post  will  prove
useful.  Recall  that  we  considered  a  covariance  function
$C(\mathbf{x},\mathbf{x’})$,  leaving  the  time  variables  out
for  simplicity  and  introduced  the  change  of  variables  to
centroid  and  relative  coordinates,  thus:  \[\mathbf{R}  =
(\mathbf{x}  +  \mathbf{x’})/2  \qquad  \mbox{and}  \qquad
\mathbf{r} = (\mathbf{x} – \mathbf{x’}). \] In this case one
component  of  the  spectral  tensor  could  be  written  as:
$T_{11}(\mathbf{k}, R_2)$, where we have Fourier transformed
with respect to the relative coordinate only. Then, at least
in the core region of the flow, we could expand out the
dependence on the centroid coordinate in Taylor series. In
this way we could separate the wavenumber cascade from spatial
effects, such as production and spatial energy transfer.

Ideally one could even use a closure theory: the covariance
equation of the DIA has been validated by the LET theory [2]
and, although some work has been done on this in the past, a
really serious approach would require a lot of bright young
people to get involved. Unfortunately, vast numbers of bright
young people all over the world are involved in complicated
pedagogical exercises in cosmology, particle theory, string
theory, quantum gravity and so on, most of which has gone



beyond any proper theoretical foundation. Ah well, important
but less glamorous problems like turbulence must await their
turn.

For completeness, I should emphasise that all flows discussed
above are assumed to be incompressible and well-developed.

[1] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[2] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor. 50:375501, 2017.

Can  statistical  theory  help
with turbulence modelling?
Can statistical theory help with turbulence modelling?
When reading the book by Sagaut and Cambon some years ago, I
was  struck  by  their  balance  between  fundamentals  and
applications [1]. This started me thinking, and it appeared to
me that I had become ever more concentrated on fundamentals in
recent years. In other words, I seemed to epitomize the old
saying about scholarship consisting of `learning more and more
about less and less’!

It was not always so. I began my career in research and
development,  which  was  very  practical  indeed.  Then  my
employers sent me back to university where I took a degree in
theoretical physics, followed by a PhD on the statistical
theory of turbulence. Obviously the rot had set in; but, even
so, in later years I did quite a lot of experimental work on
drag reduction by additives and also turbulent diffusion. At
least these topics had a practical orientation. Moreover, I
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have  also  used  the  $k-\varepsilon$  model  to  carry  out
calculations on the `jet in crossflow’ problem. This might
seem surprising, but it arose quite naturally in the following
way.

Around about 1980 I had a call from a colleague in the maths
department at Edinburgh. The Iran-Iraq war had recently broken
out, and one of his MPhil students came from that part of the
world. The student had decided that he would rather take a PhD
than  go  home  and  be  involved  in  the  fighting.  Very
understandable, but the difficulty was that he needed a more
substantial project. At present he was studying the jet in
crossflow  problem,  using  ideal  flow  methods.  My  colleague
wondered if I could join in as co-supervisor and introduce
some  turbulence  to  the  project  in  order  to  make  it  more
realistic.

Lacking any experience in this field, I happily agreed to join
in, and proposed that we use the $k-\varepsilon$ model, which
at the time was the best known of the engineering models. We
set  out  on  a  programme  of  studying  both  the  model  and
associated numerical methods, in the process considering a
hierarchy  of  problems  of  increasing  difficulty,  until  we
reached the jet in crossflow.

This was a long time ago, but two things about this PhD
supervision remain in my memory. First, the student was a
mathematician  and  had  no  prior  knowledge  of  numerical
computation. This leaves me with an abiding impression that he
initially found it very difficult to realise that we did not
need to be able to solve an equation in the mathematical
sense. Because of this, we had many discussions which appeared
to be going well and then ended in frustration. Secondly, once
we managed to encourage him to overcome his reluctance and try
to use the computer, he proved to be a natural and worked
rapidly through our hierarchy of problems, ending up with
useful results in a commendably short time. This happened at a
time of upheaval for me, when I was moving from the School of



Engineering to the School of Physics, so I have only a rather
vague memory of how things turned out. I believe that he got
his PhD and then went on somewhere in England as a postdoc.
Whether the results were published or not, I don’t recall. But
the experience left me with an appreciation of the value of a
practical engineering model, where my own fundamental work
would have been of little assistance. A short discussion of
the $k-\varepsilon$ model can be found in Section 3.3.4 of my
book, given as reference [2] below.

When considering how statistical theory might help, we should
first recognize that it does give rise to a class of models,
beginning with the Eddy Damped Quasi-Normal model (which is
cognate to the self-consistent field theory of Edwards) and
has a single adjustable constant. It is, however, restricted
to homogeneous turbulence. What we could really do with is
something  like  $k-\varepsilon$,  which  is  a  single-point
theory, but which arises in a systematic way from a two-point
statistical theory. The value of the latter is that it takes
into account spatially (and temporally) nonlocal effects.

The  details  of  the  statistical  closure  theories  are
complicated, but the basic idea of how one might try to derive
single-point  engineering  models  is  quite  simple.  The  key
quantity is the covariance of two fluctuating velocities at
different points (and times) and a theory consists of a closed
set of equations to determine the covariance. In general, the
covariance tensor is a matrix of nine covariance functions,
although symmetry will often reduce that. We will consider
just  one  such  function,  which  we  write  as
$C(\mathbf{x},\mathbf{x’})$,  leaving  the  time  variables  out
for  simplicity.  We  then  make  the  change  of  variables  to
centroid  and  relative  coordinates,  thus:  \[\mathbf{R}  =
(\mathbf{x}  +  \mathbf{x’})/2  \qquad  \mbox{and}  \qquad
\mathbf{r}  =  (\mathbf{x}  –  \mathbf{x’}).  \]

Now, the statistical theories are studied for the homogeneous
case in order to simplify the problem. That is, we assume that



there is no dependence on the centroid coordinate; and Fourier
transform into wavenumber space, with respect to the relative
variable. However, the basic derivation and renormalization
are  not  restricted  to  this  case,  and  we  can  write  down
equations for the general case. Then, recognizing that most
turbulent shear flows have a smooth dependence on the centroid
coordinate,  we  can  envisage  expanding  in  the  centroid
coordinate,  with  coefficients  obtained  as  integrals  over
wavenumber. Then, setting $x=x’$, we could end up with single-
point  equations,  where  coefficients  are  determined  by
integrals  that  arise  in  the  fundamental  theory.

This  would  not  be  a  trivial  process  but,  given  the  huge
importance  of  turbulence  calculations  in  a  variety  of
applications, it is perhaps surprising that it has been so
comprehensively neglected. A recent discussion of statistical
two-point  closures  can  be  found  in  reference  [3].  For
completeness, I should mention that a second edition of [1]
has appeared and I understand that a third edition is in the
pipeline.

[1] P. Sagaut and C. Cambon. Homogeneous Turbulence Dynamics.
Cambridge University Press, Cambridge, 2008.
[2] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[3] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor., 50:375501, 2017.

The last post … of the first

https://blogs.ed.ac.uk/physics-of-turbulence/2021/01/28/the-last-post-of-the-first-year/


year!
The last post … of the first year!
A year ago, when I began this blog, few of us can have had any
idea of what the year had in store from the coronavirus, now
known to us as covid-19. Over the years, I have sometimes
reflected on the very fortunate lives of my generation. I was
born at the beginning of World War 2 and it impinged very
little  on  my  life  or  consciousness.  In  contrast,  my
grandparents  all  were  adults  during  WW1,  and  would  have
suffered from that; while my parents must have endured fear
and anxiety during WW2, but did not pass on any of that to me
or my siblings. Basically all that I can remember was the
occasional comment about the wonderful things (e.g. unlimited
cream or butter) that one could get before the war!

So perhaps the pandemic is our war? Well, for many people it
must seem like it; but, for those of us who are retired and
have not been touched personally by the fatal consequences of
the virus, it really only amounts to a degree of anxiety and
some disruption of our lives. In my own case, I have not been
able to go to my university office since last February. But
this lack of access to my papers and books has merely been an
inconvenience. Although, I do have plans to write a couple of
review articles in the coming year; and, if I don’t have
access  to  my  office,  only  certain  preliminaries  will  be
possible.

In my first post, I referred to a paper of mine which I
speculated  might  be  my  last  as  it  had  bounced  from  four
different journals. I mentioned that I had let my guard down
and made some sweeping statements without justifying them in
detail. At the time I hadn’t mastered the art or science of
incorporating references in my blogs, so I can now remedy the
omission and this paper can be found as reference [1] below.
So you can judge for yourself. Comments would be welcome. Just
as a foretaste of something that I shall return to, is that in

https://blogs.ed.ac.uk/physics-of-turbulence/2021/01/28/the-last-post-of-the-first-year/


my view such a paper should have been unnecessary. The point
it makes is that K41 scaling is observed for spectra and K62
scaling is not.

Incidentally, my speculation about publishing no more papers
turned out to be overly pessimistic: see reference [2] below.
There is rather a nice story attached to this, but I won’t go
into that at the moment. Suffice it to say that it quite
encouraged me and I have to confess that I now have a number
of papers at various stages of preparation. At worst their
fate  when  submitted  to  journals  should  make  interesting
anecdotes under the generic title of `peer review’.

To close on an upbeat note, I intend to integrate some of my
blogs with the preparation of the two review articles that I
have in mind. First, I intend to review the general topic of
energy transfer and dissipation. In particular, the existing
literature on the subject is unhelpful to the point of being
quite bizarre. For instance, I recently read a discussion of
the paper known as K41 (see reference [3] below) in which the
author purports to quote this paper and in the process uses
the word `wavenumber’, when in fact K41 derives the two-thirds
law for the second-order structure function (i.e. $S_2(r) \sim
r^{2/3}$), and the word wavenumber does not appear in the
paper! Moreover, there is not a single exegesis (so far as I
know) of K41 in the literature. Given its seminal nature, this
is absolutely astonishing. It needs to be put right.

Secondly, I intend to write an article on statistical theories
of turbulence, which will be much more accessible to those who
are  not  theoretical  physicists,  and  who  balk  at  the  word
renormalization. In deciding which words not to use, I shall
be guided by the acerbic remarks of the late Philip Saffman,
which  are  to  be  found  in  his  published  lecture  notes.
Basically,  I  remain  optimistic  about  this  activity.

[1] W. D. McComb and M. Q. May. The effect of Kolmogorov
(1962)  scaling  on  the  universality  of  turbulence  energy



spectra. arXiv:1812.09174[physics.flu-dyn], 2018.
[2] W. D. McComb. A modified Lin equation for the energy
balance  in  isotropic  turbulence.  Theoretical  &  Applied
Mechanics Letters, 10:377-381, 2020.
[3] A. N. Kolmogorov. The local structure of turbulence in
incompressible viscous fluid for very large Reynolds numbers.
C. R. Acad. Sci. URSS, 30:301,1941.

How important are the higher-
order moments of the velocity
field?
How important are the higher-order moments of the velocity
field?

Up  until  about  1970,  fundamental  work  on  turbulence  was
dominated by the study of the energy spectrum, and most work
was carried out in wavenumber space. In 1963 Uberoi measured
the  time-derivative  of  the  energy  spectrum  and  also  the
dissipation spectrum, in grid turbulence; and used the Lin
equation to obtain the form of the transfer spectrum $T(k)$
[1]. Later on, this work was extended and refined by van Atta
and Chen, who obtained the transfer spectrum more directly
from the third-order correlation [2]. This seems to have been
the peak of experimental interest in spectra, and from then on
there was a growing concentration on the behaviour of the
moments  (strictly  speaking,  in  the  form  of  structure
functions)  in  real  space  [3],  [4].

Introducing the structure function of order $n$ by \[S_n(r) =
\langle \delta u_L^n(r) \rangle,\] where $\delta u_L^n(r)$ is
the longitudinal velocity difference, taken over a distance
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$r$, it is well known that, on dimensional grounds, they are
expected to take the form \[S_n=C_n \,(\varepsilon r)^{n/3},\]
whereas investigations like [3] and [4] (and many following
them over the years) found deviations from this that increased
with order $n$. Such results gave increased traction to belief
in intermittency corrections and anomalous exponents.

Yet, when one considers it, the moments of a distribution are
equivalent to the distribution itself. It is well known that
the  moments  are  related  to  the  distribution  through  its
characteristic function which is its Fourier transform. From
the simple example on page 529 of reference [5], we see that
the characteristic function can be expanded out in terms of
the moments. Hence the distribution can be recovered to any
desired order from the infinite set of its moments. Therefore,
when  one  measures  moments  to  some  order,  one  is  merely
assessing  the  accuracy  with  which  one  has  measured  the
distribution itself. A plot of the measured exponent $\zeta_n$
against order $n$ is no more or less than a plot of systematic
experimental  error.  A  glance  at  the  plots  of  measured
distributions in both [3] and [4] will make this point with
compelling force, especially when one considers the wings of
the distribution.

A brief overview of this topic and a number of more recent
references may be found in [6]. Note that in that reference, a
standard laboratory method of reducing systematic error was
used to measure $\zeta_2$ and showed that it tended towards
the  canonical  value  of  $2/3$  as  the  Reynolds  number  was
increased. As a matter of some slight interest, I learnt that
method when I was about sixteen years old at school.

[1] M. S. Uberoi. Energy transfer in isotropic turbulence.
Phys. Fluids, 6:1048, 1963.
[2] C. W. van Atta and W. Y. Chen. Measurements of spectral
energy  transfer  in  grid  turbulence.  J.  Fluid  Mech.,
38:743-763,  1969.
[3] C. W. van Atta and W. Y. Chen. Structure functions of



turbulence in the atmospheric boundary layer over the ocean.
J. Fluid Mech., 44:145, 1970.
[4] F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia.
High-order  velocity  structure  functions  in  turbulent  shear
flows. J. Fluid Mech., 140:63, 1984.
[5] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[6] W. D. McComb, S. R. Yoffe, M. F. Linkmann, and A. Berera.
Spectral analysis of structure functions and their scaling
exponents  in  forced  isotropic  turbulence.  Phys.  Rev.  E,
90:053010, 2014.

How big is infinity?
How big is infinity?
In  physics  it  is  usual  to  derive  theories  of  macroscopic
systems  by  taking  an  infinite  limit.  This  could  be  the
continuum limit or the thermodynamic limit. Or, in the theory
of critical phenomena, the signal of a nontrivial fixed point
is that the correlation length becomes infinite. Of course,
what we mean by `infinity’ is actually just a very large
number. But the mathematicians do not like this. In reference
[1]  below,  the  author  states:  ‘…  statistical-mechanical
theories of phase transitions tell us that phase transitions
only occur in infinite systems’. She sees this as paradoxical
because, as we all know, in everyday life we are surrounded by
finite  systems  undergoing  phase  transitions.  She  further
believes that the paradox can be resolved by working with
constructive mathematics, rather than classical mathematics,
which is what we all normally use.

My quotation from [1] is certainly open to deconstruction, and
I  doubt  if  many  physicists  would  agree  with  it.  What
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originally drew my attention to this particular problem is the
situation in turbulence theory. As the Reynolds number is
increased (or, the viscosity is decreased), the dissipation
rate  becomes  independent  of  the  viscosity.  Physicists
attribute this to the energy transfer by the nonlinear term in
the  equation  of  motion  becoming  scale-invariant.  As  the
Reynolds number is increased even more, this scale-invariance
extends  further  through  wavenumber  space,  and  nothing
thereafter  changes,  either  qualitatively  or  quantitatively.
This in practical terms is the infinite Reynolds number limit,
and it occurs at quite modest, finite values of the Reynolds
number.

However,  many  mathematicians,  harking  back  to  a  paper  by
Onsager [2] in 1949, believe that the infinite Reynolds number
limit corresponds to zero viscosity; and, even more bizarrely,
that the continuum properties of the fluid break down in this
limit. Accordingly, they are driven to finding ways of making
the  Fourier  representation  of  the  inviscid  Euler  equation
dissipative,  by  destroying  its  symmetry-based  conservation
properties. I have discussed this topic in three previous
posts on 12, 19 and 26 November; and a paper, at that time in
preparation, is now available on the arXiv as [3].

[1] Pauline van Wierst. The paradox of phase transitions in
the  light  of  constructive  mathematics.  Synthese,  196:1863,
2019.
[2] L. Onsager. Statistical Hydrodynamics. Nuovo Cim. Suppl.,
6:279, 1949.
[3] W. D. McComb and S. R. Yoffe. The infinite Reynolds number
limit  and  the  quasi-dissipative  anomaly.
arXiv:2012.05614[physics.flu-dyn],  2020.



My life in wavenumber space
My life in wavenumber space
In September 1966, when I began work on my PhD, I almost
immediately began to dwell in wavenumber space. After a brief
nod to the real-space equations, I had to learn about Fourier
transformation of the velocity field, with the wave-vector
$\mathbf{k}$ replacing the position vector $\mathbf{x}$, and
the Navier-Stokes equations being changed from real space to
wavenumber space. In addition, it was usual in those days to
begin with the velocity field in a cubic box and use Fourier
series. Then at some stage one would let the box size tend to
infinity, and replace summations by integrals. At the same
time, the periodic boundary conditions would be replaced by
good behaviour at infinity. So far as theoretical work was
concerned, I was not to emerge from wavenumber space until
around  2006,  when  I  began  to  take  an  interest  in  the
phenomenology  of  turbulence.

This  narrowness  was  not  unusual  and  indeed  did  not  seem
particularly narrow at the time. There had been an incursion
of  theoretical  physicists  into  turbulence  from  the  1950s
onwards; and, for theorists of the time, wavenumber space was
just momentum space with Planck’s constant set equal to unity.
So everyone working on the statistical theory of turbulence
was quite at home in wavenumber space, and it fitted in with
what was almost a tradition in turbulence theory, which had
begun with Taylor’s introduction of spectral methods in the
1930s and had been carried on in the 1950s by Batchelor’s book
in particular. Problems only arose when one’s papers were
refereed by those who were not part of this grouping, and who
were hostile to spectral methods. But I have written about
that in other blogs and it is not what concerns me here, which
is something rather more subtle.

The other day I was trying to work something out and was sure
that I had done it previously. I’m not keen on doing anything
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that I, or indeed anyone else, has already done. Hence I was
checking back in my notebooks and found what I was looking for
dated May 1993. So, that was satisfactory, but it reminded me
of why I had done the work originally. During the 1970s/80s, I
became increasingly aware of referees who felt that theories
predicting the Kolmogorov $-5/3$ law should not be published,
because  ‘intermittency  corrections  meant  that  it  wasn’t
correct’.  It  seemed  to  me  that  the  very  structure  of
renormalization theories was evidence for the correctness of
the  $-5/3$  law.  But  as  such  theories  were  very  largely
inaccessible to fluid dynamicists (especially, of course, when
they  were  refereeing  them!)  I  had  wondered  how  one  could
extract  the  basic  ideas  without  the  full  level  of
complication.

The essential feature, it seemed to me, was the occurrence of
scale  invariance,  in  which  the  inertial  flux  through
wavenumber  became  constant  independent  of  wavenumber.
Beginning with the velocity field in $k$-space, one could
exploit its complex nature to separate out amplitude and phase
effects. Then, in the context of the energy balance equation
(nowadays increasingly referred to as the Lin equation), one
could determine the energy spectrum by power counting; with
its prefactor being determined by an average over the phases.

I wrote this up and submitted it to PRL sometime in 1993. The
response was interesting. It was rejected with a report that
spoke approvingly of how it was written and presented but
regretted that the energy-balance equation had already been
used to derive the so-called ‘$4/5$’ law for the third-order
structure function by Kolmogorov. I of course was happily
ignorant of this. It was something done in real space. Which
demonstrates the disadvantages of taking too limited or narrow
an approach.

In 2006 I retired and began to take an interest in various
phenomenological questions. This meant that at last I crossed
over  into  real  space  and  worked  with  the  Kármán-Howarth



equation as well as with the Lin equation. When working on the
scale-invariance paradox, I decided to revisit my 1993 theory
and this was published as [1] below. I was now able to point
out that it answered the Landau criticism of Kolmogorov’s
theory  (as  reinterpreted  by  Kraichnan  [2]),  in  that  its
prefactor also depended on an average to the two-thirds power.
If the original referee had been more familiar with spectral
methods, he might have realised that my paper was a derivation
of the inertial-range energy spectrum from the equations of
motion, not the Fourier transform of the third-order structure
function. So it was very much a different result from the
Kolmogorov ‘$4/5$’ law. It also occurs to me as I write this,
that the relationship between prefactors in the real-space and
wavenumber-space formulations might be worth looking at.

Is there a moral in all this? I think there is. Basing my
opinion on long experience of papers, discussions and referee
reports,  I  believe  that  those  fluid  dynamicists  who  are
uncomfortable with spectral methods understand less about the
basic physics of turbulence than they otherwise might… and the
New Year is a time for resolutions!

[1]  David  McComb.  Scale-invariance  and  the  inertial-range
spectrum  in  three-dimensional  stationary,  isotropic
turbulence.  J.  Phys.  A:  Math.  Theor.,  42:125501,  2009.
[2] R. H. Kraichnan. On Kolmogorov’s inertial-range theories.
J. Fluid Mech., 62:305, 1974.

How many angels can dance on
the point of a pin?
How many angels can dance on the point of a pin?
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When I was young this was often quoted as an example of the
foolishness  of  the  medieval  schoolmen  and  the  nonsensical
nature  of  their  discussions.  I  happily  classed  those  who
debated it along with those who, not only believed that the
sun was pulled round the heavens in a fiery chariot, but who
were quite prepared to specify the precise number of horses
pulling the chariot. Later on it seemed that it might have
been  a  sort  of  reductio  ad  absurdam,  used  for  critical
purposes.  Perhaps  like  the  original  intention  behind
Schrodinger’s cat? Later still it seemed that it might be an
ironical  comment  by  a  seventeenth  century  protestant
theologian. In any case, it has passed into the language as
the epitome of foolish and pointless discussion that has some
degree of intellectual pretension.

Where then may such pointless intellectual activity be found
nowadays?  Well,  passing  over  easy  targets  like  the  arts,
sociology and modern literary criticism, the answer, which may
surprise you, is physics. Why should it surprise you? The
further answer to that is that physics has been the gift that
keeps giving. Over the past century or more, it has given us
the impression that it can answer any question, and in the
process  give  rise  to  amazing  developments  in  science  and
engineering which alter all our lives for the better. In fact
the  twentieth-century  advances  in  physics  underpin  all
advances  in  medicine,  transport,  engineering  and  all-round
super electronic devices which smooth our paths in so many
ways!

As we become less bedazzled by the wonders of quantum theory
and relativity, we are more conscious of the inconsistencies,
such as dark matter and dark energy, the mysterious use of
string theory in many dimensions, and a standard model of the
universe which is, in some ways, apparently at a similar stage
to the nineteenth-century study of the periodic table, prior
to the development of quantum theory. Lee Smolin, in his book
The trouble with physics points out the need for a revolution



in physics. Roger Penrose in his more recent book Fashion,
Faith and Fantasy in the New Physics of the Universe deplores
the view that quantum theory has been so successful that it
must apply to gravity too. As someone who has always worked in
the classical physics area of turbulence theory (albeit using
the methods of quantum field theory), I am merely an onlooker.
But I have been surprised to notice that much modern physics
seems to involve material that I lectured on in statistical
field  theory  to  final-year  undergraduates  and  first-year
postgraduates. I’m thinking here of topics like mean-field
theory and $\phi^4$ scalar field theory. I also tend to feel
surprised to see many attempts at a theory of quantum gravity
based on the path-integral formulation of quantum mechanics.
This is equivalent to solving the Schrödinger equation and one
would not do that for a macroscopic box of gas, let alone the
universe. Instead, because of the instability of the wave-
function, one would use the density matrix formulation.

Every year we turn out thousands of our cleverest young people
in all parts of the world to work on cosmology and particle
theory. Inevitably their lives are devoted to what can be
little more than pedagogical work. In contrast, the important
fundamental  problems  of  fluid  turbulence  receive  little
attention. I’m not advocating a dirigiste approach of any
kind. I very much understand the importance of scholarship and
research on fundamentals being a sort of creative ferment. But
if  a  fraction  of  the  effort  on  lattice  QCD  went  into
turbulence simulation, with the same sort of attitudes, it
could transform the situation. As it is, we are lumbered with
a  turbulence  community  who  mostly  (it  would  seem)  do  not
understand the concept of scale-invariance; and therefore do
not understand that its onset is what defines the infinite
Reynolds number limit!



Academic  fathers  and  Mother
Christmas
Academic fathers and Mother Christmas
In the mid-1980s I visited the Max Planck institute in Bonn to
give  a  talk.  While  I  was  there,  some  of  the  German
mathematicians  told  me  about  the  concept  of  an  academic
father. They said that your PhD supervisor was your academic
father, his supervisor was your academic grandfather, and so
on. In that way: ‘We can all trace our lineage back to Gauss!’

In my own case, Sam Edwards was my supervisor and I was under
the impression that Nicholas Kemmer had been his supervisor.
Kemmer was retired by the time I joined the Physics department
at  Edinburgh  and  I  never  met  him  as  such.  Our  only
acquaintance was that on his rare visits to the department, he
would call hello in passing, as my office door was always
open.

I once discussed this concept with colleagues on some social
occasion and one of them reckoned that Kemmer’s supervisor had
been Weyl. So it turned out that someone I was collaborating
with at the time was a sort of academic cousin. I’m not sure
just what kind of cousin. My wife is an expert on matters like
‘second cousin, twice removed’, but it’s all Greek to me.
Although I’m actually a bit better at Greek that at cousinage.

Recently I checked up on this and found to my surprise that
Sam’s supervisor was Julian Schwinger and in turn his had been
Isidor Isaac Rabi. This was encouraging, as both were Nobel
Laureates in physics. Then Rabi’s supervisor had been Albert
Potter Wills, who in turn was supervised by Arthur Gordon
Webster  (No,  me  neither.).  He  at  least  was  supervised  by
Helmholtz, but after that the trail went cold again and it
didn’t look like we were heading back to Gauss.
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There must have been some reason why I had thought that Kemmer
was Sam’s supervisor. Perhaps that was when he had still been
at  Cambridge  University?  Then  he  would  have  changed  to
Schwinger at Harvard? If Kemmer had been Sam’s supervisor for
part of the time then he could still count as an ‘academic
father’.

So I thought that I would check Kemmer out and found that his
supervisor had been Pauli (not Weyl!) and in turn Pauli’s had
been Sommerfeld, whose had been Lindemann (the mathematician,
not the later physicist), and his had been Klein. Then Klein’s
supervisor was Plucker, who was supervised by Gerling and (at
last) we are back to Gauss, who was Gerling’s supervisor. But
can I claim to be descended from Gauss? Well, I’m still not
sure.

Of course this is all a rather old-fashioned idea. There are
growing numbers of women in physics and mathematics and if we
want to talk about academic descent then we should include
academic mothers and, in time, academic grandmothers; and so
on. Inclusiveness is the watchword nowadays and as this is
Christmas Eve I shall be hanging up my stocking in the hope
that  Mother  Christmas  will  put  some  nice  presents  in  it.
Certainly she has made a great job of decorating our tree: see
below.

 



 

If you have been, then thank you for reading; and I wish you a
happy Christmas!

Peer  Review:  Through  the
Looking Glass
Peer Review: Through the Looking Glass
Five years ago, when carrying out direct numerical simulations
(DNS)  of  isotropic  turbulence  at  Edinburgh,  we  made  a
surprising discovery. We found that turbulence states died
away at very low values of the Reynolds number and the flow
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became self-organised, taking the form of a Beltrami flow,
which has velocity and vorticity vectors aligned. This work is
reported  in  [1]  below,  and  illustrated  by  the  following
figure.

 

Visualization of the velocity field
(red  arrows)  and  the  vorticity
field  (blue  arrows)  before  and
after  self-organization.

A  video  of  the  simulation,  showing  the  symmetry-breaking
transition,  complete  with  characteristic  ‘critical  slowing
down’,  can  be  found  at  the  online  article  [1]:
https://doi.org/10.1088/1751-8113/48/25/25FT01
The  link  to  the  video  can  be  found  under  the  heading
Supplementary Data. Downloading this should be straightforward
using Windows, but if using a Mac you may have to have an app
such as VLC installed.

The  article  [1]  was  featured  on  the  front  cover  of  the
journal, thus:

 



 

It was downloaded hundreds of times within a few days of
publication and the total number of downloads now stands at
2708.
That sounds like a success story and you may well wonder why I
want to feature this as yet another problem with peer review.
The answer to that lies in the fact that we first submitted it
to  Physical  Review  Letters  and  that  was  such  an  bizarre
experience that it deserves to be told!

Normally I would refer to the two referees as Referee A and
Referee B, but as their behaviour seemed to belong to the
Looking Glass world (that turbulence assessment so often is) I
have decided to call them Tweedledum and Tweedledee.

First, Tweedledum said that he didn’t understand how we were
forcing the turbulence. He had never seen anything like that
before. Perhaps the strange behaviour was due to our strange
forcing. He didn’t think that our Letter should be published.



Then, Tweedledee said that he didn’t understand how we were
forcing the turbulence. He also had never seen anything like
that before. Perhaps the strange behaviour was due to our
strange forcing. He also didn’t think that our Letter should
be published.

In Alice Through the Looking Glass, the twins had a famous
battle. That did not happen in the present case where they
were in perfect agreement; although Tweedledum (or was it
Tweedledee?) suggested that perhaps if we did a lot more work
and wrote it up as a much longer article, then it might be
suitable for publication. This rather misses the point of
having a journal like PRL!

When we submitted our paper to J. Phys. A, we pointed out the
following: our method of forcing is known as negative damping;
it  was  introduced  to  turbulence  theory  in  1965  by  Jack
Herring; it was first used in DNS in 1997 by Luc Machiels; has
subsequently been used in numerous investigations; and in 2005
was  studied  theoretically  by  Doering  and  Petrov  [2].  Not
precisely  an  obscure  technique  then.  But  what  an
intellectually  feeble  performance  from  Tweedledum  and
Tweedledee. No wonder problems in turbulence remain unresolved
for generations.

One might end up by wondering what if any harm had been done
by  the  lack  of  scholarly  behaviour  on  the  part  of  these
referees who were presumably chosen to be representative of
the  turbulence  community.  After  all,  the  paper  has  been
published and has clearly aroused quite a lot of interest. The
trouble is, I suspect that J. Phys. A does not have the same
visibility among turbulence researchers as PRL. In that case
the  numerous  downloads  may  reflect  the  fact  that  many
physicists are interested in an example of a nonlinear phase
transition  without  necessarily  having  any  interest  in
turbulence. More generally, over the years it seems to me that
turbulence referees tend to exert a frictional drag on the
process of publishing papers. Many of them give the impression



of not wanting the pure pool of ignorance to be spoiled by any
new understanding or knowledge.
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