
“The RKO turbulent cascade.”
“The RKO turbulent cascade.”

I knew that it had been a while since I last posted, but it
was quite a shock to see that I’ve only posted once this year.
Partly, this is because it is difficult to break out from my
commitment to working on the book (see previous blog), but
another factor is the fear that I might already have posted on
the same topic. And given how many blogs that I have now
posted over the last few years, it can be quite daunting to
carry out a check in order to make sure that I’m not repeating
myself, as it were.

In recent years, I’ve often seen article titles that refer to
“Kolmogorov”  Cascades.  I  find  this  strange  because  the
original idea was due to Richardson, and was acknowledged by
Kolmogorov in 1962, although not in his original works of
1941. The plural of cascade also seems rather strange, in view
of the fact that there is supposed to be only one mechanism
and that this leads to universal behaviour.

The actual term “cascade” was first used in 1945 by Onsager,
who  developed  the  idea;  and  who  formulated  it  in  a  more
quantitative way by working in spectral wavenumber space. This
work has been enormously influential in the statistical theory
community, although curiously never acknowledged as being due
to Onsager. It is invariably attributed to Kolmogorov. It was
used as a formal concept and credited to Onsager by Corrsin
[1] in 1964, in an application to engineering modelling. It
was not until 2006 that the review by Eyink and Sreenivasan
[2] brought it to the general attention of the turbulence
community.

I think that it should be called the Richardson-Kolmogorov-
Onsager cascade, but that seems rather a mouthful. Perhaps we
should call it the RKO Cascade? There was once a major film
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production  company  of  that  name,  in  the  golden  age  of
Hollywood. But it now seems to be more or less forgotten. And
when I googled the name, it seemed only to be used by a
professional wrestler in the USA. So, I think we could safely
use it.

[1] S. Corrsin. Further Generalization of Onsager’s Cascade
Model for Turbulent Spectra. Phys. Fluids, 7:1156–1159, 1964.
[2] G. L. Eyink and K. R. Sreenivasan. Onsager and the Theory
of Hydrodynamic Turbulence. Rev. Mod. Phys., 87:78, 2006.

Energy  transfer  and
dissipation  in  isotropic
turbulence:  a  unified,
quantitative treatment of the
energy cascade.
 This may seem a rather grandiose title for a blog, even if it
is the first blog of the year! However, it is in fact the
title of my new book, for which I have a contractual deadline
of 30th of September. In other words, not much time to post
blogs!

Despite this, I still hope to post the occasional short blog
on  matters  that  arise  while  I  am  writing  the  book.  For
instance, there is the use of the word ‘unified’ in the title.
What  exactly  does  this  mean?  Well,  it  means  quite  simply
giving parallel treatments of various matters in both physical
space and wave number space.
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Somewhat surprisingly, when my book proposal was sent out for
review, all four anonymous reviewers welcomed this particular
aspect. I say surprisingly because of the many people who
study  turbulence  a  large  proportion  prefers  to  work  in
physical space. Indeed, their reactions to the use of wave
number space can range from distaste and incomprehension to
outright hostility: see my blog of 20th February 2020 for a
discussion of this.

Of course the virtues of using integral transforms to replace
differentials by multipliers are well known. But, as one of
the reviewers pointed out, the use of Fourier transformation
with respect to wave number is necessary in order to reveal,
and to exploit, underlying symmetries.

An  important  example  of  this  arises  from  a  comparison  of
Kolmogorov’s 1941 theory in physical space with Onsager’s 1947
theory in wave number space. The first of these, despite its
great importance, is rather imprecise and contains internal
inconsistencies. In contrast Onsager’s theory relies on scale
invariance  and  is  more  quantitative  in  nature.  This  is
something that will receive a fuller treatment in the book.

A  postscript  on  degrees  of
freedom  necessary  for  a
turbulence calculation.
A postscript on degrees of freedom necessary for a turbulence
calculation.

In the preceding post, we discussed the new method that has
been  a  proposed  by  Donzis  and  Sajeev  which  reduces  the
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computational effort but still retains all the degrees of
freedom [1]. In this method, all the degrees of freedom are
divided at the time step $t=t_n$ into resolved modes, which
are integrated forward in time to $ t=t_{n+1}$ using the NSE;
and unresolved modes which are assumed not to change at that
time  step.  The  resolved  modes  are  selected  by  a  random
sampling process which is carried out at each time step. In
this way, the total number of degrees of freedom remains the
same, but those actually being computed differ from one time
step to another. This has the great advantage, compared to
other methods, of apparently being able to correctly retain
the  initial  value  of  the  total  energy.  However,  some
qualification of this point needs to be made, as follows.

Consider the total energy $E(t_n)$ at time $t_n$, which is
given  by  \begin{equation}E(t_n)=\frac{1}{2}\sum_{k=0}^N
\langle  u^2(k,t_n)\rangle,  \end{equation}where  $N$  is  the
total number of wavenumber modes or degrees of freedom. (Note
that in numerical simulation, the symbol $N$ is used for the
number of resolved modes in one direction, with $N^3$ being
used for the total number of resolved modes being simulated.)
For a forced, stationary simulation of the NSE, the total
energy tends to fluctuate about a mean value as time goes on:
see  Figure  3  in  Reference  [2],  despite  the  fact  that  in
principle it should be constant. This behaviour is presumably
due to rounding errors.

However,  in  the  Donzis-Sajeev  proposal,  there  may  be  an
additional cause of fluctuation. At time $t=t_n$ they divide
the total number of modes up into resolved modes, which are
obtained  by  integrating  the  NSE  forward  in  time  to
$t=t_{n+1}$, and are denoted by $k_r$; and unresolved modes
which are kept at the same value and are denoted by $k_u$. The
corresponding  numbers  of  modes  are  $n(k_r)$  and  $n(k_u)$,
which add up to the total number $n(k_t)=N$. At the time
$t=t_{n+1}$ the expression for the total energy should be
decomposed  into  two  parts:



\begin{equation}E(t_{n+1})=\frac{1}{2}\sum_{k\in
\{k_r\}}^{n(k_r)}  \langle  u^2(k,t_{n+1})\rangle
+\frac{1}{2}\sum_{k\in  \{k_u\}}^{n(k_u)}  \langle
u^2(k,t_n)\rangle . \end{equation} As the first term on the
right belongs to the sub-ensemble of the resolved modes and
the second term belongs to the sub-ensemble of the unresolved
modes, there is no a priori reason that $E(t_n)$ should be
equal to $E(t_{n+1})$. It would be interesting to see how the
behaviour of the total energy would compare with that of the
equivalent full simulation.

This will be my last post before the holidays. I hope to
resume in January 2025.

[1] Diego Donzis and Shilpa Sajeev. Degrees of freedom and the
dynamics  of  fully  developed  turbulence.  Physical  Review
Fluids, 9:044605–1–11, 2024.
[2] W. D. McComb, A. Hunter, and C. Johnston. Conditional
mode-elimination  and  the  subgrid-modelling  problem  for
isotropic turbulence. Phys. Fluids, 13:2030, 2001.

How can we reduce the number
of  degrees  of  freedom
necessary  for  a  turbulence
calculation?
How can we reduce the number of degrees of freedom necessary
for a turbulence calculation?
This question first arose in the 1960s with attempts to do
meteorological  simulations.  The  response  was  Large  Eddy
Simulation (LES), with its associated sub-grid modelling. A
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short introduction to this topic can be found in section 3.1
of the book [1] with a longer treatment in chapter 10 of the
same reference. A more fundamental approach was introduced
with the work of Kraichnan [2] in 1976 who applied his test
field model to calculate an effective viscosity to represent
the sub-grid flux in isotropic turbulence. This resulted in
the  well-known  ‘plateau  and  peak’  form;  but,  having  been
derived from a statistical theory, it could not represent the
phase effects of the random velocity field.

In a series of papers, beginning in 1990, McComb, Roberts and
Watt introduced the iterative conditional averaging method to
calculate a sub-grid viscosity for isotropic turbulence [3–5].
This  method  is  the  only  use  of  the  renormalization  group
algorithm  that  takes  account  of  the  differences  between
classical fluid turbulence and quantum field theory or the
theory of critical phenomena. The resulting sub-grid viscosity
takes good account of the inertial energy transfer to the sub-
grid modes but does not fully represent the phase effects.

Lastly, the operational method of Young and McComb [6,7] used
a feedback loop to modify the velocity field to ensure the
correct monotonic decline of the energy spectrum. Good results
are obtained, and phase effects are fully taken into account.

However, none of these methods retains all the degrees of
freedom.  For  isotropic  turbulence,  these  are  the  Fourier
components of the velocity field, and referring to [1] page
113,  we  have:  \begin{equation}E=\frac{1}{2}\sum_{k=0}^N
\langle  u^2(k)\rangle,\end{equation}where  $E$  is  the  total
kinetic energy per unit mass of the turbulence. The total
number of degrees of freedom $N$ can be shown to depend on the
Reynolds  number  to  the  power  of  $9/4$,  and  so  increases
rapidly  with  increasing  Reynolds  number.  Accordingly,  the
price one pays for reducing the number of degrees of freedom
while still representing the dissipation rate correctly means
that in principle and practice there must be some reduction of
the  total  kinetic  energy.  This  may  not  be  too  serious  a



matter: see the figure 2 in reference [8]. Here we see that
the maximum resolved wavenumber must be greater than $1.5k_d$,
where $k_d$ is the Kolmogorov dissipation wavenumber; whereas
the total energy may be represented with a maximum resolved
wave number of less then $0.5k_d$. It should be noted that
this  graph  is  based  on  a  particular  model  spectrum,  but
similar results would be achieved with other model spectra or
indeed with the results of numerical simulation.

This year a new method has been a proposed by Donzis and
Sanjeev  which  reduces  the  computational  effort  but  still
retains all the degrees of freedom [9]. In this method, all
the degrees of freedom are divided at the time step $t=t_n$
into resolved modes, which are integrated forward in time to $
t=t_{n+1}$  using  the  NSE;  and  unresolved  modes  which  are
assumed not to change at that time step. The resolved modes
are selected by a random sampling process which is carried out
at each time step. In this way, the total number of degrees of
freedom remains the same, but those actually being computed
differ  from  one  time  step  to  another.  The  method  was
investigated  for  two  different  sampling  criteria  and  for
different  fractions  of  the  total  number  of  modes  being
resolved, ranging from 10% to 100% (corresponding to full
simulation),  with  impressive  qualitative  and  quantitative
results for energy spectra, dissipation rate, skewness and so
on.  This  seems  to  be  a  promising  method  of  numerical
simulation, but also promises to shed light on the nature of
turbulence.

[1] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[2]  R.  H.  Kraichnan.  Eddy-viscosity  in  two  and  three
dimensions.  J.  Atmos.Sci.,  33:1521,  1976.
[3]  W.  D.  McComb  and  A.  G.  Watt.  Conditional  averaging
procedure for the elimination of the small-scale modes from
incompressible  fluid  turbulence  at  high  Reynolds  numbers.
Phys. Rev. Lett., 65(26):3281–3284, 1990.



[4] W. D. McComb, W. Roberts, and A. G. Watt. Conditional-
averaging  procedure  for  problems  with  mode-mode  coupling.
Phys. Rev. A, 45(6):3507–3515, 1992.
[5]  W.  D.  McComb  and  A.  G.  Watt.  Two-field  theory  of
incompressible-fluid  turbulence.  Phys.  Rev.  A,
46(8):4797–4812,  1992.
[6] W. D. McComb and A. J. Young. Explicit-Scales Projections
of  the  Partitioned  Nonlinear  Term  in  Direct  Numerical
Simulation  of  the  Navier-Stoke  Equation.  Presented  at  2nd
Monte Verita Colloquium on Fundamental Prob-lematic Issues in
Turbulence: available at ArXiV:physics/9806029 v1, 1998.
[7] A. J. Young and W. D. McComb. Effective viscosity due to
local turbulence interactions near the cutoff wavenumber in a
constrained  numerical  simulation.  J.  Phys.  A,  33:133–139,
2000.
[8] W. D. McComb, A. Hunter, and C. Johnston. Conditional
mode-elimination  and  the  subgrid-modelling  problem  for
isotropic turbulence. Phys. Fluids, 13:2030, 2001.
[9] Diego Donzis and Shilpa Sajeev. Degrees of freedom and the
dynamics  of  fully  developed  turbulence.  Physical  Review
Fluids, 9:044605–1–11, 2024.

Theory  versus  model:  what’s
the difference?
Theory versus model: what’s the difference?
A  consideration  of  this  point  inevitably  underlines  the
cultural chasms that exist within the turbulence community. It
was prompted by my consideration of turbulence phenomenology
in the preceding post, and in particular by the discussion
given in the book by Arkady Tsinober [1].
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He argued that the broad phenomenology of turbulence “includes
also  most  of  the  semiempirical  approaches  and  turbulence
modelling”. He added a footnote to this which refers to “this
enormous material” and cites ten books as an indication of the
material that he is omitting. There are two points that I
would like to make about this.

First, judging by the books he cites, he included in this
category  the  statistical  theories.  In  contrast,  I  think
inclusion  of  this  topic  violates  the  definition  of
phenomenology  as  being  a  substitute  for  a  satisfactory
statistical theory. I would also draw a distinction between
statistical theories which are an attempt at a fundamental
solution of the problem and models which are intended to give
numerical answers in practical situations.

Secondly, I am surprised by the use of the word “enormous”, as
I  believe  that  pure  theoretical  work  is  a  very  small
discipline indeed, and dwarfed by the enormous subject of
phenomenology.  As  regards  engineering  models  I  would  have
thought that was a small field too, but I may well be very
much out of date on this. However, these models may be seen as
expedients,  and  not  intended  primarily  to  increase  our
understanding of the subject. They do not seem to me to be
natural  candidates  for  inclusion  in  the  category  of
phenomenology.

Turning now to our initial question, the answer so far as
turbulence  is  concerned,  would  seem  to  be  the  following.
Theory involves general operations with a minimum of specific
assumptions.  Modelling  relies  on  more  specific  assumptions
with the introduction of one or more adjustable constants.
That is to say you have to complete a theoretical model by a
comparison with experiment in order to fix a value of the
constant. A very clear case was Kraichnan’s introduction of
the  test  field  model  where  in  contrast  to  his  direct
interaction  theories  he  had  introduced  a  specific
approximation along with an adjustable constant. Of course,



the distinction may be different in other fields, but this is
what it is for turbulence.

[1]  A.  Tsinober.  An  Informal  Conceptual  Introduction  to
Turbulence. Springer, Dordrecht, 2nd edition, 2009.

 

What  is  turbulence
phenomenology?
What is turbulence phenomenology?

I was quite disconcerted to see that my last post had been at
the end of July, just before I took my summer break. However,
I’ve been busy planning a new book on the phenomenology of
isotropic  turbulence.  This  term  now  seems  to  be  in  quite
general use, extending back over the last couple of decades,
so it would be worth considering what exactly it means.

If  we  go  back  to  sources,  phenomenology  seems  to  have
originated  in  mathematics  and  then  been  taken  over  by
philosophy. It appears to have found its main applications in
philosophy and sociology. A basic characteristic is that it is
an activity which avoids theorising or attempting to explain.
That is, it is an attitude of mind adopted when investigating
a field in which one is content to describe the field without
attempting to explain it. This actually is a good way of
approaching any new investigation. We need to establish the
facts,  uncontaminated  by  speculation  or  even  emotional
reactions. Such attitudes must underpin any effective legal-
judicial system.
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My  impression  is  that  nowadays  in  physics  what  is  called
phenomenology is in fact an attempt to explain things; largely
because  the  traditional  fundamental  theoretical  physics
approach  is  too  difficult.  This  seemed  to  me  to  be
particularly  so  in  particle  physics,  and  I  thought  it
appropriate to adopt it for turbulence. So, around the turn of
the millennium, I began using it in that sense in turbulence.
I also noted that others were using it, and I assumed that it
was  in  the  same  sense.  But  this  could  be  a  dangerous
assumption, so I was pleased to find out that the subject of
this usage had been discussed in the book by the late Arkady
Tsinober [1], where it appears as chapter 5.

Tsinober quotes various views on the subject and one clear
point  that  emerges  is  that  in  science  and  particularly
turbulence it is regarded as an inferior activity and spoken
of  in  a  disparaging  way.  This  is  not  surprising.  Many
turbulence  researchers  are  applied  mathematicians,  whose
ingrained approach is to solve mathematical equations subject
to  initial  and  boundary  conditions.  Unfortunately,  the
governing  equations  of  turbulent  motion  are  nonlinear  and
hence insoluble.

After  pointing  out  that  there  is  no  definition  of
phenomenology of turbulent flows, Tsinober puts forward two
views of his own. First, he suggests that it is a statement of
impotence, consisting of everything but direct experimental
results  and  any  results  that  can  be  obtained  from  first
principles.  As  an  example  of  the  latter,  he  cites  the
(presumably)  derivation  of  the  Navier-Stokes  equations.  At
first  sight  this  seems  reasonable  because  to  a  physicist
experiment  provides  the  foundation  of  a  subject.  However,
second  thoughts  suggest  that  the  vast  and  diverse  set  of
experimental results in turbulence are not really foundational
in character. Thus, I would be inclined to class them as part
of the phenomenology.

His second point of view is:



“Phenomenology  of  turbulence  involves  use  of  dimensional
analysis, a variety of scale arguments, symmetry, invariant
properties, and various assumptions, some of which are of
unknown  validity  and  obscure  physical  and  mathematical
justification (if any).”

I would agree with that. Broadly the motive for this activity
is to increase understanding. Where I differ from him is his
inclusion of semiempirical approaches and turbulence modelling
and above all with his blurring of the distinction between
theory and modelling. I will discuss this in my next post.

[1]  A.  Tsinober.  An  Informal  Conceptual  Introduction  to
Turbulence. Springer, Dordrecht, 2nd edition, 2009.

 

The humble Table of Contents.
The humble Table of Contents.

With my holiday approaching, I thought it would be pleasant to
talk about something less demanding, and which involved zero
LaTeXing. So, I thought that I would speak up for the Table of
Contents being included in journal articles. Of course its
inclusion is commonplace in books, and one couldn’t imagine a
textbook or monograph being without one.

At one time it was quite usual in journal articles too, and
Bob  Kraichnan’s  pioneering  paper,  presenting  the  direct-
interaction approximation, in the Journal of Fluid Mechanics
in 1959 was a case in point [1]. In fact I have normally put
in a table of contents in submitted manuscripts for many years
now, and it can easily be removed once the paper has been
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accepted for publication. Some years back, I submitted a paper
thus equipped to the JFM; and, still trying not to move with
the times, I tried to avoid the web submission method and sent
it as a pdf attachment in an email to an editor. His shocked
reaction  seemed  not  unlike  that  of  a  maiden  lady  in  a
Victorian  novel  encountering  some  coarse  language.  His
complaints ended up with: ‘and you have even put an index in
it!’

Well,  I  removed  the  ‘\toc’  command  and  submitted  the  MS
through the website. However, worse was to come and the paper
ultimately  went  elsewhere.  The  resulting  transaction  came
under the heading of what someone has called ‘The combination
of lazy editor and biased referees which plagues turbulence
research’. Actually, I don’t think ‘lazy’ is quite the right
word. Perhaps something like ‘conformist’ would be better?

Returning to the present time, my recent experiences as Guest
Editor have made me aware of just how useful a table of
contents  is  when  one  is  assessing  a  new  manuscript,
particularly  when  it  is  a  review  article.  Indeed,  even
recently,  certain  review  journals  did  require  a  list  of
contents for each article. For example, see reference [2].

So I wish to conclude with a plea. At least put a temporary
table of contents in in your preprints and submissions. And,
if we can persuade editors to allow them in the journals,
rather than draw their skirts aside, then it should improve
communication by making it easier for us all to get to grips
with each other’s work.

This is my last post for the moment. I hope to resume in
September.

References.
[1] R. H. Kraichnan. The structure of isotropic turbulence at
very high Reynolds numbers. J. Fluid Mech., 5:497-543, 1959.
[2] W. D. McComb. Theory of turbulence. Rep. Prog. Phys.,



58:1117-1206, 1995.

 

An  assessment  of  Onsager’s
concept of scale invariance:
3
An assessment of Onsager’s concept of scale invariance: 3

I  will  complete  this  sequence  of  posts  by  discussing  the
scale-invariance paradox and showing how the Onsager criterion
for the inertial range should be modified in order to resolve
it.

We begin by noting that the first measurement of the transfer
spectrum was made in 1963 by Uberoi, who measured the time-
derivative  and  the  viscous  dissipation  terms  in  the  Lin
equation and obtained the transfer spectrum as the remaining
term in that equation [1]. He was surprised to find that
$T(k,t)$ had a single zero crossing when he had expected that
it  would  be  zero  over  an  extended  range  of  wavenumbers,
corresponding by simple calculus to an extended region of
scale-invariant  flux.  He  attributed  this  failure  to  the
Reynolds number being too low. However, over the following
years it became clear the transfer spectrum only ever has a
single zero-crossing at even the highest Reynolds numbers, and
so the scale-invariance paradox was born. A fuller account of
this topic can be found in the article [2] or the book [3].
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Sketch of the energy balance in the Lin equation.

The behaviour of the terms in the Lin equation is illustrated
schematically in the figure. Note that the input term is $I(k)
=- dE(k,t)/dt$ in this case, whereas if we were considering
stationary turbulence it would be the rate of work done by the
stirring forces. Further discussion of these points can be
found in [3].

It is of interest to note that we can use simple mathematical
reasoning to make two general observations from this figure.
First, it could have been anticipated that $T(k)$ would only
have a single zero-crossing at $k=k_{*}$. Evidently if the
input term decreases monotonically as the inertial range is
approached from below, while the dissipation spectrum also
decreases monotonically as the inertial range is approached
from above, then where these two terms are equal at $k=k_{*}$
(say) we must have the single zero of $T(k)$.

Secondly, from equation (9) in the first post in this sequence
(on  27  June),  we  may  infer  from  general  conditions  of



smoothness corresponding to physical behaviour, that the flux
must  go  through  a  maximum  value  at  $k=k_{*}$.  Thus  the
conclusion of Shanmugasundaram [4] from detailed computations
of the LET theory could also have been anticipated.

Let  us  now  consider  the  Onsager  criterion  in  rather  more
detail and apply it to the interval $0\leq k \leq k_{*} $. We
may  write  this  in  terms  of  the  spectral  density  function
$S(k,j)$  as:
\begin{equation}\Pi(k_{*})=\int_0^{k_*}T(k)dk=\int_0^{k_*}dk\l
eft[\int_0^\infty dj S(k,j)\right].\end{equation}We may then
divide up the range of integration over $j$ at $j=k_{*}$ to
obtain:\begin{equation}\Pi(k_{*})=\int_0^{k_{*}}dk=\int_0^{k_{
*}}dk\left[\int_0^{k_{*}}  dj\,S(k,j)+\int_{k_{*}}^\infty
dj\,S(k,j)\right].\end{equation}From  the  antisymmetry  of
$S(k,j)$ under the interchange of $k$ and $j$, it follows that
the first term in the square brackets gives zero and we are
left  with:
\begin{equation}\Pi(k_{*})=\int_0^{k_{*}}dk\int_{k_{*}}^\infty
dj\,S(k,j)\equiv  \int_0^{k_{*}}dk  T^{-
+}(k|k_{*}),\end{equation}  where  we  have  introduced  the
filtered-partitioned form of the spectral transfer function
$T^{-+}(k|k_{*})$.

Further details of these filtered-partitioned forms may be
found in [2], where some results are cited which suggest that
this  procedure  may  resolve  the  scale-invariance  paradox.
However our main conclusion here is that it is necessary to
introduce such forms, rather than just use $T(k)$, in order to
understand results such as [3] and [4], particularly if we are
to disentangle the effects of scaling on the Kolmogorov length
versus the Taylor microscale.
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For many years, arising from Onsager’s observation in 1945
[1], the condition $\Pi_{max} = \varepsilon$ for a range of
wavenumbers $k_{bot}\leq k \leq k_{top}$ has been seen as a
criterion for the existence of an inertial range, and hence
for the Kolmogorov $-5/3$ spectrum holding over that range. It
has been a cornerstone of both statistical theories and direct
numerical simulations of the Navier-Stokes equation. Thus, it
is surprising that it has been subject to very little critical
assessment. The picture established in many investigations is
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of  the  flux  tending  to  a  constant  value,  along  with  an
increasing extent of the $k^{-5/3}$ spectrum, as the Reynolds
number is increased.

However, a numerical investigation by Shanmugasundaram, which
was based on the Local Energy Transfer (LET) theory [2], does
not seem to support this conventional picture, which amounts
to scale-invariance of the energy flux. For Taylor-Reynolds
numbers $4.7\leq R_{\lambda} \leq 254$, the energy flux $\Pi$
was found to take the peaked form predictable from the general
behavioural arguments given in our previous post, with the
peak occurring at $k=k_\star$; while, as the Reynolds number
increases, the energy spectrum tends to the $-5/3$ form.

For the particular case of $R_{\lambda} = 254$, the energy
spectrum  in  their  Fig.  3  shows  at  least  a  decade  of
$k^{-5/3}$, as one would expect at that value of the Taylor-
Reynolds number. Whereas, from their Fig. 6 we see that the
energy flux, corresponding to the energy balance in the upper
panel  of  the  figure,  takes  the  form  of  a  peak,  with
$\Pi_{max}/\varepsilon$ lying between 0.70 and 0.80, rather
than the value of unity that Onsager suggested.

This  would  seem  to  be  a  good  example  of  what  prompted
Kraichnan’s  comment  [3]:  `Kolmogorov’s  1941  theory  has
achieved an embarrassment of success.’ In other words, despite
the underlying conditions not apparently being satisfied, the
$-5/3$ spectrum was still observed.

More recently, Meldi and Vassilicos [4] used the single-time
EDQNM  closure  and,  over  a  much  greater  range  of  Reynolds
numbers, also found a small maximum in the inertial flux. They
showed that the position of this maximum in wavenumber scaled
on the Taylor micro length scale. Elementary calculus would
then  imply  that  the  position  of  the  single  zero  of  the
transfer spectrum also depended on the Taylor microscale and
the authors confirmed that this was the case [5].



In the next post we shall argue that both these investigations
were  incorrect  in  using  the  flux  $\Pi(k)$.  Instead,  they
should have used the non-conservative part of the flux $\Pi^{-
+}(k  |  k_{*})$  and  the  corresponding  transfer  spectrum:
\begin{equation}T^{-+}(k|k_{*})=\int_{k_{*}}^\infty\,dj  S(k,j)
\quad \mbox{for} \quad 0\leq k \leq k_{*},\end{equation} as
introduced by McComb [6] in the course of resolving the scale-
invariance paradox.
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We stated Onsager’s criterion [1] for an inertial range in
terms of a scale-invariant flux as equation (4) in our post of
24 June 2024. In order to assess Onsager’s concept, we begin
by  considering  the  Lin  equation  in  terms  of  the  energy
spectrum $E(k,t)$ and the transfer spectrum $T(k,t)$. We may
write  it  in  its  well-known  form:  \begin{equation}\frac{d
E(k,t)}{dt}  =  T(k,t)  –  2\nu  k^2E(k,t)  \equiv  T(k,t)  –
D(k,t),\label{lin}\end{equation}where $D(k,t)$ is the energy
dissipation spectrum, as given by $D(k,t) = 2\nu k^{2}E(k,t)$.
Here, we assume that there are no forces acting. We may also
express the transfer spectrum in terms of its spectral density
$S(k,j;t)$ thus: \begin{equation} T(k,t) = \int_0^\infty\, dj
\,S(k,j;t),\quad  \mbox{where}  \quad  S(k,j;t)  =  -
S(j,k;t);\label{Tdef}\end{equation}and $S(k,j;t)$ contains the
triple moment in wavenumber space: see [2]. Note that the
antisymmetry of $S(k,j;t)$ under the interchange of $k$ and
$j$ guarantees that conservation of energy is maintained in
the form $\int_0^\infty\, dk T(k) = 0$. When we substitute for
$T(k)$ in terms of $S(k,j;t)$, we obtain the second form of
the Lin equation.

If we write it in this, its full form, the Lin equation, tells
us that all the Fourier modes are coupled to each other. It
is, in the language of physics, an example of the many-body
problem. It is in fact highly non-local, as in principle it
couples every mode to every other mode. A corollary of this is
that it predicts an energy cascade. This can be deduced from
the nonlinear term which couples all modes together plus the
presence of the viscous term which is symmetry-breaking. If
the viscous term were set equal to zero, then the coupled but
inviscid equation would yield equipartition states.

https://blogs.ed.ac.uk/physics-of-turbulence/2024/06/27/an-assessment-of-onsagers-concept-of-scale-invariance-1/
https://blogs.ed.ac.uk/physics-of-turbulence/2024/06/27/an-assessment-of-onsagers-concept-of-scale-invariance-1/


We may consider the transfer of energy from wavenumbers less
than $\kappa$ to wavenumbers greater than $\kappa$. To do
this, we integrate the terms of the Lin equation from $k=0$ to
an  arbitarily  chosen  $k=\kappa$,  with  the
result:\begin{eqnarray}\frac{d}{dt}\int^{\kappa}_{0}dk  E(k,t)
&  =  &\int_{0}^{\kappa}dk\int^{\infty}_{0}dj  S(k,j;t)-
\int^{\kappa}_{0}dk  D(k,t)  \nonumber  \\&  =  &
\int_{0}^{\kappa}dk\int^{\infty}_{\kappa}dj  S(k,j;t)-
\int^{\kappa}_{0}dk  D(k,t),\label{linint}\end{eqnarray}where
the second form of the right hand side relies on the fact that
the double integral over $ 0\leq k,j \leq \kappa $ vanishes
due to the antisymmetry of $S(k,j;t)$. Evidently this equation
tells  us  that  the  loss  of  energy  from  modes  with  $k\leq
\kappa$ is due to transfer to modes with $k\geq \kappa$, as
well as the direct loss to dissipation.

In order to consider the inertial transfer further, we first
introduce the symbol $E_{\kappa}(t)$ for the amount of energy
contained  in  modes  $0\leq  k  \leq  \kappa$,
thus:\begin{equation}\frac{d}{dt}E_{\kappa}(t)  =
\frac{d}{dt}\int^{\kappa}_{0}dk  E(k,t).\end{equation}We  then
introduce  the  symbol  $\Pi(\kappa,t)$,  defined
by:\begin{equation}\Pi(\kappa,t)  =  \int^{\infty}_{\kappa}dk
T(k,t)  =  -\int^{\kappa}_{0}dk
T(k,t)\label{Pidef}\end{equation}which  represents  the  flux
through  mode  $k=\kappa$;  and,  in  terms  of  the  transfer
spectral  density,\begin{equation}  \Pi(\kappa,t)  =
\int^{\infty}_{\kappa}dk\int^{\kappa}_{0}dj\,S(k,j;t)  =  -
\int^{\kappa}_{0}dk\int^{\infty}_{\kappa}dj\,
S(k,j;t).\end{equation}
Accordingly,  we  may  write  the  partially  integrated  Lin
equation  (\ref{linint})
as:\begin{equation}\frac{d}{dt}E_{\kappa}(t)  =  -\Pi(\kappa,t)
–  \int^{\kappa}_{0}dk\,D(k,t).\end{equation}Thus,  the  energy
contained in modes $0\leq k \leq \kappa$ is lost partly to
direct  viscous  dissipation  and  partly  due  to  transfer  to
higher-wavenumber modes.This is the only concept of localness



which is required for the Richardson-Kolmogorov picture in
wavenumber space (K41).

This analysis holds for any wavenumber $k=\kappa$, but the
most important case occurs at $\kappa =k_{*}$, which is the
wavenumber where $T(k,t)$ has its single zero-crossing. As is
well  known,  the  zeros  of  the  transfer  spectrum  are  given
by:\begin{equation}T(0,t)  =0;\qquad  T(k_{*},t)=0;  \quad
\mbox{and}  \quad  \lim_{k  \to  \infty}  T(k,t)=0:
\end{equation}while, by simple calculus, the behaviour of the
energy flux is given by: \begin{equation}\Pi(0,t) =0;\qquad
\Pi(k_{*},t)=\Pi_{max};  \quad  \mbox{and}  \quad  \lim_{k  \to
\infty} \Pi(k,t)=0.\end{equation}
It follows from conservation of energy that the maximum value
that $\Pi_{max}$ can take is the rate of viscous dissipation,
thus we have the general result:\begin{equation}\Pi_{max} \leq
\varepsilon;\end{equation}where  the  equality  applies  if  the
local viscous dissipation can be neglected at $k=k_{*}$.

In our next post, we will take a more critical look at this
criterion.
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In his 1964 paper, Corrsin [1] explained Onsager’s theory in a
more up to date notation. We will build on that treatment
here,  but  we  shall  use  an  even  more  modern  notation.  In
particular, we will use $E(k)$ for the energy spectrum and
$\varepsilon$ for the dissipation rate.

In general, energy flows from small wavenumbers to large, and
Corrsin  noted  that  Onsager  envisaged  this  cascade  as
proceeding stepwise, with the sequence of wavenumbers involved
taking the form of a geometric progression. He had chosen this
to be wavenumber doubling at each step, with the implication
that the step length was $\Delta k = k$. Arguably the amount
of energy transferred at each step is: \begin{equation}\Delta
E = \Delta k E(k)= kE(k)\end{equation}

Representing the flux of energy through wavenumber $k$ by
$\Pi(k)$, we may write an approximate expression for it as:
\begin{equation}\Pi(k) \sim kE(k)/\tau(k),\end{equation} where
$\tau(k)$ is an appropriate characteristic time for energy
transfer through mode $k$.

We now concentrate on the inertial range and note that as the
cascade is conservative and there is no significant loss of
energy to viscous dissipation in this range, we may write:
\begin{equation}d\Pi/dk =0, \end{equation} with the integral
result: \begin{equation}\Pi = \varepsilon.\end{equation} This
means that the energy flux is independent of wavenumber in the
inertial  range.  Nowadays,  this  is  referred  to  as  `scale-
invariance’ of the energy flux in the inertial range and is
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widely used as a criterion for the presence of an inertial
range. It is a very important concept and we shall subject it
to critical scrutiny in later posts. For the moment, we will
concentrate on showing how it leads to the $-5/3$ wavenumber
spectrum in Onsager’s theory.

In order to make progress, we introduce a characteristic time
for  energy  transfer  through  mode  $k$,  which  we  denote  by
$\tau(k)$. From a simple dimensional argument, this is taken
to  be:  \begin{equation}\tau(k)=
\left[k^3E(k)\right]^{-1/2}.\end{equation} Then we substitute
(5) into (4) and impose the invariance condition given by (4),
to obtain for the energy spectrum: \begin{equation}E(k)=\alpha
\varepsilon^{2/3}k^{-5/3},\end{equation}  where  the  prefactor
$\alpha$ is the well known Kolmogorov constant.

The introduction of the characteristic time $\tau(k)$ seems to
be  analogous  to  the  renormalised  inverse  modal  lifetime
$\omega(k)$ which arises in the Edwards self-consistent field
theory [2]. If we assume that one is the inverse of the other,
then the substitution of the Kolmogorov spectrum, as given by
(6), into (5) for the characteristic time yields:
\begin{equation}\omega(k)  =
\frac{1}{\tau(k)}=\alpha^{1/2}\varepsilon^{1/3}k^{2/3},\end{eq
uation} in agreement with the Edwards result.

It is worth noting that the power-law form of the energy
spectrum is not so much an additional assumption, as it was in
Kolmogorov’s  earlier  theory,  as  a  natural  consequence  of
scale-invariance because it is a scale-invariant form.
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Returning to this topic after my holiday, I will focus on
Onsager’s 1945 abstract [1]. This is brief to the point of
being cryptic and requires exegesis, but we shall defer that
to the next post. For the moment we will concentrate on its
relationship to Kolmogorov K41A [2].

As  we  mentioned  earlier,  this  fragment  of  Onsager’s  work
introduced the term `cascade’ as his interpretation of the
Richardson-Kolmogorov  picture  of  the  nonlinear  transfer  of
energy from large scales to small. Or, as he worked with
wavenumber $k$, the energy cascade is from small wavenumbers
to  large,  where  it  is  terminated  by  the  action  of  the
viscosity. We shall not enlarge on that here, but merely note
that  he  states  that  dimensional  analysis  leads  to  the
expression  for  the  spectral  density  \begin{equation}C(k)  =
\frac{E(k)}{4\pi  k^2}  =  ({\mbox{universal
factor}})\varepsilon^{2/3}k^{-11/3},\end{equation}  where  the
`universal factor’ equals the Kolmogorov constant divided by
$4\pi$. The $-11/3$ power law may seem unfamiliar to most
people who will be used to the $-5/3$ form, but in statistical
theory it is usual to work with the spectral density $C(k)$.
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Onsager also pointed out that the corresponding correlation
function  takes  the  form  \begin{equation}f(r)=1-
(\mbox{constant})r^{2/3}.\end{equation}  The  term
`corresponding’ refers to Fourier transformation of equation
(1). Note that, as well as modernising the notation, I have
taken  the  correlation  function  to  be  the  `longitudinal
correlation function’. The relationship between $f(r)$ and the
energy spectrum can be found as equation (2.91) in the book
[3].

Bearing in mind that Kolmogorov worked with the structure
functions, equation (2) is just his result with the factor
$\varepsilon^{2/3}$  absorbed  into  the  constant.  In  other
words, we can derive Kolmogorov’s result for the second-order
structure function by Fourier transforming Onsager’s result,
and I shall argue in later posts that that is the fundamental
derivation.

However, the argument works both ways, and we can argue that
the $-5/3$ law for the spectrum can be derived trivially by
Fourier  transformation  of  Kolmogorov  K41A  for  $S_2(r)$.
Accordingly it is appropriate to refer to it as the Kolmogorov
spectrum.
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Before we discuss Onsager’s contribution, it will be helpful
to first make some observations
about Kolmogorov’s derivation of the $r^{2/3} $ law for the
second-order  structure  function  in  the  inertial  range  of
scales $r$ [1]. This is sometimes referrred to as K41A and
there are many treatments of it (e.g. see the book [2]) so we
will not reproduce the details here. Instead, we will attempt
to highlight aspects of it, when it is judged in the context
of its pioneering status. What I mean by this will quickly
emerge.

First  of  all,  Kolmogorov  envisaged  the  effect  of  the
nonlinearity in terms of Richardson’s pictorial view of eddies
being created at ever smaller scales until the smallest eddies
are damped by viscosity (see page 11 of the book [2]). Of
course, Kolmogorov did not acknowledge this at the time, but
he  subsequently  did  so  in  his  1962  paper  [3].  He  then
introduced the idea, familiar in statistical physics, that a
stepwise stochastic process with decreasing scale, could lead
to  a  range  of  scales  in  which  average  properties  were
independent  of  the  conditions  of  formation.  Among  other
things, he also introduced the ideas of local isotropy and
local stationarity; but although these are of considerable
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importance, for a purely theoretical look at the problem, we
will restrict our attention for the moment, to fields that are
both isotropic and stationary.

Now, we are dealing with a model in which the basic entities –
Richardson’s `whirls’ – are not well defined. Hence, different
people have different ideas of what types of eddies may be
involved. Accordingly, we should examine just how sensitive
the measurement of the structure functions is to the form
assumed for the eddies making up the turbulent field. Let us
consider  an  experiment  where  an  anemometer  measures  the
instantaneous velocity $u(x; t)$ at points $x = 0$ and $x =
r$, and we take the difference between these values $\Delta
u(r;  t)  =  u(r;  t)  –  u(0;  t)$.  Trivially,  this  velocity
difference  $\Delta  u(r;  t)$  is  a  random  variable,  which
fluctuates rapidly about a zero mean. Note that its mean is
identically  zero  because  its  two  constituent  means  are
themselves zero.

Next, we consider the second-order moment of $\Delta u(r; t)$,
which we obtain by ensemble
average.  That  is,  labelling  a  single  realization  of  the
velocity field by a superscript $i$, we define the ensemble
average  by:  \begin{equation}S_2(r)  =  \lim_{N\rightarrow
\infty}
\frac{1}{N}\sum_{i=1}^N\left[\Delta^{\{I\}}u(r,t)\right]^2,\en
d{equation}  where  $S_2(r)$  is  the  second-order  structure
function of the velocity field. The value of $N$ has to be
determined empirically from a consideration of the limit.

It  should  be  clear  that  the  ensemble  average  involves  a
summation  over  many  random  phases  with  consequent
cancellations. Thus, dogmatic arguments about the form of the
`whirls’, particularly those arguments which seek to refute
the Richardson-Kolmogorov picture, have little place. To argue
otherwise is to give undue weight to the one particular eddy
structure that one is visualizing. Even so, when Kolmogorov
made the assumption that, for values of $r$ that are not too



large, the structure function can only depend on the variables
$r$, $\varepsilon$ and $\nu$, then that is just an assumption.

The next step, in obtaining the two-thirds law, is to argue
that, for very small values of $r$ and/or very large values of
the Reynolds number, the dependence on the viscosity can be
dropped.  This  is  an  empirical  matter,  as  it  involves
evaluating  the  appropriate  limits,  and
stems from the Navier-Stokes equation (NSE). While it is often
said that Kolmogorov’s result
does not stem from the NSE, in fact this particular step does.

The final step is to assume that the inertial-range structure
function takes the form of a power law and to use dimensional
analysis. Evidently, expressing the energy in terms of a rate
of change of energy with time necessarily brings in the two-
thirds power law. I emphasise that this step is an assumption
because in a later post I shall argue that the power-law may
have a different status in Onsager’s theory.

I am publishing this post a day earlier than usual, as I will
be going on holiday on Thursday. My hope is to carry on this
series of posts in early June.
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1
Onsager’s  (1945)  interpretation  of  Kolmogorov’s  (1941a)
theory: 1

It is a well known fact that as one gets older time speeds up!
This (apparent) reverse
time-dilation is something to be reckoned with once one has
passed `the big eight-oh’. So much so, that I was convinced
that I had posted blogs quite recently only to find that my
last post was in January of this year and that was my only
post so far this year. Obviously I have my excuses, such as
involvement with a special issue of the journal Atmosphere, as
mentioned  in  a  previous  post.  In  particular  I  have  been
preparing  some  potential  editorial  material  which  I  have
posted on the physics ArXiV, while I consider what to do with
it [1]. However, that work has stimulated various lines of
thought which have led to the present post. Or rather, what I
expect to be a series of posts.

My  thinking  on  this  goes  back  to  1999,  when  I  was  a
participant in the turbulence programme at the Isaac Newton
Institute. At one of our informal meetings, there was some
discussion  of  the  fact  that  Kolmogorov  had  not  actually
derived the eponymous -5/3 spectrum, but in fact the 2/3 power
law for the second-order structure function [2]. This may seem
a strange observation to make; but, from the 1950s onwards,
theorists had worked exclusively in terms of wavenumber space,
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and  the  test  of  a  successful  theory  was  its  ability  to
reproduce the Kolmogorov spectrum. By this stage there was a
growing awareness that Kolmogorov had not actually derived the
distribution that bears his name. Someone then asked who had
derived the -5/3 spectrum. It seemed that no one was quite
sure, but there was general agreement that it must have been
Obukhov, and there the matter rested.

Nevertheless,  this  did  not  seem  an  entirely  satisfactory
answer,  because  Obukhov’s  paper  [3],  although  in  spectral
space, introduced a turbulent effective viscosity, in order to
calculate the inertial-range spectrum. So that was something
that I wondered about. Then it turned out that the answer was
hiding in plain sight all the time.

In 1945, Onsager published an abstract [4], giving a brief
summary of his method, which identified the key importance the
inertial  flux  of  energy  through  wavenumber.  In  1949,  he
published  a  fuller  account  of  his  method,  in  which  he
introduced the idea of the energy transfer being a cascade
[5]. In 1964, Corrsin published an exegesis of this work, and
even used the term `Onsager’s model’ in his title [6]. A
noteworthy feature of this work is that it relied on the
introduction of a modal decay time, which was determined, like
the  energy  spectrum,  by  dimensional  analysis.  This  is  of
interest because of its relationship to the renormalization
methods being introduced by Kraichnan [7] and Edwards [8] at
much the same time.

We shall return to this point in later posts. For the moment,
we note that the work of Onsager was brought to a wider
audience by the 2006 review of Eyink and Sreenivasan [9],
which also pointed out that Onsager had introduced the term
`energy cascade’, as of course we all use today.
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Is it possible to achieve an
infinite Reynolds number?
Is it possible to achieve an infinite Reynolds number?
There  has  been  an  increasing  awareness  in  the  turbulence
community of the significance of finite-Reynolds-number (FRN)
effects,  corresponding  to  an  impression  that  Kolmogorov’s
theory requires an infinite Reynolds number. At the same time,
there  has  been  a  recent  growth  of  interest  in  Onsager’s
Conjecture, which is essentially taken to mean that turbulent
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dissipation is still present even when the Reynolds number is
infinite, and this is normally interpreted as being when the
fluid viscosity is zero. Oddly, there never seems to be any
mention of the word ‘limit’; and one detects a degree of
uncertainty  about  the  whole  matter,  with  typical  comments
like: ‘when the Reynolds number is infinite, or at least very
large’.

In order to examine this topic, we may begin by remarking that
the Newtonian fluids we study always have a finite viscosity.
Also, reducing the viscosity seems like an unlikely method of
increasing the Reynolds number. If we take pipe flow as an
example, the normal procedure is to increase the velocity of
the  fluid,  as  being  much  easier  than  increasing  the  pipe
diameter or decreasing the fluid viscosity. Nevertheless, the
idea of varying the viscosity has been around for a long time,
with Batchelor discussing the idea of taking the limit as $\nu
\rightarrow 0$, at a constant rate of dissipation. He argued
that this would push the effect of viscosity to an infinite
value of the wavenumber, i.e. $k=\infty$ [1]. Edwards took the
idea further; and, in order to test his statistical theory,
argued that the input (due to forces) and the output (due to
viscosity) could be represented by delta functions at $k=0$
and $k=\infty$, respectively [2]. However, both examples were
in the context of continuum mechanics and, most importantly,
involved the taking of limits. That is, the case of $\nu=0$ is
the Euler equation, and there is no dissipation. The case $\nu
\rightarrow 0$, such that dissipation is maintained constant,
involves a limiting process and is the Navier-Stokes equation
in the infinite Reynolds limit. It is not the Euler equation.

This procedure of taking the viscosity to tend to zero can
seem counter-intuitive; but an example that is even more so
can be found in microscopic physics, where the classical limit
can be obtained by letting Planck’s constant $h$ tend to zero.
This is definitely counter-intuitive: after all, $h$ is not
just a constant, it is a universal constant. The answer to



this is that we must be taking a limit where the quantum
levels  become  infinitesimally  small  in  comparison  to  the
energies involved in the macroscopic system.

We can apply the same idea to turbulence. For pipe flow, we
can  work  with  a  non-dimensional  viscosity  of  the  form
$\tilde{\nu}=\nu/U d$, where $U$ is the bulk mean velocity and
$d$ is the diameter of the pipe. Evidently increasing the
velocity is the equivalent of decreasing the scaled viscosity.
Moreover, as the scaled velocity is a pure number, concepts of
large and small are better defined.

The  idea  of  zero  scaled  viscosity  then  corresponds  to  an
infinite value of the velocity and clearly is not achievable.
So, in practice, zero scaled viscosity means that it is small
enough compared to other relevant quantities that it may be
neglected. The best way to do this, is to look for a limit.
That  is,  as  the  scaled  viscosity  tends  to  zero,  the
dissipation (say) tends asymptotically to a constant value.
When variations in the dissipation are too small to resolve,
either numerically or experimentally, we have in fact reached
a limiting value. This behaviour can be seen in the variation
of  dissipation  rate  with  increasing  Reynolds  number  in
reference [3].

[1] G. K. Batchelor. The theory of homogeneous turbulence.
Cambridge  University  Press,  Cambridge,  2nd  edition,  1971.
(First published 1953).
[2] S. F. Edwards. Turbulence in hydrodynamics and plasma
physics. In Proc. Int. Conf. on Plasma Physics, Trieste, page
595. IAEA, 1965.
[3] W. D. McComb, A. Berera, S. R. Yoffe, and M. F. Linkmann.
Energy  transfer  and  dissipation  in  forced  isotropic
turbulence.  Phys.  Rev.  E,  91:043013,  2015.

Postscript. This is my first post in some time because I have
been busy with acting as Guest Editor in a special edition of
Atmosphere. I hope to post frequently from now on. The link to



the journal is:
https://www.mdpi.com/journal/atmosphere/special_issues/FOH7AK5
UB1

 

 

Special Issue of the journal
Atmosphere  on  Isotropic
Turbulence.
Special  Issue  of  the  journal  Atmosphere  on  Isotropic
Turbulence.

It has been some time since I last posted, and the title of
this post suggests the main reason, as being a Guest Editor
has proved to be quite time consuming. Nevertheless, I have
agreed to be Guest Editor because, although I think it is a
rather  ambitious  project,  I  also  believe  that  it  is  very
timely.

The Special Issue has the subtitle Recent Advances and Current
Challenges, and further details can be found at the link:

https://www.mdpi.com/journal/atmosphere/special_issues/FOH7AK5
UB1

Our aim in this Special Issue is to publish papers which can
help to identify the most recent advances and what the current
challenges are. Hence, we are asking for submissions that have
both a pedagogical and a review perspective.
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At the moment, I am writing an Editorial to give an overview
of  the  subject  and  to  try  to  indicate  some  promising
candidates  for  being  regarded  as  significant  advances.
Equally, I hope to be able to suggest some topics which can be
classified as current challenges.

We already have six promised contributions and two have been
posted on the website as tentative titles; and I hope that
many more will contribute to this worthy attempt to clear up
some  long-standing  issues  in  the  study  of  isotropic
turbulence. The submission deadline is 29 February 2024. You
may  send  your  manuscript  now  or  up  until  the  deadline.
Submitted  papers  should  not  be  under  consideration  for
publication elsewhere. The journal also encourages authors to
send a short abstract or tentative title to the Editorial
Office in advance (atmosphere@mdpi.com). Further details of
how to submit to this Open Access journal may be found at the
link for the special issue.

If anyone would like to discuss their ideas for a possible
paper with me, I will be very happy to hear from them.
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Two-time correlations and temporal spectra: the analysis by
Tennekes [1].
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In this post we take a closer look at the analysis by Tennekes
[1] in which he differed from the earlier analysis of Tennekes
and Lumley [2] and concluded that large-scale sweeping is the
determining  factor  in  the  decorrelation  of  the  two-time
correlation in the inertial range. As noted in my post of 27
April 2023, this leads (rather confusingly) to a `$-5/3$’
power  law  for  the  Eulerian  temporal  spectrum,  when  the
Kolmogorov form is actually $n=-2$. His starting point is
equation (1) in [1], which may be written in our present
notation as: \begin{equation}\frac{\partial u_1}{\partial t}=-
\left(u_1\frac{\partial  u_1}{\partial  x_1}+u_2\frac{\partial
u_1}{\partial  x_2}+u_3\frac{\partial  u_1}{\partial
x_3}\right),\end{equation} and this is justified by assuming
that Taylor’s hypothesis of frozen convection applies.

The usual application of Taylor’s hyopothesis is to situations
where there is a mean or free stream velocity $U_1$, which is
much  larger  than  the  turbulent  velocity
$\mathbf{u}(\mathbf{x},t)$. Then the changes in the velocity
field with time at a fixed measuring point could be due to the
passage of a frozen pattern of turbulent motion past that
point. Hence the local time derivative at a point may be
replaced  by  the  convective  derivative,  thus:
\begin{equation}\frac{\partial}{\partial  t}  \rightarrow  -
U_1\frac{\partial}{\partial x_1} \quad \mbox{if} \quad U_1 \gg
u.\end{equation}  Or  in  the  context  of  spectra,
\begin{equation}k_1  =  \omega/U_1.\end{equation}  A  fuller
discussion of this can be found in Section 2.6.5 of [3].

Thus  (1)  seems  a  rather  extreme  application  of  Taylor’s
hypothesis. In fact we can write down an exact expression for
${\partial u_1}/{\partial t}$ by invoking the Navier-Stokes
equation.  This  gives  us  \begin{equation}\frac{\partial
u_1}{\partial  t}=-\left(u_1\frac{\partial  u_1}{\partial
x_1}+u_2\frac{\partial  u_1}{\partial  x_2}+u_3\frac{\partial
u_1}{\partial  x_3}\right)-\frac{\partial  p}{\partial  x_1}  +
\nu \nabla^2 u_1,\end{equation} where $p$ is the kinematic



pressure and $\nu$ is the kinematic viscosity. Thus in using
equation (1), Tennekes neglects both the pressure and the
viscous terms. The latter may seem reasonable, as his main
concern was with the inertial range, but it must be borne in
mind  that  the  subsequent  analysis  involves  squaring  and
averaging both sides of equation (1) so the neglect of the
viscous term may introduce significant error. However, the
neglect of the pressure term is even more concerning, as this
is a highly non-local term with the pressure being expressed
in terms of integrals of functions of the velocity field over
the entire system volume: see Section 2.1 of [3].

This analysis relies on imponderable assumptions about scale
separation  and  statistical  independence.  Such  ideas  were
discussed much later on, and rather more quantitatively, in
the context of mode eliminations and large eddy simulation:
see Chapter 8 in the book [4] for an account of this work. It
is clear that the analysis by Tennekes has swept a great deal
under the carpet. In contrast, the arguments given by Tennekes
and Lumley [2] seem, to me at least, more confident and well
justified than those given in [1]. In his conclusion, Tennekes
remarked on the difference between the two analyses, stating
that it was `embarrassing in a personal sense.’ Certainly both
sets of arguments might repay closer study.

As a final point, he expresses the view that the implications
of [1] support Kraichnan’s view that Lagrangian coordinates
are more suited to statistical closure theories than the more
usual Eulerian variety. However, it is worth pointing out that
all the analyses that support such a view are valid (if at
all) only for stationary turbulence, whereas all the numerical
assessments  of  closure  theories  are  restricted  to  freely
decaying turbulence. I intend to go on working on this topic
as time permits.

[1] H. Tennekes. Eulerian and Lagrangian time microscales in
isotropic turbulence. J. Fluid Mech., 87:561, 1975.
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turbulence.  MIT  Press.  Cambridge,  Mass.,  1972.

[3] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press,
1990.

[4]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,
Renormalization  and  Statistical  Closures.  Oxford  University
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Two-time  correlations  and
temporal  spectra:  the
Lagrangian case.
Two-time  correlations  and  temporal  spectra:  the  Lagrangian
case.
In my previous post on 27 April 2023, I promised to come back
to the Lagrangian case. Over the years, I have taken the view
that the discussion of the Lagrangian case along with the
Eulerian case, which is the one that is of more practical
importance, is an unnecessary complication. At the same time,
I have had to acknowledge that the application of these ideas
to the assessment of statistical closure theories should take
account of the fact that there are Lagrangian theories as well
as Eulerian theories. However, there is an interesting point
to be made when we compare the treatment in the book by
Tennekes and Lumley [1] with the later analysis of Tennekes
[2].

In the previous post, we only mentioned the discussion by
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Tennekes and Lumley [1] of the inertial range behaviour of the
Eulerian spectrum. In fact they not only derive the inertial
range form of the Lagrangian spectrum, and find it to be the
same  power  law  as  the  Eulerian  case,  but  also  obtain  a
relationship between the constants of proportionality in the
two cases.

The crucial step in this work is the equivalence of the two
correlations (see Section 8.5 of [1]), where the authors refer
back to their discussion of Lagrangian forms in Section 7.1
(actually they incorrectly give this as 7.2). Following their
notation, we represent the Lagrangian velocity of a fluid
point by $V_{\alpha}(t)$ where $\alpha = 1, 2, \mbox{or}, 3$.
Then,  they  assert  that  $\langle  V_{\alpha}V_{\alpha}\rangle
=\langle u_{\alpha} u_{\alpha}\rangle$, where $u_{\alpha}$ is
of course the Eulerian velocity; leading on to their equation
(8.5.3). This is the step that provides the basis for their
assertion of the equivalence of the Eulerian and Lagrangian
inertial range spectra.

However, the later work of Tennekes [2] leads to the Eulerian
spectrum being different from the Lagrangian form, due to the
supposed predominance of sweeping effects. This would seem to
be an inconsistency and we will return to this in future posts
when we examine the work of Tennekes more closely.

We close by pointing out that in our previous post we noted
that the form of two-time correlation being studied in [1] was
limited to stationary flows. This point was also made by Hinze
[3]:  see  equation  (1.57),  page  39  in  the  first  edition.
However,  in  discussing  the  motion  of  fluid  points  in
Lagrangian coordinates, Tennekes and Lumley emphasise the need
for  both  homogeneity  and  stationarity.  So  in  effect  this
restriction  has  already  been  made.  We  also  note  that  an
alternative discussion of the original work by Lumley can be
found in Section 12.2 of [4].

[1]  H.  Tennekes  and  J.  L.  Lumley.  A  first  course  in
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Two-time  correlations  and
temporal spectra
Two-time correlations and temporal spectra
I previously discussed this topic in my posts of 25 February
2021 and 10 March 2022. In the succeeding months I have become
increasingly aware that there is dissension in the literature,
with people citing the temporal spectrum as $\omega^{-2}$, if
the arguments of Kolmogorov apply; and $\omega^{-5/3}$, if
convective sweeping applies. Statements about these forms are
often made without any supporting reference, so my next step
was to identify the sources; and then try to make a critical
assessment of both forms and their relationship to each other.
In fact the source of the first result seems to be the book by
Tennekes and Lumley [1], while the second form is due to later
work by Tennekes [2]. So here I will make a start by outlining
the general problem, in order to fix notation and definitions.

We  begin  with  the  general  two-point,  two-time  correlation
tensor  $R_{\alpha\beta}(\mathbf{x},\mathbf{x’};t,t’)$,  where
$\alpha$ and $\beta$ are the cartesian tensor indices, taking
the values $1,2$ or $3$. The correlation is defined in terms
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of  the  velocity  field  $u(\mathbf{x},t)$,  thus:
\begin{equation}R_{\alpha\beta}(\mathbf{x},\mathbf{x’};t,t’)=\
langle  u_\alpha(\mathbf{x},t)u_\beta(\mathbf{x’},t’)\rangle,
\end{equation} where the angle brackets denote the ensemble
average.  In  everything  that  follows  we  will  restrict  our
attention to homogeneous turbulence and consider a fixed point
in space. This means that we may simplify the notation by
omitting the space variables, and write the correlation tensor
as:
\begin{equation}R_{\alpha\beta}(\mathbf{x},\mathbf{x’};t,t’)=R
_{\alpha\beta}(t,t’). \end{equation} Then, for generality, we
may introduce the sum and difference variables for the times,
as:  \begin{equation}  \mathcal{T}=(t+t’)/2  \quad  \mbox{and}
\quad \tau = (t’-t). \end{equation} Accordingly, the two-time
correlation  tensor  may  be  written  in  the  form:
\begin{equation}  R_{\alpha\beta}(t,t’)  =
R_{\alpha\beta}(\mathcal{T},\tau) \end{equation} We still have
one more restriction to make: Tennekes and Lumley restrict
their attention to isotropic turbulence, which means that we
can  replace  the  correlation  tensor  by  a  single  scalar
correlation function which we will denote by $R_E$, where the
subscript  $E$  denotes  `Eulerian’.  Thus,  for  isotropic
turbulence,  \begin{equation}R_{\alpha\beta}(\mathcal{T},\tau)
\rightarrow R_E(\mathcal{T},\tau), \end{equation} In a later
post we will introduce the Lagrangian correlation function.

Now, at this stage, we have imposed all the restrictions that
Tennkekes and Lumley have made in specifying their problem.
However their subsequent analysis seems to imply that they are
also  considering  stationary  turbulence  and  this  is  an
important point. We will underline this fact by continuing to
treat the problem more generally.

The energy spectrum $\phi_E(\mathcal{T},\omega)$ is defined by
the Fourier transform, \begin{equation}R_E(\mathcal{T},\tau) =
\int_{-\infty}^\infty  \exp(i\omega  \tau)
\phi_E(\mathcal{T},\omega)d\omega,\end{equation}where  $\omega$



is the angular frequency; and the Fourier pair is completed
by:  \begin{equation}\phi_E(\mathcal{T},\omega)=
\frac{1}{2\pi}\int_{-\infty}^\infty  \exp(-i\omega
\tau)R_E(\mathcal{T},\tau)d\tau.\end{equation}

As a preliminary to considering the inertial-range form of
$\phi_E(\mathcal{T},\omega)$  we  need  to  establish  its
dimensions. If we integrate the spectrum over all frequencies,
we  have:  \begin{equation}  \int_{-
\infty}^{\infty}\phi_E(\mathcal{T},\omega)d\omega  =
U^2(\mathcal{T}),\end{equation}  where  $U$  is  the  root  mean
square velocity. Recall that $\mathcal{T}$ is the clock time,
as  opposed  to  the  difference  time  $\tau$.  From  this
relationship it follows that the dimensions of the spectrum
are:  \begin{equation}  [\phi_E(\mathcal{T},\omega)]  =  L^2
T^{-1}, \end{equation} where as usual square brackets indicate
the dimensions of a quantity.

At this point we assume stationarity, which is in effect what
Tennekes and Lumley have done [1] and we omit the dependence
on $\mathcal{T}$. Having, in effect, done this, they apply the
well known argument of Kolmogorov to limit the dependence of
the spectrum to the two independent variables $\omega$ and the
dissipation  rate  $\varepsilon$.  They  state  that  the  only
dimensionally  consistent  result  is:  \begin{equation}
\phi_E(\omega)  \equiv  f(\varepsilon,  \omega)  =  \beta
\varepsilon  \omega^{-2},\end{equation}  where  $f$  is  some
arbitrary function, assumed to be a power and $\beta$ is a
constant. Checking the dimensions, we find: \begin{equation}
[\phi_E(\omega)]  =  (L^2  T^{-3})T^{2}  =  L^2  T^{-1},
\end{equation}  as  required.

Later Tennekes presented a different analysis [2] in which he
argued  that  the  inertial-range  temporal  spectrum  would  be
determined by convective sweeping and this led to the result:
\begin{equation}\phi_E(\omega)=  \beta_E
\varepsilon^{2/3}U^{2/3}\omega^{-5/3}.  \end{equation}  It  is
readily verified that this result has the correct dimensions,



thus:  \begin{equation}  [\phi_E(\omega)]  =
(L^2T^{-1})^{2/3}(LT^{-1})^{2/3}T^{5/3}=
L^2T^{-1}.\end{equation}
It  should  be  noted  that  irrespective  of  the  merits  or
otherwise  of  this  analysis  by  Tennekes,  it  is  limited  to
stationary turbulence in principle due to omission of any
dependence on the clock time $\mathcal{T}$. In future posts I
intend to give some critical attention to both these theories.

[1]  H.  Tennekes  and  J.  L.  Lumley.  A  first  course  in
turbulence.  MIT  Press.  Cambridge,  Mass.,  1972.
[2] H. Tennekes. Eulerian and Lagrangian time microscales in
isotropic turbulence. J. Fluid Mech., 87:561, 1975.

Mode elimination: taking the
phases into account: 5
Mode elimination: taking the phases into account: 5

When I began this series of posts on the effects of phase, I
had quite forgotten that I had once looked into the effects of
phase in quite a specific way. This only came back to me when
I was using my own book [1] to remind me about conditional
averaging. And that book was published as recently as 2014!

In effect, McMillan and Ferziger tested the significance of
taking phase into account as long ago as 1979, in the context
of  sub-grid  modelling  [2].  They  did  this  by  measuring
correlations  between  exact  sub-grid  stresses  and  eddy
viscosity models. In the case of the Smagorinsky model, which
is widely used with reasonable success in shear flows, they
found correlations as low as 0.1 – 0.2. Then, in 1998, McComb
and Young [3] showed that, for isotropic turbulence at least,
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low values of the correlations between sub-grid stresses and
eddy-viscosity  models  are  due  to  phase  effects.  A  brief
pedagogical demonstration of the need to take phases into
account in an eddy-viscosity model can be found in Section 8.7
of  [1],  but  we  will  not  pursue  that  here;  but  instead
concentrate on the numerical demonstration of the effects of
phase.

We carried out a numerical simulation of stationary, isotropic
turbulence, with the velocity field in wavenumber defined on
the interval $0\leq k \leq k_0$. Various cut-off wave numbers
$k_1 \leq k_0$, $k_2 \leq k_1$, $k_3 \leq k_2$; and so on,
were considered, so that a series of large-eddy simulations
could  be  compared  to  the  fully  resolved  simulation.  I
discussed in my post of 23 March 2023 how the complex velocity
field in wavenumber (a.k.a the Fourier transform of the real-
space velocity field) could be separated into amplitude and
phase; and this was the method employed in [3], from which I
have  taken  three  figures.  In  all  cases,  we  evaluated  a
correlation coefficient $R(k)$ and this is plotted against
$k/k_$, where $k_1$ is the maximum resolved wavenumber in all
cases.

In  Figure  A,  we  show  the  correlation  $R(k)$  between  the
subgrid stresses and the eddy viscosity for seven cut-off
wavenumbers in the range $16.5 \leq k_1 \leq 112.5$ with $k_0
=  128$.  It  can  be  seen  that  for  most  cases  (shown  by
continuous lines) the correlation is not very good, varying
from $0.25 – 0.5$ at the cut-off wavenumber to essentially
being anti-correlated as $h/k_1 \rightarrow 0$. The exceptions
are the curves for the lowest cut-off wavenumbers $k_1 =16.5$
(long  dashes)  and  $k_1=  32.5$  (short  dashes);  and  in
particular the first of these. It should be noted that the
first of these is the only one to yield a finite plateau
region  in  the  plot  of  the  effective  viscosity  against
wavenumber [3]. This latter property is an indication that it
is only this lowest cut-off wavenumber which gives an adequate



degree of scale separation compared to the maximum value.

FIG A

Correlation R(k) between subgrid stresses and eddy-
viscosity model.

In Figure B, we show the phase correlations for the same
cases, and the similarity to the results of Figure A are quite
marked.

FIG B



The phase correlation R(k) between subgrid stresses and
the eddy-viscosity model.

On the other hand, the results for amplitude correlations in
Figure C show a high level of correlation over the entire
range of wavenumbers, with very little variation between the
results for the various cut-off wavenumbers.

FIG C



Amplitude  correlations  R(k)  between  subgrid  stresses
and eddy-viscosity models.

In this case, isotropic turbulence, we are mainly interested
in modelling the inertial transfer through wavenumber and for
this purpose a model which represents the amplitudes is quite
effective. However, given that all such formulations are based
on average quantities it is not easy to see how the phases can
be taken into account.

[1]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
[2] O. J. McMillan and J. H. Ferziger. Direct testing of
subgrid-scale models. AIAA Journal, 17:1340, 1979.
[3] W. D. McComb and A. J. Young. Explicit-Scales Projections
of  the  Partitioned  Nonlinear  Term  in  Direct  Numerical
Simulation of the Navier-Stokes Equation. Presented at 2nd
Monte Verita Colloquium on Fundamental Problematic Issues in
Turbulence: available at arXiv:physics/9806029 v1, 1998.
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In the previous post we came to the unsurprising conclusion
that as a matter of rigorous mathematics, we cannot average
out the high-wavenumber modes while leaving the low-wavenumber
modes unaffected. However, turbulence is a matter of physics
rather than pure mathematics and the initial conditions are
not known with mathematical precision. Here the concept of
deterministic chaos comes to our rescue. If we accept that the
initial condition must have some uncertainty attached to it,
then  there  is  a  possibility  that  such  an  average  can  be
carried out approximately.

We can generalise the conditional average, given as equation
(3) in the previous post, by extending it to some arbitrary
well-behaved functional $H[u(k,t)]$. Here we are also using
the simplified notation of the previous post; and in fact we
shall simplify it even further, and write $u(k,t)\equiv u_k$.
Then we can replace that equation by:\begin{equation}\langle
H[u_k]\rangle_c  =  \langle  H[u_k]\mid  u^-_k
\rangle,\end{equation} where, as before, the subscript `$c$’
on the left hand side denotes `conditional average’; and the
notation on the right hand side indicates that the ensemble
average is carried out while keeping the low-wavenumber part
of the velocity field $ u^-_k$ constant. From the previous
discussion,  we  know  that  this  average  amounts  to  a  delta
function, as both $u_k$ and $u^+_k$ are also held constant.

The way out of this impasse is the recognition that, in the
real physical situation, $u^-_k$ cannot be held precisely to
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any  exact  value.  There  must  be  some  uncertainty,  however
small, in the application of this constraint. Accordingly we
introduce an uncertainty into our definition of a conditional
average  by  writing  it  as:  \begin{equation}\langle
H[u_k]\rangle_c  =  \langle  H[u_k]\mid  u^-_k  +  \phi^-
_k\rangle.\end{equation} Evidentally, $ u^-_k + \phi^-_k$ must
be  a  solution  of  the  Navier-Stokes  equation,  but  the
uncertainty  $\phi^-_k$  is  otherwise  arbitrary  and  may  be
chosen to have convenient properties. In fact, McComb, Roberts
and  Watt  [1]  chose  it  to  satisfy  the
conditions:\begin{equation} \langle u^-_k\rangle_c = u^-_k +
\langle  \phi^-_k  \rangle_c,\end{equation}  along
with:\begin{equation} \langle u^-_k u^-_j\rangle_c = u^-_k +
\langle  \phi^-_k  \phi^-_j  \rangle_c,\end{equation}  and
\begin{equation} \langle u^-_ku^+_j\rangle_c = u^-_k \langle
u^+_k  \rangle_c.\end{equation}  These  relationships  are  then
used  in  decomposing  the  NSE  and  implementing  an  RGl
calculation.  It  should  be  noted  that  $  \langle  u^+_k
\rangle_c$ is not zero and an equation of motion must be
derived for it.

The  problem  posed  by  the  correction  terms  in  $\phi^-_k$
depends  on  just  how  chaotic  the  turbulence  is,  but  the
calculations suggest that these terms can be neglected. In
fact the calculation of the invariant energy flux yields a
value of the Kolmogorov spectral constant of $\alpha = 1.62$
which is the generally accepted value. Further details can be
found  in  the  original  paper  [1]  and  in  the  appropriate
sections of the book [2].

However, despite the above procedures, there are still phase
effects that are not being taken into account, and this will
be the subject of the next post.

[1] W. D. McComb, W. Roberts, and A. G. Watt. Conditional-
averaging  procedure  for  problems  with  mode-mode  coupling.
Phys. Rev. A, 45(6):3507- 3515, 1992.
[2]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:



Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
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In this post we look at some of the fundamental problems
involved  in  taking  a  conditional  average  over  the  high-
wavenumber  modes,  while  leaving  the  low-wavenumber  modes
unaffected.

Let  us  consider  isotropic,  stationary  turbulence,  with  a
velocity field in wavenumber space which is defined on $0\leq
k \leq k_0$. Note that the maximum wavenumber $k_0$ is not the
Kolmogorov dissipation wavenumber, although in both large-eddy
simulation and in the application of renormalisation group
(RG) to turbulence, it is often taken to be so. The only
definition that I know of, is the one I put forward in 1986
[1], which is:\begin{equation}\int^{k_0}_0 2\nu_0 k^2 E(k)dk
\approx  \int^{\infty}_0  2  \nu_0  k^2  E(k)dk  =  \varepsilon,
\end{equation} where $\nu_0$ is the kinematic viscosity of the
fluid, $E(k)$ is the energy spectrum, and $\varepsilon$ is the
dissipation rate. Obviously the value of $k_0$ depends on how
closely  the  integral  on  the  left  approximates  the  actual
dissipation rate, which corresponds to the upper limit on the
integral being taken as infinity. Some people apparently find
this definition puzzling, possibly because they are familiar
with RG in the context of the theory of critical phenomena,
where the maximum wavenumber is determined by the inverse of
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the lattice constant. In contrast, fluid dynamicists may find
our definition here quite intuitive, as it is analogous to
Prandtl’s definition of the laminar boundary layer.

Something which may be counter-intuitive for many, is the
choice of $k_0$ as the maximum wavenumber. This is because in
RG  we  progressively  eliminate  modes  in  wavenumber  bands:
$k_1\leq k \leq k_0$, $k_2 \leq k \leq k_1$, $k_3\leq k \leq
k_2$, and so on, where $k_n$ decreases with increasing integer
$n$, until the iteration reaches a fixed point. Also, the
fluid  viscosity  $\nu_0$  is  so  denoted,  because  it  is
progressively  renormalized  until  it  reaches  a  value
$\nu_{n-1}=\nu_n \equiv \nu_N$, at the fixed point $n=N$.

The  first  step  in  eliminating  a  band  of  modes  is  quite
straightforward.  We  high-pass,  and  low-pass,  filter  the
velocity field at $k=k_1$, thus: \begin{eqnarray} u^{-}(k,t) =
u(k,t) \quad \mbox{for} \quad 0 \leq k \leq k_1; \nonumber\\
u^{+} (k,t)= u(k,t) \quad \mbox{for} \quad k_1 \leq k \leq
k_2,\end{eqnarray}  where  we  have  adopted  a  simplified
notation. Then we can substitute the decomposition given by
equation (2) into the Navier-Stokes equation in wavenumber,
and study the effect. However we will not pursue that here,
and further details can be found in Section 5.1.1 of [2].
Instead, we will concentrate here on the following question:
how do we average out the effect of the $u^+$ modes, while
keeping the $u^-$ modes constant?

The  condition  for  such  an  average  can  be  written  as:
\begin{equation}\langle  u^-(k,t)\rangle_c  =  u^{-
}(k,t),\end{equation}where  the  subscript  `$c$’  denotes
`conditional’. We should also recall that isotropic turbulence
requires  a  zero  mean  velocity,  that  is:  $\langle
u(k,t)\rangle=0$.

Actually,  it  would  be  quite  simple  to  carry  out  such  an
average,  provided  that  the  velocity  field  $u(k,t)$  were
multivariate normal. In that case, each of the various modes



could be averaged out, independently of all the rest. However,
the turbulent velocity field is not Gaussian so, in attempting
to  carry  out  a  such  an  average,  we  would  run  into  the
following two problems.

First, we must satisfy the boundary condition between the two
regions  of  $k$-space.  Hence,  \begin{equation}  u^-
(k_1,t)=u^+(k_1,t). \end{equation} This is the extreme case,
where we would be trying to average out a high-$k$ mode while
leaving the identical low-$k$ mode unaffected. At the very
least, this draws attention to the need for scale separation.

Secondly, there are some questions about the nature of the
averaging  over  modes,  in  terms  of  the  averaging  of  the
velocity field in real space. In order to consider this, let
us  introduce  a  combined  Fourier  transform  and  filter
$F_T^{\pm}(k,x;t)$ acting on the velocity field $u(x,t)$, such
that:\begin{equation}u^{\pm}(k,t)=F_T^{\pm}(k,x;t)u(x,t).
\end{equation} Noting that both the Fourier transform and the
filter are purely deterministic entities, the average can only
act on the real-space velocity field, leading to zero!

So it seems that a simple filtered average, as used in various
attempts at subgrid modelling or RG applied to turbulence,
cannot be correct at a fundamental level. We will see in the
next  post  how  the  introduction  of  a  particular  kind  of
conditional average led to a more satisfactory situation [3].

[1] W. D. McComb. Application of Renormalization Group methods
to  the  subgrid  modelling  problem.  In  U.  Schumann  and  R.
Friedrich,  editors,  Direct  and  Large  Eddy  Simulation  of
Turbulence, pages 67- 81. Vieweg, 1986.
[2]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
[3] W. D. McComb, W. Roberts, and A. G. Watt. Conditional-
averaging  procedure  for  problems  with  mode-mode  coupling.
Phys. Rev. A, 45(6):3507- 3515, 1992.
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In  last  week’s  post,  we  mentioned  Saffman’s  criticism  of
models like Heisenberg’s theory of the energy spectrum in
terms of their failure to take the phases into account. In
this post we explore this idea and try to elucidate this
criticism a little further. We can take Heisenberg’s model as
representative and an introductory discussion of it can be
found in Section 2.8.1 of reference [1]. It is also discussed
in Batchelor’s book, and he made the general comment about it:
`The  notion  that  the  small  eddies  act  as  an  effective
viscosity is plausible enough but does not seem a suitable
description of the mutual action of eddies whose sizes are of
the same order of magnitude.’

In other words, he is expressing the need for what later
became known as `scale separation’: see, for example Section
5.1.1  of  the  book  [3].  (Note:  in  last  week’s  post  I
incorrectly  wrote  scale  invariance  when  I  meant  scale
separation.  This  has  now  been  corrected.)

This is an important observation, and it is related to the way
in which the phases come into the problem; but Batchelor did
not mention this particular aspect. However, if we wish to be
precise about the concept of phase, then we must turn again to
Batchelor’s book [2], where on page 83 he remarked that the
Fourier components of the velocity field are complex, and
hence  may  be  written,  in  the  usual  way,  in  terms  of  an
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amplitude and a phase. In other words, for any particular
wavenumber  and  time,  $u_\alpha(\mathbf{k},t)$  is  a  complex
number.

Accordingly,  following  Batchelor,  and  with  a  change  of
notation,  we  may  write:  \begin{equation}
u_\alpha(\mathbf{k},t)  =  |u_\alpha(\mathbf{k},t)|
\exp\{i\theta_\alpha(\mathbf{k},t)},\end{equation}where  $i  =
\surd\{-1\}$, $\theta_\alpha$ is the phase, and the Cartesian
index $\alpha$ takes the values $\alpha=1,2,3$.

Batchelor  then  discussed  its  general  importance,  remarking
that: `The exchanges of energy are dependent, in general, on
the relationships between the phases of the different Fourier
component as well as on their amplitudes, and it is in the
elucidation of the average properties of the phase relations
that  the  key  to  the  determination  of  the  energy  spectrum
during the decay lies.’

Little more has been said on this aspect of turbulence theory,
apart perhaps Kraichnan’s frequent use of the term `phase
mixing’ in his many papers on the direct interaction family of
closures: for further details see either of the books [1] or
[3]. In the next post we will look more specifically at mode
elimination to try to establish what the limitations of the
process are.

[1] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[2] G. K. Batchelor. The theory of homogeneous turbulence.
Cambridge University Press, Cambridge, 2nd edition, 1971.
[3]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
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This is my first blog this year, very largely because I have
been working on a review article as my contribution to a
journal issue commemorating Jack Herring, who died last year.
We were asked to include some personal recollections of Jack,
in addition to the physics, and I began by remarking that I
had  first  met  Jack  Herring  at  the  NASA-ICASE  workshop  on
turbulence theory at Virginia Beach in October 1984. Taking
part were physicists, mathematicians and engineers; and I, as
very  much  a  new  boy,  was  glad  to  be  welcomed  into  the
physicists’ group with Jack, Bob Kraichnan and various others.

This was a long time ago, and I only have a few memories of
the social interactions, but I do recall that there was a `No-
host cocktail hour’ when the day’s programme finished. I was
quite amused by this phrase, which I hadn’t met before, and
which simply meant that the organisers weren’t about to pay
for  the  drinks!  Thinking  about  this  reminded  me  of  an
interaction with Phillip Saffman, which I think leads to a
point of general interest.

My  purpose  at  the  workshop  was  to  give  a  talk  on  my
application of renormalization group (RG) to turbulence and
details of that, along with the other talks may be found in
the published proceedings [1]. I do not recall much discussion
after the talks but I do remember that Philip Saffman stood up
when questions were invited after my talk. He pointed out that
my method wouldn’t work because I hadn’t taken the phase into
account! When I joined him at the `No host cocktail hour’, he
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said that he hoped that I didn’t mind his comment. I assured
him that I didn’t as I had no idea what it meant. We didn’t
discuss it further, and spoke of other matters; but it was to
act as the grit in the oyster which ultimately leads (one
hopes) to a pearl.

At the time I was uneasy about my theory anyway, and began to
play safe and classify it as a mean-field theory. After some
years of brooding about this, and other things, I saw that
eliminating  modes  from  the  Navier-Stokes  equation,  while
leaving  other  modes  unaffected,  required  a  nontrivial
conditional average. I worked on this with two of my students,
and we formulated a conditional average, along with a means of
approximating it, which led to a better theory: see references
[2]-[4] and also see [5]

However, in recent years I was reading some lecture notes by
Saffman from the sixties [6], and I saw that he had made a
similar criticism of theories such as that of Heisenberg (see
Section 2.8 of the book [7]), which represented the effect on
lower wavenumbers of inertial transfer to higher wavenumbers
by some model. In Heisenberg’s case, this involved an eddy
viscosity hypothesis, but Saffman made the general criticism
of all models of this type, which ran as follows.

`Conceptually, the theories are also objectionable as they
ignore the phases of the Fourier components and almost regard
Fourier components as having a real physical existence, rather
than being a mathematical representation of the motion.’

He doesn’t explain any further what he means by this, nor does
he mention the lack of scale separation of the kind that
justifies the calculation of the viscosity in the kinetic
theory of gases. I will return to these points in the next
blog  post,  but  what  really  fascinates  me  is  the  cultural
dissonance, which seems to take us into the realm of the
philosophy of science. This too, I hope to return to in a
future post.
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Occasionally I still see references in the literature to the
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Zeroth Law of Turbulence. The existence of a zeroth law would
seem to imply that there is at least a first law as well. But,
so far as I know, there are no other laws of turbulence, and
hence my question is purely rhetorical.

The so-called zeroth law is the fact the turbulent dissipation
tends to a limit as the Reynolds number increases. Some people
seem to be obsessed by the fact that this is equivalent to a
finite  dissipation  limit  as  the  viscosity  tends  to  zero.
Unfortunately, they become hypnotised by the zero viscosity
and  completely  overlook  the  word  `limit’!  This  becomes
translated  into  `finite  turbulent  dissipation  at  zero
viscosity’  and  is  also  referred  to  as  the  `dissipation
anomaly’.  If  this  were  true,  then  it  certainly  would  be
anomalous, to say the least. But it isn’t true. Turbulent
dissipation  is  ultimately,  like  all  dissipation  in  fluid
systems, the transformation of macroscopic kinetic energy into
heat  by  the  action  of  viscosity.  No  viscosity  means  no
dissipation.

I do not wish to become hypnotised myself by this particular
manifestation of folklore. I have written about it before in
these blogs and will write about it again. Right now I wish to
concentrate only on the oddity of the terminology: `zeroth
law’. Presumably it has been so named by analogy with the
situation in thermodynamics, where the well-established first
and second laws were later supplemented by both a third law
and a zeroth law. The third law was part of the subject when I
took my first degree but the zeroth law wasn’t. It amounts
essentially to a definition of temperature that provides a
basis for its measurement. I suppose that it became thought to
be so fundamental that it really ought to precede the existing
first and second laws.

However, if that was the case, then surely it would be better
to  name  it  something  like  `The  fundamental  principle  of
thermodynamics’? The trouble with zeroth law is that zero
means nothing. That is, when you don’t have any of something,



then you have zero.

It is a failure to recognise this that causes confusion about
the calendar when a century changes. One needs to realize that
there is no `year zero’. Everything is zero to begin with.
Then we start counting seconds, minutes, days and 365 days
later we have achieved one year which we denote by `1’. When
we reach ten years, we have completed a decade, and we can
label that year by `10’, with zero fulfilling its mathematical
significance by giving us a symbol for `10’. Thus the year 10
is the last year of the decade, the year 100 is last year of
the  century,  and  the  year  1000  is  the  last  year  of  the
millennium. Thus Year 2000 is the last year of the second
millennium  and  Year  2001  is  the  first  year  of  the  third
millennium. (I hope that digression made sense!)

In my view, the use of the term `zeroth law’ is lame in
thermodynamics and doubly lame in turbulence, where we do not
even  have  an  agreed  first  law.  It  also  reflects  muddled
thinking, based very largely on a failure to understand the
mathematical  concept  of  a  limit,  which  ends  up  with  the
erroneous supposition that the infinite Reynolds number limit
corresponds to the Euler equation. This amounts to a failure
to recognize that the Euler equation throughout its entire
life has been indomitably non-dissipative.

This will be my last blog of this year. I intend to resume
posting in the new year. In the meantime, I hope that we shall
all have a pleasant holiday.
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The  non-Markovian  nature  of  turbulence  9:  large-eddy
simulation  (LES)  using  closure  theories.

In  this  series  of  posts  we  have  argued  that  the  three
pioneering theories of turbulence (due to Kraichnan, Edwards
and Herring, respectively) are all Markovian with respect to
wavenumber interactions. Thus, despite their many successful
features, the ultimate failure of these theories to give the
correct infinite-Reynolds number limit arises from the fact
that they cannot reproduce the non-Markovian nature of fluid
turbulence.  In  the  immediately  preceding  post,  we  drew  a
distinction between the concept of a process being Markovian
in  its  wavenumber  interactions  and  the  `almost-Markovian’
nature  of  certain  single-time  theories,  where  the  term
`Markovian’ refers to their development with time. In this
final post in the series, we may shed some further light on
these matters by considering the use of closures to calculate
the subgrid viscosity for a large-eddy simulation.

This  activity  was  initiated  in  1976  by  Kraichnan  [1]  who
considered isotropic turbulence and based his approach on his
own test-field model. In fact this publication led to quite a
lot of activity by others, although this was generally based
on the very similar EDQNM model (see the previous post).

The LES equations for isotropic turbulence can be formulated
in wavenumber space by filtering the velocity field at some
fixed  cut-off  wavenumber  $k_c$.  Then,  for  the  explicit
(resolved)  wavenumbers  $k\leq  k_c$,  we  have  the  resolved
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velocity field $u^{<}(\mathbf{k,t})$; while the subgrid field
takes the form $u^{>}(\mathbf{k,t})$ for $k_c\leq k$. Then
substituting  into  the  Navier-Stokes  equations,  we  obtain
separate  equations  for  the  low-$k$  and  high-$k$,  ranges.
However, the nonlinear term ensures that the two equations of
motion are coupled together. This coupling of explicit and
implicit modes is the subgrid modelling problem.

A detailed discussion of these matters may be found in Section
10.3 of the book [2], but here we only wish to sketch out some
features of Kraichnan’s approach insofar as they bear on the
earlier posts in this series. We may do this schematically in
terms  of  the  Lin  equation,  as  follows.  Evidentally,
corresponding to the explicit modes of the velocity field, we
may  define  an  explicit  modes  energy  spectral  density
$C^{<}(k,t)$, and correspondingly the filtered energy spectrum
$E^{<}(k,t) = 4\pi k^2 C^{<}(k,t)$. Accordingly we may write
the  energy  balance  for  the  explicit  modes  as:
\begin{equation}\left(\frac{\partial}{\partial t} + 2\nu k^2
\right)E^{<}(k,t)  =  T^{<}(k,t)  +  T^{<>}(k,t),\end{equation}
where $T^{<}(k,t)$ is the transfer spectrum for the explicit
modes and contains only couplings within these modes; whereas
$T^{<>}(k,t)$  contains  terms  involving  the  implicit  modes.
Kraichnan proposed [1] that the second transfer term could be
modelled  in  terms  of  an  effective  subgrid  viscosity
$\nu(k|k_c)$,  such  that  \begin{equation}T^{<>}(k,t)  \equiv
T(k|k_c) =-2\nu(k|k_c)k^2 E^{<}(k,t),\end{equation} where at
the same time he introduced the parametric notation shown.

The point that we wish to highlight here is that in using
$T(k|k_c)$ Kraichnan only took the output term into acccount.
In fact the input term, even if small, must be included. In
fact there are circumstances where it is not small and in
general $\nu(k_c|k)$ is not positive definite, nor should it
be. Thus, an adherence to the Markovian point of view that
underpinned the DIA and the other pioneering closures, leads
to an incorrect result. A full discussion of this may by found



in Section 10.3 of [2] and on page 394 Kraichnan’s effective
viscosity  can  be  found  as  equation  (10.17),  while  the
corrected form with the input term of the transfer spectrum
included may be found as a footnote on page 403 of the same
reference.

As a corollary here, on page 392 of [2] I have noted that
Kraichnan showed that his first lagrangian theory reduced to a
Markovian form under certain circumstances. In the case of the
LET theory, I know that it is non-Markovian but I had only
assumed that was the case for all the Lagrangian theories. So,
at least for the first one, it has been shown to be the case.

[1]  R.  H.  Kraichnan.  Eddy-viscosity  in  two  and  three
dimensions.  J.  Atmos.  Sci.,  33:1521,  1976.
[2] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
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Previously,  in  my  post  of  10  November  2022,  I  mentioned,
purely  for  completeness,  the  work  of  Phythian  [1]  who
presented a self-consistent theory that led to the DIA. The
importance of this for Kraichnan was that it also led to a
model representation of the DIA and in turn to the development
of what he called `almost-Markovian’ theories. Some further
discussion of this topic can be found in Section 6.3.2 of the
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book [2], but here we will concentrate on the general class of
almost-Markovian models and theories. My concern here is to
draw a distinction between their use of `Markovian’, which
refers to evolution in time, and my use in this series of
posts, which refers to interactions in wavenumber.

This  class  consists  of  the  Eddy-damped,  Quasi-normal,
Markovian (EDQNM) model of Orszag in 1970 [3], the test-field
model of Kraichnan in 1971 [4], the modified LET theory of
McComb and Kiyani in 2005 [5], and the theory of Bos and
Bertoglio in 2006 [6]. Here we follow the example of Kraichnan
who described a theory which relied on a specific assumption
that involved the introduction of an adjustable constant as a
model. In order to illustrate what is going on in this kind of
approach, I will discuss the EDQNM in some detail, as follows.

We begin with the quasi-normal expression for the transfer
spectrum $T(k)$ from the Lin equation. This is found to be:
\begin{eqnarray}T(k,t)  &  &  =8\pi^2\int
d^{3}j\,L\left(\mathbf{k},\mathbf{j}\right)\int_{0}^{t}ds\,R_0
\left(k;t,s\right)R_0\left(j;t,s\right)R_0\left(\left|\mathbf{
k}-\mathbf{j}\right|;t,s\right)  \nonumber  \\&  \times
&\left[C\left(j,s\right)C\left(\left|\mathbf{k}-
\mathbf{j}\right|,s\right)-
C\left(k,s\right)C\left(\left|\mathbf{k}-
\mathbf{j}\right|,s\right)\right],\label{KWE2}  \end{eqnarray}
where  the  viscous  response  function  is  given  by
\[R_0(k;t,t’)=\exp[-\nu  k^2  (t-t’)],\]  and  the  coefficient
$L(\mathbf{k,j})$  is  defined  as:
\begin{equation}L(\mathbf{k,j})  =
-2M_{\alpha\beta\gamma}(\mathbf{k})M_{\beta\alpha\delta}(\math
bf{j})P_{\gamma\delta}(\mathbf{k-
j}),\label{lkj1}\end{equation} and can be evaluated in terms
of three scalar variables as \begin{equation}L(\mathbf{k,j}) =
-\frac{\left[\mu\left(k^{2}+j^{2}\right)-
kj\left(1+2\mu^{2}\right)\right]\left(1-
\mu^{2}\right)kj}{k^{2}+j^{2}-2kj\mu},\label{lkj2}\end{equatio



n} where $\mu$ is the cosine of the angle between the vectors
$\mathbf{k}$  and  $\mathbf{j}$.  For  further  discussion  and
details see Appendix C of the book [7].

Now Orszag argued that the failure of QN was basically due to
the use of the viscous response function, when in fact one
would expect that the turbulence interactions would contribute
to the response function. Accordingly he proposed a modified
response  function:  \begin{equation}R(k;t,t’)=\exp[-
\omega(k)(t-t’)],\end{equation}where  $\omega(k)$  is  a
renormalized inverse modal response time. One may note that
this is now becoming the same form as that of the Edwards
transfer spectrum, but that it is also ad hoc and thus there
is  the  freedom  to  choose  $\omega(k)$.  After  some
experimentation using dimensional analysis, Orszag chose the
form: \begin{equation}\omega(k)=\nu k^2 + g\left[\int_0^k dj
j^2 E(j)\right]^{1/2},\end{equation} where the constant $g$ is
chosen to give the correct (i.e. experimental) result for the
Kolmogorov  spectrum.  This  is  the  eddy  damped  part  of  the
model, so replacing $R_0$ by $R$ gives us the EDQN.

Even with the introduction of the damping term, the EDQN model
can  still  lead  to  negative  spectra.  This  was  cured  by
introducing the Markovian step with respect to time. This
rested  on  the  assumption  that  the  characteristic  time
$[\omega(k)  +\omega(j)  +  \omega(|\mathbf{k-j}|)]^{-1}$  is
negligible compared to the evolution time of the products of
covariances in the expression for $T(k)$. The equation for the
transfer  spectrum  was  Markovianised  by  replacing  the  time
integral  by  a  memory  function  $D(k,j;t)$,  thus:
\begin{equation}T(k,t)  =8\pi^2\int
d^{3}j\,L\left(\mathbf{k},\mathbf{j}\right)
D(k,j;t)\left[C\left(j,s\right)C\left(\left|\mathbf{k}-
\mathbf{j}\right|,s\right)-
C\left(k,s\right)C\left(\left|\mathbf{k}-
\mathbf{j}\right|,s\right)\right],\end{equation}  where  the
memory function is given by \begin{equation}D(k,j;t)= \int_0^t



ds  \,  \exp[\omega(k)+\omega(j)+\omega(|\mathbf{k-j}|)](t-
s).\end{equation}This is now the EDQNM model.

When applied to the stationary case, this result for $T(k)$ is
identical to the Edwards result, as given in the post of 3
November 2022; but there are crucial differences. The function
$\omega(k)$ in the Edwards theory arises from a Markovian
theory  with  respect  to  wavenumber  interactions  and  is
accordingly related to $T(k)$, thus giving the second equation
of the closure. In contrast, the function $\omega(k)$ in EDQNM
is fixed independently of the transfer spectrum by means of
dimensional analysis and accordingly is not Markovian in the
sense  of  the  Edwards  SCF.  It  is  important  to  distinguish
between the two kinds of Markovianisation.

In our next post, we will conclude this series of posts by
discussing how these considerations affect the application of
closures to large-eddy simulation.

[1]  R.  Phythian.  Self-consistent  perturbation  series  for
stationary homogeneous turbulence. J.Phys.A, 2:181, 1969.
[2] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[3] S. A. Orszag. Analytical theories of turbulence. J. Fluid
Mech., 41:363, 1970.
[4] R. H. Kraichnan. An almost-Markovian Galilean-invariant
turbulence model. J. Fluid Mech., 47:513, 1971.
[5] W. D. McComb and K. Kiyani. Eulerian spectral closures for
isotropic  turbulence  using  a  time-ordered  fluctuation-
dissipation relation. Phys. Rev. E, 72:16309{16312, 2005.
[6] W. J. T. Bos and J.-P. Bertoglio. A single-time, two-point
closure based on fluid particle displacements. Phys. Fluids,
18:031706, 2006.
[7]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
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We can sum up the situation regarding the failure of the
pioneering closures as follows. Their form of the transfer
spectrum  $T(k)$,  with  its  division  into  input  and  output
parts, with the latter being proportional to the amount of
energy in mode $k$, is only valid for Markov processes, so it
is incompatible with the nature of turbulence which is non-
Markovian. It is also incompatible with the phenomenology of
turbulence, where the entire $T(k)$ acts as input (or output),
depending on the value of $k$, as I pointed out in 1974 [1].
It is worth noting that the first measurement of $T(k)$ was
made by Uberoi in 1963 [2], so turbulence phenomenology was in
its  infancy  at  the  time  the  first  closures  were  being
developed.  In  later  years,  numerical  experiments  based  on
high-resolution direct numerical simulations, did not bear out
the  Markovian  picture.  In  particular,  we  note  the
investigation by Kuczaj et al [3]. This is in fact the basic
flaw in Kraichnan’s DIA and also the SCF theories of Edwards
and Herring: the fault lies not in the covariance equations
but in the relationship of the response function to them.

As mentioned in the first blog in the present series (posted
on 13 October) a response to this problem took, and continues
to take, the form of an extension of the DIA approach to
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Lagrangian  coordinates.  A  consideration  of  these  theories
would take us too far away from our present objective although
it should be mentioned that they are non-Markovian in that
they are not expressible as Master equations. Instead we will
concentrate on the LET theory which exposes the underlying
physics of the turbulence energy transfer process.

The  LET  theory  was  introduced  with  the  hypothesis  that
$\omega(k)$ is determined by the entire $T(k)$, not just part
of it, and can be defined by a local energy balance [1]. It
was extended to the two-time case [4] in 1978; and, less
heuristically, in subsequent papers by McComb and co-workers:
see [5] for a review. Essentially, the two-time LET theory
comprises the DIA covariance equations plus the generalized
fluctuation-response relation. It may be compared to Herring’s
two-time SCF [6] which comprises the DIA response equation,
single-time  covariance  equation  and  the  generalized
fluctuation-response  equation.  It  may  also  be  compared
directly to DIA in terms of response equations. However, for
our present purposes, we will go back to the simplest case,
and show how LET arose in relation to the Edwards SCF.

It was argued by McComb [1], that a correct assignment of the
system response in terms of $T(k)$ (i.e. `correct’ in the
sense of agreeing with the turbulence phenomenology of energy
transfer)  could  lead  to  a  response  function  which  was
compatible with K41. This was found to be the case and, citing
the  form  given  in  [1],  we  may  write  for  the  turbulence
viscosity  $\nu_T(k)$:  \begin{equation}  \nu_T(k)=
k^{-2}\int_{j\geq  k}d^3  j  \frac{L(\mathbf{k,j})C(|\mathbf{k
j}|)[C(k)-C(j)]}{C(k)[\omega(k)+\omega(j)+\omega(|\mathbf{k-
j}|)]},\label{let-visc}\end{equation}  where  $\omega(k)  =
\nu_T(k) k^2$. The lower limit on the integral with respect to
$j$ arises when we consider the flux through mode $k$. It was
used  in  [1]  to  justify  wavenumber  expansions  leading  to
differential forms but is not needed here and can be omitted.
The interesting point here is made by rewriting this in terms



of the Edwards dynamical friction $r(k)$. From equation (5) in
the post on 3 November, rewritten as \[\omega(k)=\nu k^2 +
\nu_T(k)k^2 =\nu k^2 + r(k),\] we may rewrite (\ref{let-visc})
as:  \begin{equation}\nu_T(k)=  r(k)  –  k^{-2}\int  d^3  j
\frac{L(\mathbf{k,j})C(|\mathbf{k,j}|)C(j)}{C(k)[\omega(k)+\om
ega(j)+  \omega(|\mathbf{k-j}|)]}.  \label{let-visc-
rk}\end{equation}

It was shown [1] that the second term in the LET  response
equation  cancelled the divergence in $r(k)$ in the limit of
infinite Reynolds number. Hence the term which destroys the
Markovian nature of the renormalized perturbation theory is
the term which makes the theory compatible with the Kolmogorov
$-5/3$ spectrum.

In the next post we will consider the subject of almost-
Markovian models, where the term refers to the integrals over
time rather than to the energy transfer through wavenumber.

[1] W. D. McComb. A local energy transfer theory of isotropic
turbulence. J. Phys. A, 7(5): 632, 1974.
[2] M. S. Uberoi. Energy transfer in isotropic turbulence.
Phys. Fluids, 6:1048, 1963.
[3]  Arkadiusz  K.  Kuczaj,  Bernard  J.  Geurts,  and  W.  David
McComb.  Nonlocal  modulation  of  the  energy  cascade  in
broadband-forced  turbulence.  Phys.  Rev.  E,  74:16306-16313,
2006.
[4]  W.  D.  McComb.  A  theory  of  time  dependent,  isotropic
turbulence. J. Phys. A: Math. Gen., 11(3):613, 1978.
[5] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor., 50:375501, 2017.
[6]  J.  R.  Herring.  Self-consistent  field  approach  to
nonstationary  turbulence.  Phys.  Fluids,  9:2106,  1966.
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Turbulence theories are usually referred to by acronyms e.g.
DIA, SCF, ALHDIA, \dots, and so on. Here SCF is Herring’s
theory and, to avoid confusion, Herring and Kraichnan referred
to the Edwards SCF as EDW [1]. Later on, when I came to write
my first book on turbulence [2], I referred to it as EFP,
standing  for  `Edwards-Fokker-Planck’  theory.  This  seemed
appropriate as Edwards was guided by the theory of Brownian
motion. But it did not occur to me at the time that the
significance of this was that his theory was Markovian with
respect to interactions in wavenumber space; nor indeed that a
Markovian form was the common denominator in all three of the
pioneering Eulerian theories. In recent years, it did occur to
me that it was not necessary to be so prescriptive; and if one
took  a  less  constrained  approach  the  result  was  a  non-
Markovian theory, in fact the LET theory.

Following Edwards [3], we define a model system in terms of a
Gaussian distribution $P_0[\mathbf{u}]$, which is chosen such
that  it  is  normalised  to  unity  and  recovers  the  exact
covariance.  That  is:  \begin{equation}\int
\mathcal{D}\mathbf{u} \ P_0[\mathbf{u}] = 1,\end{equation} and
\begin{equation}\int \mathcal{D}\mathbf{u} \ P_0[\mathbf{u}]\
u_\mu(\mathbf{k},t)  u_\beta(\mathbf{k’},t’)  =  \langle
u_\alpha(\mathbf{k},t)
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u_\beta(\mathbf{k’},t’)\rangle=\delta(\mathbf{k}+\mathbf{k’})C
_{\alpha\beta}  \mathbf{k};t,t’)  \  ,\end{equation}
respectively. Then one solves the Liouville equation for the
exact  probability  distribution  in  terms  of  a  perturbation
series with $ P_0[\mathbf{u}]$ as the zero-order term. We will
not  go  into  further  details  here,  as  we  just  want  to
understand how the Edwards theory was constrained to give a
Markovian form.

Equations  (1)  and  (2)  introduce  the  two-time  covariance.
However,  in  order  to  explain  the  Edwards  theory,  we  will
consider the single-time case. Also, for sake of simplicity,
we  will  employ  the  reduced  notation  of  Herring,  as  used
extensively  by  Leslie  [4]  and  others  (see  [2]).  In  this
notation we represent the velocity field by $X_i$, where the
index is a combined wave-vector and cartesian tensor index
(i.e our $\mathbf{k}$ and $\alpha$). Accordingly, we introduce
the Edwards-Fokker-Planck operator as the sum of single-mode
operators, in the form: \begin{equation} L_{EFP} = -\omega_i
\frac{\partial}{\partial  X_i}\left(X_i  +  \phi_i
\frac{\partial}{\partial  X_i}\right),  \label{efp}
\end{equation} where $\omega_i$ is a renormalized eddy decay
rate and $\phi_i$ is the covariance of the velocity field,
such that \begin{equation} \phi_i =\int_{-\infty}^\infty X_i^2
P(X_i)dX_i, \end{equation} and $P$ is the exact distribution.
Then  it  is  readily  verified  that  the  model  equation:
\begin{equation}L_{EFP}P^{(F)}  =  0  \end{equation}  has  the
Gaussian  solution  \begin{equation}  P^{(F)}  =  \frac{e^{
X_i^2/2\phi_i}}{(2\pi\phi_i)^\frac{1}{2}}. \end{equation}

However,  it  is  important  to  note,  and  is  also  readily
verified, that a more general form of the operator $L_0$,
which is given by \begin{equation} L_0 = H(X_i)\left[X_i +
\phi_i  \frac{\partial}{\partial  X_i}\right],\end{equation}
where $H(X_i)$ is an arbitrarily chosen well behaved function,
also yields the same Gaussian solution for the zero-order
equation:  \begin{equation}L_0P_0  =0.\label{base-



op}\end{equation} Hence at this stage the operator $L_0$ is
not fully determined. Edwards was guided by an analogy with
the theory of Brownian motion and in effect made the choice
\begin{equation} H(X_i) = -\omega_i \frac{\partial}{\partial
X_i}, \end{equation}in order to generate a base operator which
could be inverted in terms of an eigenfunction expansion of
Hermite  polynomials.  In  this  process,  the  $\{\omega_i\}$
appeared as eigenvalues.

It is this specific choice which over-determines the basic
operator which constrained the Edwards theory to be Markovian.
More recently it was found that a more minimalist choice,
allied to a two-time representation, leads formally to the LET
theory [5]. We will consider a more physical basis for the LET
theory in the next post.

[1] J. R. Herring and R. H. Kraichnan. Comparison of some
approximations  for  isotropic  turbulence  Lecture  Notes  in
Physics, volume 12, chapter Statistical Models and Turbulence,
page 148. Springer, Berlin, 1972.
[2] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[3] S. F. Edwards. The statistical dynamics of homogeneous
turbulence. J. Fluid Mech., 18:239, 1964.
[4] D. C. Leslie. Developments in the theory of turbulence.
Clarendon Press, Oxford, 1973.
[5] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor., 50:375501, 2017
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Having shown that the Edwards theory is Markovian, our present
task is to show that Kraichnan’s DIA and Herring’s SCF are
closely related to the Edwards theory.
However, we should first note that, in the case of the DIA,
one can see its Markovian nature by considering its prediction
for $T(k,t)$, and this was pointed out by no less a person
than Kraichnan himself in 1959 [1]. We may quote the relevant
passage as follows:

‘The net flow is the resultant of these absorption and
emission terms. It will be noticed that in contrast to the
absorption  term,  the  emission  terms  are  proportional  to
$E(k)$. This
indicates  that  the  energy  exchange  acts  to  maintain
equilibrium.  If  the
spectrum level were suddenly raised to much higher than the
equilibrium
value in a narrow neighbourhood of $k$, the emission terms
would be
greatly increased while the absorption term would be little
affected,
thus  energy  would  be  drained  from  the  neighbourhood  and
equilibrium
re-established. The structure of the emission and absorption
terms is
such that we may expect the energy flow to be from strongly to
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weakly
excited modes, in accord with general statistical mechanical
principles.’

Note that the absorption term is what Edwards would call the
input to mode $k$ from all other modes, while the emission
term is the loss from mode $k$.

Kraichnan’s  argument  here  is  essentially  a  more  elaborate
version of that due to Edwards, and presents what is very much
a Markovian picture of turbulence energy transfer. But, in
later years, numerical experiments based on high-resolution
direct numerical simulations did not bear that picture out. In
particular, we note the investigation by Kuczaj et al [2].

Going back to the relationships between theories, in 1964
Kraichnan  [3]  showed  that  if  one  assumed  that  the  time-
correlation  and  response  functions  were  assumed  to  take
exponential  forms  (with  the  same  decay  parameter
$\omega(k,t)$), then the DIA reduced to the Edwards theory,
although with only two $\omega$s in the denominator of the
equation for $\omega$, rather than the three such parameters
as found in the Edwards case: see equations (4) and (5) in the
previous blog. Thus the arguments used to demonstrate the
Markovian nature of the Edwards theory do not actually work
for the single-time stationary form of DIA. See also [4],
Section 6.2.6. All we establish by this procedure is that the
theories are cognate: that is, they have identical equations
for the energy spectrum and similar equations for the response
function.

Herring’s SCF has been discussed at some length in Section 6.3
of the book [4]. In time-independent form, it is identical to
the  DIA  with  assumed  exponential  time-dependences.  The
relationship between the two theories can also be demonstrated
for the two-time case. The case for the SCF being classified
as  Markovian  seems  strong  to  me.  However,  there  is  some
additional evidence from other self-consistent field theories.



Balescu and Senatorski [5] actually formulated the problem in
terms of a master equation and then treated it perturbatively.
Summation of certain classes of diagrams led to the recovery
of Herring’s SCF. For completeness, we should also mention the
work of Phythian [6], whose self-consistent method resembled
those of Edwards and Herring. However his introduction of a
infinitesimal response function, like that of DIA, meant that
his theory ended up re-deriving the DIA equations.

In the next post we will examine the question of how the
Edwards theory came to be Markovian. In particular, we will
answer the question: what were the relevant assumptions made
by Edwards?

[1] R. H. Kraichnan. The structure of isotropic turbulence at
very high Reynolds numbers. J. Fluid Mech., 5:497-543, 1959.
[2]  Arkadiusz  K.  Kuczaj,  Bernard  J.  Geurts,  and  W.  David
McComb.  Nonlocal  modulation  of  the  energy  cascade  in
broadband-forced  turbulence.  Phys.  Rev.  E,  74:16306-16313,
2006.
[3] R. H. Kraichnan. Approximations for steady-state isotropic
turbulence. Phys. Fluids, 7(8):1163-1168, 1964.
[4]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
[5] R. Balescu and A. Senatorski. A new approach to the theory
of fully developed turbulence. Ann.Phys(NY), 58:587, 1970.

[6]  R.  Phythian.  Self-consistent  perturbation  series  for
stationary homogeneous
turbulence. J.Phys.A, 2:181, 1969.
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The non-Markovian nature of turbulence 4: the Edwards energy
balance as a Master Equation.

In this post we will rely on the book [1] for background
material and further details. We begin with the well-known Lin
equation  for  the  energy  spectrum  in  freely  decaying
turbulence,  thus:  \begin{equation}\label{Lin}\frac{\partial
E(k,t)}{\partial t}= T(k,t) – 2\nu k^2 E(k,t),\end{equation}
where $T(k,t)$ is the transfer spectum: see [1] for further
details. This equation is the Fourier transform of the better
known Karman-Howarth equation in real space. But, although the
KHE is a local energy balance in the separation of measuring
points $r$, the Lin equation is not actually a local energy
balance  in  wavenumber  space  since  the  transfer  spectrum
depends  on  an  integral  of  the  triple-moment  over  all
wavenumbers.  For  explicit  forms,  see  [1].

The energy spectrum is defined in terms of the covariance in
wavenumber  space  (or  spectral  density)  by  the  well-known
relation:  \begin{equation}  \label{spect}E(k,t)=  4\pi
k^2C(k,t),\end{equation} but in theory it is more usual to
work  in  terms  of  the  latter  quantity,  and  accordingly  we
transform  (\ref{Lin})  into
\begin{equation}\label{covlin}\frac{\partial  C(k,t)}{\partial
t}= \frac{T(k,t)}{4\pi k^2} – 2\nu k^2 C(k,t),\end{equation}.
The Edwards statistical closure for the transfer spectrum may
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be written as:\begin{equation}\label{sfecov}\frac{T(k,t)}{4\pi
k^2}=2\int  d^3  j\frac{  L(k,j)C(|\mathbf{k}-
\mathbf{j}|,t)\{C(j,t)-
C(k,t)\}}{\omega(k,t)+\omega(j,t)+\omega(|\mathbf{k}-
\mathbf{j}|,t)},\end{equation} where $L(k,j)=L(j,k)$ and the
inverse  modal  response  time  is  given  by:
\begin{equation}\label{sferesponse}\omega(k,t)=\nu k^2 + \int
d^3  j\frac{  L(k,j)C(|\mathbf{k}-
\mathbf{j}|,t)}{\omega(k,t)+\omega(j,t)+\omega(|\mathbf{k}-
\mathbf{j}|,t)}.\end{equation}  This  controls  the  loss  of
energy from mode $k$, while the term giving the gain to mode
$k$  from  all  the  other  modes  takes  the  form:
\begin{equation}\label{sfegain}S(k,t)=2\int  d^3  j\frac{
L(k,j)C(|\mathbf{k}-
\mathbf{j}|,t)C(j,t)}{\omega(k,t)+\omega(j,t)+\omega(|\mathbf{
k}-\mathbf{j}|,t)}.\end{equation} Then, the Edwards form for
the  transfer  spectral  density  may  be  written
as:\begin{equation}\label{sfetrans}\frac{T(k,t)}{4\pi
k^2}=S(k,t)-2\omega(k,t)C(k,t),\end{equation}  and  from
(\ref{covlin})  the  Edwards  theory  gives  the  Lin  equation
as:\begin{equation}\label{sfecovlin}\frac{\partial
C(k,t)}{\partial t}=S(k,t)-2\omega(k,t)C(k,t).\end{equation}

Our next step is to compare this to the Master Equation and
for simplicity we will consider a quantum system which can
exist  in  any  one  of  a  large  number  of  discrete  states
$|i\rangle$, where $i$ is a positive integer. The relevant
equation is the Fermi master equation (see Section 9.1.2 of
the  book  [2]),  which  may  be  written  as:
\begin{equation}\label{fermi}\frac{d  p_i}{d  t}=
\sum_{j}\nu_{ij}  p_j  –  \left\{\sum_j
\nu_{ij}\right\}p_i,\end{equation}  where:  $p_i$  is  the
probability  of  the  system  being  in  state  $|i\rangle$;
$\nu_{ij}$ is the conditional probability per unit time of the
system jumping from state $|i\rangle$ to state $|j\rangle$;
and  the  principle  of  jump  rate  symmetry  gives  us
$\nu_{ij}=\nu_{ji}$.



Either from this comparison with the Fermi master equation or
from  comparison  with  other  master  equations  such  as  the
Boltzmann equation, it is clear that the Edwards theory of
turbulence is a Markovian approximation to turbulence which is
itself non-Markovian. The two questions which now arise are:
first, what are the implications for the other closures due to
Kraichnan and to Herring? And, secondly, how did the Markovian
nature of the Edwards theory come about? These will be dealt
with in the next two posts?

[1]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
[2] W. David McComb. Study Notes for Statistical Physics: A
concise,  unified  overview  of  the  subject.  Bookboon,  2014.
(Free to download from Bookboon.com)
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The non-Markovian nature of turbulence 3: the Master Equation.

In the previous post we established that the ‘loss’ term in
the transport equation depends on the number of particles in
the  state  currently  being  studied.  This  followed
straightforwardly  from  our  consideration  of  hard-sphere
collisions. Now we want to establish that this is a general
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consequence of a Markov process, of which the problem of $N$
hard spheres is a particular example.

We follow the treatment given in pages 162-163 of the book [1]
and consider the case of Brownian motion, as this is relevant
to the Edwards self-consistent field theory of turbulence. We
again consider a multipoint joint probability distribution and
now consider a continuous variable $X$ which takes on specific
values  $x_1$  at  time  $t_1$,  $x_2$  at  time  $t_2$,  and  in
general $x_n$ at time $t_n$; thus; \[f_n(x_1,t_1; x_2,t_2;
\dots  x_n,t_n).\]  We  then  introduce  the  conditional
probability  density:  \[p(x_1,t_1|x_2,t_2),\]  which  is  the
probability density that $X=x_2$ at $t=t_2$, given that $X$
had the value $X=x_1$ when $t=t_1\leq t_2$. It is defined by
the  identity:
\begin{equation}f_1(x_1,t_1)p(x_1,t_1|x_2,t_2)=f_2(x_1,t_1;
x_2,t_2).\label{pdef}\end{equation}

From  this  equation  (see  [1]),  we  can  obtain  a  general
relationship  between  the  single-particle  probabilities  at
different  times  as:  \begin{equation}f_1(x_2,t_2)=\int
p(x_1,t_1|x_2,t_2)f_1(x_1,t_1)dx_1.
\label{pprop}\end{equation}

Next we formally introduce the concept of a Markov process. We
now define this in terms of the conditional probabilities. If:
\begin{equation}p(x_1,t_1;x_2,t_2;  \dots
n_{n-1},t_{n-1}|x_n,t_n)=p(n_{n-1},t_{n-1}|x_n,t_n),\label{mar
kdef}\end{equation}then the current step depends only on the
immediately preceding step, and not on any other preceding
steps. Under these circumstances the process is said to be
Markovian.

It  follows  that  the  entire  hierarchy  of  probability
distributions  can  be  constructed  from  the  single-particle
distribution  $f_1(x_1,t_1)$  and  the  transition  probability
$p(x_1,t_1|x_2,t_2)$.  The  latter  quantity  can  be  shown  to
satisfy  the  Chapman-Kolmogorov  equation:



\begin{equation}p(x_1,t_1|x_3,t_3)=\int
p(x_1,t_1|x_2,t_2)p(x_2,t_2|x_3,t_3)
dx_2,\label{ck}\end{equation}  indicating  the  transitive
property of the transition probability.

It is of interest to consider two specific cases.

First, for a chain which has small steps between events, the
integral relation (\ref{ck}) can be turned into a differential
equation by expanding the time dependences to first order in
Taylor  series.  Putting  $f_1  =  f$  for  simplicity,  we  may
obtain:  \begin{equation}\frac{\partial  f(x_2,t_2)}{\partial
t}=\int\,  dx_1\left\{W(x_1,x_2)f(x_1,t)-
W(x_2,x_1)f(x_2,t)\right\},  \label{me}\end{equation}  where
$W(x_1,x_2)$ is the rate per unit time at which transitions
from state $x_1$ to state $x_2$ take place. This is known as
the master equation.

Secondly,  if  $X$  is  a  continuum  variable,  we  can  further
derive  the  Fokker-Planck  equation  as:  \begin{equation}
\frac{\partial  f(x,t)}{\partial  t}=  \frac{\partial
[A(x)f(x,t)]}{\partial  x}  +
\frac{\frac{1}{2}\partial^2[B(x)f(x,t)]}{\partial  x^2}.
\label{fp}\end{equation} This equation describes a random walk
with  diffusivity  $B(x)$  and  friction  damping  $A(x)$.  A
discussion of this equation as applied to Brownian motion may
be found on pages 163-164 of [1] but we will not pursue that
here.

In  the  next  post  we  will  discuss  the  Edwards  theory  of
turbulence (and by extension the other pioneering theories of
Kraichnan and of Herring) in the context of the present work.

[1] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press 1990.
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The non-Markovian nature of turbulence 2: The influence of the
kinetic equation of statistical physics.

The pioneering theories of turbulence which we discussed in
the previous post were formulated by theoretical physicists
who  were  undoubtedly  influenced  by  their  background  in
statistical  physics.  In  this  post  we  will  look  at  one
particular aspect of this, the Boltzmann equation; and in the
next post we will consider the idea of Markov processes more
explicitly.

For  many  people,  a  Markov  process  is  associated  with  the
concept of a random walk, where the current step depends only
on  the  previous  one  and  memory  effects  are  unimportant.
However,  for  our  present  purposes,  we  will  need  the  more
general formulation as developed in the context of the kinetic
equations  of  statistical  mechanics.  A  reasonably  full
treatment of this topic may be found in chapter four of the
book [1], along with some more general references. Here we
will only need a brief summary, as follows.

We begin with a system of $N$ particles satisfying Hamilton’s
equations (e.g. a gas in a box). We take this to be spatially
homogeneous, so that distributions depend only on velocities
and not on positions. Conservation of probability implies the
exact  Liouville  equation  for  the  $N$-particle  distribution
function $f_N$, but in practice we would like to have the
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single-particle distribution $f_1(u,t)$. If we integrate out
independent  variables  progressively,  this  leads  to  a
statistical hierarchy of governing equations, in which each
reduced distribution depends on the previous member of the
hierarchy: a closure problem!

The hierarchy terminates with an equation for the single-point
distribution $f_1$ in terms of the two-particle distribution
$f_2$. This is known as the kinetic equation. The kinetic
equation  for  $f_1(x,u,t)$  may  be  written  as:
\begin{equation}\frac{\partial f_1}{\partial t} + (u.\nabla)
f_1 =\{\mbox{Term involving}\, f_2\}, \end{equation} where $x$
is the position of a single particle, $u$ is its velocity, and
$\nabla$ is the gradient operator with respect to the variable
$x$. If we follow Boltzmann and model the gas molecules as
hard spheres, then we can assume that the right hand side of
the equation is entirely due to collisions. Accordingly, we
may  write  the  kinetic  equation  as:
\begin{equation}\frac{\partial  f}{\partial  t}  =
\left(\frac{\partial  f}{\partial  t}\right)_{collisions},
\end{equation} where the convective term vanishes because of
the  previously  assumed  homogeneity.  Also,  we  drop  the
subscript `$1$’ as we will only be working with the single-
particle distribution.

Now let us consider the basic physics of the collisions. We
assume that three-body collisions are unlikely and restrict
our attention to the two-body case. Assume we have a collision
in which a particle with velocity $u$ collides with another
particle moving with velocity $v$, resulting in two particles
with velocities $u’$ and $v’$. Evidently this represents a
loss of one particle from the set of particles with velocity
$u$. Conversely, the inverse two-body collision can result in
the gain of one particle to the state $u$. Hence we may
interpret  the  right  hand  side  of  (2)  as:
\begin{equation}\left(\frac{\partial  f}{\partial
t}\right)_{collisions} = \mbox{Rate of gain to state}\,u\,-



\mbox{Rate of loss from state}\,u. \end{equation}

The  right  hand  side  can  be  calculated  using  elementary
scattering  theory,  along  with  the  assumption  of  molecular
chaos or stossahlansatz, in the form $f_2=f_1f_1$; with the
result  that  equation  (1)  becomes:  \begin{equation}
\frac{\partial f(u,t)}{\partial t} = \int dv \int d\,\omega
\,\sigma_d\,|u-v|  \{f(u’,t)f(v’,t)  –
f(v,t)f(u,t)\},\end{equation}  where  $\sigma_d$  is  the
differential  scattering  cross-section,  the  integral  with
respect  to  $\omega$  is  over  scattering  angles,  and  the
integral with respect to $v$ stands for integration over all
dummy velocity variables.

This is the Boltzmann equation and its key feature from our
present point of view is that the rate of loss of particles
from the state $u$ depends on the number in that state, as
given by $f(u,t)$. We will develop this further in the next
post as being a general characteristic of Markovian theories.
Of  course  the  present  treatment  is  rather  sketchy,  but  a
pedagogic discussion can be found in the book [2], which is
free to download from Bookboon.com.

[1] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press 1990.
[2] W. David McComb. Study Notes for Statistical Physics: A
concise, unified overview of the subject. Bookboon, 2014.
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The non-Markovian nature of turbulence 1: A puzzling aspect of
the pioneering two-point closures.

When I began my postgraduate research on turbulence in 1966,
the field had just gone through a very exciting phase of new
developments.  But  there  was  a  snag.  These  exciting  new
theories which seemed so promising were not quite correct.
They had been found to be incompatible with the Kolmogorov
spectrum.

This realisation had come about in stages. When Kraichnan
published his pioneering paper in 1959 [1], he carried out an
approximate analysis and concluded that his new theory (the
direct interaction approximation, or DIA as it is universally
known)  predicted  an  inertial  range  energy  spectrum
proportional  to  $k^{-3/2}$.  He  also  concluded  that  the
experimental  results  available  at  the  time  were  not
sufficiently accurate to distinguish between his result and
the  well-known  Kolmogorov  $k^{-5/3}$  form.  However,  this
situation had changed by 1962, with the publication of the
remarkable results of Grant et al [2], which exhibited a clear
$-5/3$ power law over many decades of wavenumber range.

In  1964,  Edwards  published  a  self-consistent  field  theory
which, unlike Kraichnan’s DIA, was restricted to single-time
correlations [3]. This too turned out to be incompatible with
the Kolmogorov spectrum [4]. Edwards attributed the problem to
an infra-red divergence in the limit of infinite Reynolds
number  which,  although  a  different  explanation  from
Kraichnan’s, at least also suggested that the problem was
associated with low wavenumber behaviour. In 1965, Herring
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published  a  self-consistent  field  theory  [5],  which  was
comparable to that of Edwards, although the equation for the
renormalized viscosity differed slightly, but not sufficiently
to eliminate the infra-red divergence. In passing, I would
note  that  Herring’s  self-consistent  field  method  was  more
general than that of Edwards, and that is a point which I will
refer to in later posts in the present series. Also, for
completeness, I should mention that Herring later extended his
theory to the two-time case and this was found to be closely
related to the DIA of Kraichnan [6].

Kraichnan, in a series of papers, responded to this situation
by developing variants of his method in Lagrangian coordinates
(later  on,  in  collaboration  with  Herring);  and  later
Lagrangian methods were introduced by Kaneda, Kida & Goto, and
most  recently  Okumura.  My  own  approach  began  in  1974,  in
correcting the Edwards theory, which involved the introduction
of the local energy transfer (LET) theory and retained the
Eulerian  coordinate  system.  All  of  these  theories  are
compatible  with  the  Kolmogorov  spectrum.

My  point  now,  is  really  one  of  taxonomy,  although  it  is
nonetheless fundamental for all that. How should we classify
the theories in order to distinguish between those which are
compatible with Kolmogorov and those which are not? In my 1990
book [7], I resorted to the pragmatic classification: Theories
of the first kind and Theories of the second kind; along with
a nod to a popular film title! Actually, in recent times, the
answer to this question has become apparent, along with the
realisation that it has been hiding in plain sight all this
time. The clue lies in the Edwards theory and that is the
aspect that we shall develop in this series of posts.

The discussion above does not do justice to everything that
was going on in this field in the 1960/70s. For instance, I
could have mentioned the formalism of Wyld and the well-known
EDQNM. Discussions of these, and many more, will be found in
my book cited above as [7]. Also, the most recent significant



research papers in this field are McComb & Yoffe [8] in 2017
and Okamura [9] in 2018.

[1] R. H. Kraichnan. The structure of isotropic turbulence at
very high Reynolds numbers. J. Fluid Mech., 5:497{543, 1959.
[2] H. L. Grant, R. W. Stewart, and A. Moilliet. Turbulence
spectra from a tidal channel. J. Fluid Mech., 12:241-268,
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Work in progress.
Work in progress.

In my blog of 13 August 2020 I posted a `to-do list’ that
dated from November 2009. None of these jobs ever got done,
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because other jobs cropped up which had greater priority. I’m
fairly confident that this won’t happen with my current `to-do
list’ as I see all these jobs as very important and, in a
sense, as rounding off my lifetime’s work in turbulence. The
list follows below:

[A] Extension of my 2009 analysis of the Kolmogorov spectrum
for the stationary case [1] to the case of free decay. It has
become increasingly clear in recent years that there are non-
trivial  differences  between  stationary  isotropic  turbulence
and freely decaying isotropic turbulence (and grid-generated
turbulence  is  something  else  again!).  As  this  analysis
expresses the pre-factor (i.e. the Kolmogorov constant) in
terms of an average over the phases of the system, it is of
interest to see whether the peculiarities of free decay affect
the pre-factor or the power law (or indeed both).

[B] Turbulent inertial transfer as a non-Markovian stochastic
process and the implications for statistical closures. In 1974
[2] I diagnosed the failure of the Edwards single-time theory
(and by extension Kraichnan’s two-time DIA) as being due to
their dividing the transfer spectrum into input and output.
The basis of my local energy transfer (LET) theory was to
recognise  that  at  some  wavenumbers  the  entire  transfer
spectrum behaved as an input while at other wavenumbers it
behaved as an output. Subsequently I extended the LET theory
to the two-time case by heuristic methods and this formulation
was developed by myself and others over many years. However in
2017  [3,  4]  I  extended  the  general  self-consistent  field
method of Sam Edwards to the two-time case and re-derived the
LET in a more formal way. However, the puzzle was this: why
did  the  Edwards  procedure  give  the  wrong  answer  for  the
single-time case, but not for the two-time case? I realised at
the time (i.e. in 2017) that Edwards had over-determined his
base  distribution  and  that  his  base  operator  was  of
unnecessarily high order (see [4]), but it was only recently
that the penny dropped and I realised that by specifying the



Fokker-Planck operator, Sam had effectively made a Markovian
approximation. This needs to be written up in detail in the
hope of throwing some light on the behaviour of statistical
closure theories and that is my most urgent task. Please note
that the letter `M’ in EDQNM refers to the fact that it is
Markovian in time.

[C]  Characteristic  decay  times  of  the  two-time,  two-point
Eulerian  correlation  function  and  the  implications  for
closures.  This  is  a  very  old  topic  which  still  receives
attention: for instance, see [5, 6]. I have intended to get to
grips with this for many years, as I have some concerns about
the way that it is applied to statistical closures, beginning
with the work of Kraichnan on DIA. One suspicion that I have
is that the form of scaling is different in the stationary and
freely-decaying  cases;  but  I  have  not  seen  this  point
mentioned  in  the  literature.

[D] Reconsideration of renormalization methods in the light of
the transient behaviour of the Euler equation. I have posted
five blogs with remarks on this topic, beginning on the 19 May
2022. My intention now is to combine these remarks into some
more or less coherent analysis, as I believe they support my
long-held suspicion (more suspicion!) that there are problems
with the way in which stirring forces are used in formulating
perturbation  theories  of  the  Navier-Stokes  equations.  Of
course it is natural to study a dynamical system subject to a
random force, but in the case of turbulence the force creates
the system as well as sustaining it against dissipation.

This programme should keep me pretty busy so I don’t expect to
post blogs over the next month or two. However, by the autumn
I hope to return to at least intermittent postings.
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Turbulence renormalization and the Euler equation: 5

In the preceding posts we have discussed the fact that the
Euler  equation  can  behave  like  the  Navier-Stokes  equation
(NSE) as a transient for sufficiently short times [1], [2]. It
has been found that spectra at lower wavenumbers are very
similar to those of turbulence, and there appears to be a
transfer  of  energy  to  the  `thermal’  modes  at  higher
wavenumbers.  This  raises  some  rather  intriguing  questions
about the general class of renormalized perturbation theories
which  are  often  interpreted  as  renormalizing  the  fluid
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viscosity.  As  these  theories  are  broadly  in  quite  good
qualitative  and  quantitative  agreement  with  the  observed
behaviour of the NSE, they should also be in good agreement
with the spectrally-truncated Euler equation, which of course
is inviscid. So in this case there is nothing to renormalize!

In effect this latter point has already been demonstrated, in
that [1] was based on direct numerical simulation of the Euler
equation and [2] used the EDQN model with the viscosity set
equal to zero. So this raises doubts about the concept of a
renormalized fluid viscosity as an interpretation of the two-
point statistical closure theories. As indicated at the end of
the previous post, it may be helpful to consider a case where
the renormalization of the fluid viscosity is central to the
method and therefore unambiguous. This is provided by the
application of renormalization group (RG) to turbulence. A
background discussion of this method may be found in [3] and a
schematic outline was given in my blog post of 7 May 2020.
Here we will just summarise a few points.

Consider isotropic turbulence with wavenumber modes in the
range $0\leq k\leq k_{max}$. The basic idea is to average out
the modes with $k_1\leq k \leq k_{max}$, while keeping those
modes with $0\leq k\leq k_1$ constant. It should be emphasised
that such an average is a $\emph{conditional}$ average: it is
not the same as the usual ensemble or time average. Once
calculated,  this  average  can  be  added  to  the  molecular
viscosity in order to represent the effect of the eliminated
modes by an effective viscosity on the retained modes. Then
the  variables  are  all  scaled  (Kolmogorov  scaling)  on  the
increased viscosity; and the process repeated for a new cut-
off wavenumber $k_2< k_1$; and so on, until the effective
viscosity ceases to change. The result is a scale-dependent
renormalized viscosity.

Now this appears to round off my series of posts on this topic
quite well. There is no viscosity in the Euler equation and so
we do not have a starting point for RG. It is as simple as



that. Any attempt to categorise the energy sink provided by
the equilibrium modes by an effective viscosity still does not
appear to provide a starting point for RG. On the other hand,
unlike in the so-called renormalized perturbation theories,
there  is  no  question  about  the  fact  that  the  kinematic
viscosity of the fluid is renormalized.

My overall conclusion is a rather vague and open-ended one.
Namely,  that  it  would  be  interesting  to  consider  all  the
renormalization  approaches  to  turbulence  very  much  in  the
context of how they look when applied to the Euler equation as
well as the NSE, and I hope to make this the subject of
further work. Lastly, before finishing I should enter a caveat
about RG and also correct a typographical error.

$\emph{Caveat}$: The choice of the wavenumber $k_{max}$ is
crucial. The pioneering applications of RG to random fluid
motion chose it to be small enough to exclude the turbulence
cascade and found a trivial fixed point as $k \rightarrow 0$.
This choice rendered the conditional average trivial, as it
restricted  the  formulation  to  perturbation  theory  using
Gaussian  averages,  and  of  course  Gaussian  distributions
factorize.  Unfortunately  many  supposed  applications  to  NSE
turbulence also treated the conditional average as trivial. In
fact one must choose $k_{max}$ to be large enough to capture
all the dissipation, at least to a good approximation.

$\emph{Correction}$: The last word of the first paragraph of
my  post  on  19  May  2022  should  have  been  `viscosity’  not
velocity. The correction has been made online.
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In the previous post we mentioned that Kraichnan’s DIA theory
[1] and Wyld’s [2] diagrammatic formalism both depended on the
use of an externally applied stirring force to define the
response function. This is also true of the later functional
formalism of Martin, Siggia and Rose [3]. Both formalisms
agree with DIA at second order, and a general discussion of
these matters can be found in references [4] and [5]. We also
pointed out that this use of applied forces poses problems for
the Euler equation. This is because the absence of viscosity
means that the kinetic energy will increase without limit.
That of course is the reason why numerical studies are limited
to the spectrally truncated Euler equation, where the modes
are restricted to $0\leq k\leq k_{max}$. So the fact that the
Euler  equation  can  behave  like  the  Navier-Stokes  equation
(NSE) in a transient way not only raises questions about the
interpretation of renormalized perturbation theory (RPT) as a
renormalization of the molecular viscosity, it also raises
doubts about the use of external forces to develop the RPT in
the first place.

In the investigations of Cichowlas \emph{et al} [6] and Bos
and Bertoglio [7], as discussed in the first of this series of
posts on 19 May, the system was given a finite amount of
energy which it then redistributed among the modes. For modes

https://blogs.ed.ac.uk/physics-of-turbulence/2022/06/09/turbulence-renormalization-and-the-euler-equation-4/
https://blogs.ed.ac.uk/physics-of-turbulence/2022/06/09/turbulence-renormalization-and-the-euler-equation-4/


with $k\leq k_{th}$, an NSE-like cascade was observed, with a
Kolmogorov  spectrum;  while  for  $k\geq  k_{th}$  the  $k^2$
equipartition spectrum was observed. Obviously, in the absence
of viscosity the total energy is constant and the system must
move to equipartition for all values of wavenumber. Thus the
value of $k_{th}$ separating the two forms of behaviour must
tend to zero in, it is reasonable to assume, a finite time.

If we applied stirring forces to the spectrally truncated
Euler equation, such that they constituted an energy input at
low modes at a rate $\varepsilon_W$, then in the absence of
viscosity this could be balanced by a form of dissipation to
the equipartition modes, where the energy contained in these
modes  is  given  by\begin{equation}
E_{th}(t)=\int_{k_{th}}^{k_{}max}\,E(k,t) \,dk, \end{equation}
and the dissipation rate by \begin{equation} \varepsilon(t)=
dE_{th}(t)/dt,\end{equation}  as  discussed  in  reference  [6].
Evidently as time goes on, $k_{th}$ will decrease to some
minimum value, which would be determined by the peakiness of
the input spectrum near the origin, and after that the total
energy would increase without limit.

The only way one could maintain a quasi-NSE form of behaviour
in the presence of an input term would be by increasing the
value of $k_{max}$ and ultimately taking $k_{max} = \infty$.
This naturally rules out numerical simulation but possibly
some form of limit could be investigated numerically, rather
as the infinite Reynolds number limit can be established in
numerical simulations. Cichowlas \emph{et al} [6] introduced
an analogue of the Kolmogorov dissipation wavenumber $k_d$
such  that  \begin{equation}  k_d  \sim
\left(\frac{\varepsilon}{E_{th}^{3/2}}\right)^{1/4}k_{max}^{3/
4}.\end{equation} This raises the possibility that taking the
limit of $k_{max} \rightarrow \infty$ would correspond to the
infinite Reynolds number limit which is $\lim \nu \rightarrow
0$  such  that  $\varepsilon_W  =  constant$,  leading  to  $k_d
\rightarrow \infty$



I will extend the discussion to the use of Renormalization
Group (RG) in the next post. In the meantime, for sake of
completeness  I  should  mention  that  there  is  a  school  of
activity in which RPTs are derived in Lagrangian coordinates.
The  latest  developments  in  this  area,  along  with  a  good
discussion of its relationship to Eulerian theories, can be
found in the paper by Okamura [8].
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In the previous post we saw that the mean-field and self-
consistent assumptions/approximations are separate operations,
although often referred to in the literature as if they could
be  used  interchangeably.  We  also  saw  that  the  screened
potential in a cloud of electrons could be interpreted as a
Coulomb potential due to a renormalized charge. This type of
interpretation was not immediately obvious for the magnetic
case  and  indeed  a  much  more  elaborate  statistical  field
theoretic approach would be needed to identify an analogous
procedure in this case. It will be helpful to keep these
thoughts in mind as we consider the theoretical approach to
turbulence by Kraichnan in his DIA theory [1] in 1959. The
other two key theories we shall consider are the diagrammatic
method of Wyld [2] and the self-consistent field method of
Edwards  [3].  In  what  follows,  we  will  adopt  a  simplified
notation. Fuller details may be found in the books [4] or [5].

Kraichnan  considered  an  infinitesimal  fluctuation  $\delta
f(k,t)$ in the driving forces producing a fluctuation in the
velocity field $\delta u(k,t)$. He then differentiated the NSE
with respect to $f$ to obtain a governing equation for $\delta
u$, with exact solution: \[\delta u(k,t) = \int_{-\infty}^t
\hat{G}(k;t,t’) \delta f(k,t’)dt’,\] where $\hat{G}$ is the
infinitesimal response function. In this work Kraichnan made
use  of  a  mean-field  assumption,  viz.  \[\langle
\hat{G}(t,t’)u(t)u(t’)\rangle  =  \langle\hat{G}(t,t’)\rangle
\langle u(t)u(t’)\rangle = G(t,t’) \langle u(t)u(t’)\rangle,\]
where  $G$  is  the  response  function  that  is  used  for  the
subsequent perturbation theory.

For perturbation theory, a book-keeping parameter $\lambda$
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(ultimately set equal to unity) is introduced to mutliply the
nonlinear term and $G$ is expanded in powers of $\lambda$,
thus:  \[G(t,t’)=  G_0(t,t’)+\lambda  G_1(t,t’)  +  \lambda^2
G_2(t,t’)  +  \dots\]  For  the  zero-order  term,  we  set  the
nonlinear term in the Navier-Stokes equation (NSE) equal to
zero and the exact solution is: \[ G_0(k,t-t’) = \exp[-\nu
k^2(t-t’)],\quad\mbox{for}\quad t\geq t’;\] where we have now
introduced  stationarity.  This  is  the  viscous  response
function. So the technique is to calculate an approximation to
the exact response function by means of partial summations of
the perturbation series to all orders. This can be thought of
as renormalizing the viscosity and that interpretation emerges
more clearly in the diagrammatic method of Wyld [2].

The work of Wyld is a very straightforward analysis of the
closure problem using conventional perturbation theory and a
field-theoretic  approach.  It  has  received  criticism  and
comment  over  the  years  but  the  underlying  problems  are
procedural and are readily addressed [6]. From our point of
view the pedagogic aspects of his formalism are attractive and
it is beyond dispute that at second-order of renormalized
perturbation theory his results verify those of Kraichnan.
This is an important point as Wyld’s method does not involve a
mean-field approximation.

At this stage it is clear that these two approaches cannot be
directly  applied  to  the  Euler  equation  as  there  is  no
viscosity,  and  indeed  the  idea  of  forcing  it  would  raise
questions which we will not explore here. The interesting
point here is that the Edwards self-consistent method does not
rely  explicitly  on  viscosity;  nor,  in  the  absence  of
viscosity, does it require stirring forces. Essentially it
involves a self-consistent solution of the Liouville equation
for the probability distribution of the velocities and, as it
was applied to the forced NSE, it actually does involve both
viscosity and stirring. Indeed it is known to be cognate with
both the Kraichnan and the Wyld theories [4], [5]. Hence, like



them it can be interpreted in terms of a renormalization of
the viscosity.

These three theories, and other related theories, are all
Markovian with respect to wavenumber (as opposed to time). The
exception is the Local Energy Transfer (LET) theory [7], which
does not divide the nonlinear energy transfer spectrum into
input and output parts. Recently it has been found that the
application of the Edwards self-consistent field method to the
case of two-time correlations leads to a non-Markovian (in
wavenumber) theory which has the response function R(t,t’)
determined  by:\[R(t,t’)  =  \left\langle
u(t)\tilde{f}(t’)\right\rangle_{0},\] where $\tilde{f}(t)$ is
a quasi-entropic force derived from the base distribution and
the subscript 0 denotes an average against that distribution.
As pointed out in [8], the tilde distinguishes the quasi-
entropic force from the stirring force $f$. Edwards showed
that $\langle uf\rangle$ was the rate of doing work by the
stirring  forces  on  the  velocity  field,  whereas  the  new
quantity $\langle u\tilde{f}\rangle$ determines the two-time
response. It would seem that the LET theory can be applied
directly to the Euler equation and this is something I hope to
report on in the near future.
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In the early 1970s, my former PhD supervisor Sam Edwards asked
me  to  be  the  external  examiner  for  one  of  his  current
students. It was only a few years since I had been on the
receiving end of this process so naturally I approached the
task in a merciful way! Anyway, if memory serves, the thesis
was about a statistical theory of surface roughness and it
cited  various  papers  that  applied  methods  of  theoretical
physics to practical engineering problems such as properties
of polymer solutions, stochastic behaviour of structures and
(of course) turbulence. To me this crystallized a problem that
was then troubling me. If you regarded yourself as belonging
to this approach (and I did), what would you call it? The
absence  of  a  recognisable  generic  title  when  filling  in
research grant applications or other statements about one’s
research seemed to be a handicap.

Ultimately I decided on the term renormalization methods but
the term renormalization did not really come into general use,
even in physics, until the success of renormalization group
(or RG) in the early 1980s. Actually, the common element in
these problems is that one is dealing with systems where the
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degrees  of  freedom  interact  with  each  other.  So,  another
possible title would be many-body theory. We can also expect
to observe collective behaviour, which is another possible
label. We will begin by looking briefly at two pioneering
theories  in  condensed  matter  physics,  as  comparing  and
contrasting these will be helpful when we go on to the theory
of turbulence.

We begin with the Weiss theory of ferromagnetism which dates
from 1907 (see Section 3.2 of [1]), in which a piece of
magnetic material was pictured as being made up from tiny
magnets at the molecular level. This predates quantum theory
and nowadays we would think in terms of lattice spins. There
are two steps in the theory. First there is the mean field
approximation.  Weiss  considered  the  effect  of  an  applied
magnetic  field  $B$  producing  a  magnetization  $M$  in  the
specimen, and argued that the tendency of spins to line up
spontaneously would lead to a molecular field $B_m$, such that
one could expect an effective field $B_E$, such that: \[B_E =
B + B_m.\] This is the mean-field approximation.

Then Weiss made the assumption \[B_m\propto M.\] This is the
self-consistent approximation. Combining the two, and writing
the  magnetization  as  a  fraction  of  its  saturation  value
$M_\infty$, an updated treatment gives: \[\frac{M}{M_\infty}=
\tanh\left[\frac{JZ}{kT}\frac{M}{M_\infty}\right],\] where $J$
is  the  strength  of  interaction  between  spins,  $Z$  is  the
number of nearest neighbours of any one spin, $k$ is the
Boltzmann constant and $T$ is the absolute temperature. This
expression can be solved graphically for the value of the
critical temperature $T_C$: see [1].

Our second theory dates from 1922 and considers electrons (in
an electrolyte, say) and evaluates the effect all the other
electrons on the potential due to any one electron. For any
one electron in isolation, we have the Coulomb potential,
thus: \[V(r)\sim \frac{e}{r}\] where $e$ is the electronic
charge and $r$ is distance from the electron. This theory too



has mean-field and self-consistent steps (see [1] for details)
and leads to the so-called screened potential, \[V_s(r) \sim
\frac{e \exp[-r/l_D]}{r},\] where $l_D$ is the Debye length
and depends on the electronic charge and the number density of
electrons.  This  potential  falls  off  much  faster  than  the
Coulomb form and is interpreted in terms of the screening
effect of the cloud of electrons round the one that we are
considering.

However,  we  can  interpret  it  as  a  form  of  charge
renormalization,  in  which  the  free-field  charge  $e$  is
replaced  by  a  charge  which  has  been  renormalized  by  the
interactions with the other electrons, or:\[e \rightarrow e
\times  \exp[-r/l_D].\]  Note  that  the  renormalized  charge
depends on $r$ and this type of scale dependence is absolutely
characteristic of renormalized quantities. In the next blog
post we will discuss statistical theories of turbulence in
terms of what we have learned here. For sake of completeness,
we should also mention here that the idea of an `effective’ or
`apparent’ or `turbulence’ viscosity was introduced in 1877 by
Boussinesq. For details, see the book by Hinze [2]. This may
possibly  be  the  first  recognition  of  a  renormalization
process.

[1]  W.  D.  McComb.  Renormalization  Methods:  A  Guide  for
Beginners. Oxford University Press, 2004.
[2]  J.  O.  Hinze.  Turbulence.  McGraw-Hill,  New  York,  1st
edition, 1959. (2nd edition, 1975).
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The term renormalization comes from particle physics but the
concept  originated  in  condensed  matter  physics  and  indeed
could be said to originate in the study of turbulence in the
late 19th and early 20th centuries. It has become a dominant
theme in statistical theories of turbulence since the mid-20th
century, and a very simple summary of this can be found in my
post of 16 April 2020, which includes the sentence: `In the
case of turbulence, it is probably quite widely recognized
nowadays that an effective viscosity may be interpreted as a
renormalization  of  the  fluid  kinematic  viscosity.’  Some
further discussion (along with references) may be found in my
posts of 30 April and 7 May 2020, but the point that concerns
me  here,  is  how  can  renormalization  apply  to  the  Euler
equation when its relationship to the Navier-Stokes equation
(NSE) corresponds to zero viscosity?

It  is  well  known  that  a  randomly  excited  and  spectrally
truncated Euler system corresponds to an equilibrium ensemble
in statistical mechanics. This means that it must exhibit
energy  equipartition  at  long  times  (depending  on  initial
conditions) with the spectral energy density $C(k) = A$, where
$A$ is constant, and therefore the energy spectrum taking the
form $E(k) \sim A k^2$. Indeed this was demonstrated as long
ago as 1964 by Kraichnan in the course of testing his DIA
statistical closure [1]. However, in 1993, She and Jackson
studied a constrained Euler system in the context of reducing
the number of degrees of freedom needed to describe Navier-
Stokes  turbulence  [2].  This  involves  an  Euler  equation
restricted to wavenumber modes $k_{min}\leq k \leq k_{max}$
which  is  embedded  in  a  forced  NSE  system,  with  nonlinear
transfer of energy in from the forced modes with $k<k_{min}$
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and nonlinear dissipation of energy to modes with $k>k_{max}$,
where  viscous  dissipation  is  present.  This  is  a  very
interesting paper which I mention here for completeness and
hope to return to at some later time. For the moment I want to
concentrate  on  two  rather  simpler,  but  still  important,
studies of the incompressible Euler equation [3], [4].

In physical terms, it is well known that the presence of the
viscous term in the NSE, with its $k^2$ weighting, breaks the
symmetry of the nonlinear term common to both equations, and
ensures a mean flux of energy in the direction of increasing
wavenumber. This symmetry can also be broken by adopting as
initial  condition  some  energy  spectrum  which  does  not
correspond  to  the  equipartition  solution.  The  resulting
evolution of a system peaked initially near, but not at, the
origin is shown in [1], along with a good discussion of the
behaviour  of  the  Euler  equation  as  related  to  the  NSE.
Evidently the Euler equation may behave like the NSE as a
transient, ultimately tending to equipartition. This behaviour
has  been  studied  by  Cichowlas  et  al  [3],  using  direct
numerical simulation; and by Bos and Bertoglio [4], using the
EDQNM spectral closure. They both find long-lived transients
in which at smaller wavenumbers there is a Kolmogorov-type
$k^{-5/3}$ spectrum and at higher wavenumbers an equipartition
$k^2$ spectrum. In both cases, the equipartition range is seen
as acting as a sink, and hence giving rise to an effect like
molecular viscosity.

In  [4],  as  in  [2],  there  is  some  consideration  of  the
relevance to large-eddy simulation, but it should be noted
that  in  both  investigations  the  explicit  scales  are  not
subject to molecular viscosity or its analogue. For sake of
contrast  we  note  that  the  operational  treatment  of  NSE
turbulence by Young and McComb [5] provides a subgrid sink for
explicit modes which are governed by the NSE. It may not be a
huge difference in practice, but it is important to be precise
about these matters.



However, in the present context the really interesting aspect
of [3] and [4] is that, in the absence of viscosity they
obtain the sort of turbulent spectrum which may be interpreted
in terms of an effective turbulent viscosity, and hence in
terms  of  self-renormalization.  In  the  next  post,  we  will
examine this further, beginning with a more detailed look at
what is meant by the term renormalization.

[1] R. H. Kraichnan. Decay of isotropic turbulence in the
Direct-Interaction  Approximation.  Phys.  Fluids,
7(7):1030-1048,  1964.
[2] Z.-S. She and E. Jackson. Constrained Euler System for
Navier-Stokes Turbulence. Phys. Rev. Lett., 70:1255, 1993.
[3] Cyril Cichowlas, Pauline Bonatti, Fabrice Debbasch, and
Marc  Brachet.  Effective  Dissipation  and  Turbulence  in
Spectrally Truncated Euler Flows. Phys. Rev. Lett., 95:264502,
2005.
[4] W. J. T. Bos and J.-P. Bertoglio. Dynamics of spectrally
truncated inviscid turbulence. Phys. Fluids, 18:071701, 2006
[5] A. J. Young and W. D. McComb. Effective viscosity due to
local turbulence interactions near the cutoff wavenumber in a
constrained  numerical  simulation.  J.  Phys.  A,  33:133-139,
2000.

 

Alternative  formulations  for
statistical theories: 2.
Alternative formulations for statistical theories: 2.

Carrying on from my previous post, I thought it would be
interesting  to  look  at  the  effect  of  the  different
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formulations on statistical closure theories. In order to keep
matters as simple as possible, I am restricting my attention
to  single-time  theories  and  their  forms  for  the  transfer
spectrum $T(k,t)$ as it occurs in the Lin equation (see page
56 in [1]). For instance, the form for this due to Edwards [2]
may  be  written  in  terms  of  the  spectral  energy  density
$C(k,t)$ (or spectral covariance) as: \begin{equation}T(k,t) =
4\pi  k^{2}\int  d^{3}j  L(k,j,|\mathbf{k}-
\mathbf{j}|)D(k,j,|\mathbf{k}-\mathbf{j}|)C(  |\mathbf{k}-
\mathbf{j}|,t)[C(j,t)-C(k,t)],\end{equation}where
\begin{equation}D(k,j,|\mathbf{k}-\mathbf{j}|)  =
\frac{1}{\omega(k,t)+\omega(j,t)+\omega(|\mathbf{k}-
\mathbf{j}|,t)},\end{equation}and $\omega(k,t)$ is the inverse
modal  response  time.  The  geometric  factor
$L(\mathbf{k},\mathbf{j})$  is  given
by:\begin{equation}L(\mathbf{k},\mathbf{j})  =
[\mu(k^{2}+j^{2})-kj(1+2\mu^{2})]\frac{(1-
\mu^{2})kj}{k^{2}+j^{2}-2kj\mu},\end{equation} and can be seen
by  inspection  to  have  the
symmetry:\begin{equation}L(\mathbf{k},\mathbf{j})  =
L(\mathbf{j,}\mathbf{k}).\end{equation}From  this  it  follows,
again  by  inspection,  that  the  integral  of  the  transfer
spectrum vanishes, as it must to conserve energy.

Edwards derived this as a self-consistent mean-field solution
to the Liouville equation that is associated with the Navier-
Stokes equation, and specialised it to the stationary case.
Later  Orszag  [3]  derived  a  similar  form  by  modifying  the
quasi-normality theory to obtain a closure called the eddy-
damped quasi-normality markovian (or EDQNM) model. Although
physically  motivated,  this  was  an  ad  hoc  procedure  and
involved  an  adjustable  constant.  For  this  reason  it  is
strictly regarded as a model rather than a theory. As this
closure is much used for practical applications, we write in
terms  of  the  energy  spectrum  $E(k,t)=4\pi  k^2  C(k,t)$
as:\begin{equation}T(k,t) = \int _{p+q=k} D(k,p,q)(xy+z^{3})
E(q,t)[E(p,t)pk^{2}-



E(k,t)p^{3}]\frac{dpdq}{pq},\end{equation}where
\begin{equation}D(k,p,q)  =
\frac{1}{\eta(k,t)+\eta(p,t)+\eta(q,t)},  \end{equation}and
$\eta(k,t)$ is the inverse modal response time (equivalent to
$\omega(k,t)$  in  the  Edwards  theory,  but  determined  in  a
different way). Also $(xy+z^{3})$ is a geometric factor, where
$x$, $y$ and $z$ are the cosines of the angles of the triangle
subtended, respectively, by $k$, $p$ and $q$.

My  point  here  is  that  Orszag,  like  many  others,  followed
Kraichnan rather than Edwards and it is clear that you cannot
deduce  the  conservation  properties  of  this  formulation  by
inspection. I should emphasise that the formulation can be
shown to be conservative. But it is, in my opinion, much more
demanding and complicated than the Edwards form, as I found
out when beginning my postgraduate research and I felt obliged
to  plough  my  way  through  it.  At  one  point,  Kraichnan
acknowledged a personal communication from someone who had
drawn his attention to an obscure trigonometrical identity
which had proved crucial for his method. Ultimately I found
the same identity in one of my old school textbooks [5]. The
authors,  both  masters  at  Harrow  School,  had  shown  some
prescience, as they noted that this identity was useful for
applications!

During  the  first  part  of  my  research,  I  had  to  evaluate
integrals which relied on the cancellation of pairs of terms
which were separately divergent at the origin in wavenumber.
At the time I felt that Kraichnan’s way of handling the three
scalar wavenumbers would have been helpful, but I managed it
nonetheless in the Edwards formulation. Later on I was to find
out, as mentioned in the previous blog, that there were in
fact snags to Kraichnan’s method too.

In 1990 [4] I wrote about the widespread use of EDQNM in
applications. What was true then is probably much more the
case today. It seems a pity that someone does not break ranks
and  employ  this  useful  model  closure  in  the  Edwards



formulation, rather than make ad hoc corrections afterwards
for the case of wavenumber triangles with one very small side.

[1]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
[2] S. F. Edwards. The statistical dynamics of homogeneous
turbulence. J. Fluid Mech., 18:239, 1964.
[3] S. A. Orszag. Analytical theories of turbulence. J. Fluid
Mech., 41:363, 1970.
[4] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[5] A. W. Siddons and R. T. Hughes. Trigonometry: Part 2
Algebraic Trigonometry. Cambridge University Press, 1928.

 

Alternative  formulations  for
statistical theories: 1.
Alternative formulations for statistical theories: 1.

In the spectral representation of turbulence it is well known
that interactions in wavenumber space involve triads of wave
vectors, with the members of each triad combining to form a
triangle. It is perhaps less well known that the way in which
this constraint is handled can have practical consequences.
This was brought home to me in 1984, when we published our
first calculations of the Local Energy Transfer (LET) theory
[1].

Our goal was to compare the LET predictions of freely decaying
isotropic turbulence with those of Kraichnan’s DIA, as first
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reported  in  1964  [2].  With  this  in  mind,  we  set  out  to
calculate both DIA and LET under identical conditions; and
also  to  compare  out  calculations  of  DIA  with  those  of
Kraichnan, in order to provide a benchmark. We applied the
Edwards formulation [3] of the equations to both theories;
but, apart from that, in order to ensure strict comparability
we used exactly the same numerical methods as Kraichnan. Also,
three of our initial spectral forms were the same as his,
although  we  also  introduced  a  fourth  form  to  meet  the
suggestions  of  experimentalists  when  comparing  with
experimental  results.

Reference should be made to [1] for details, but predictions
of both theories were in line with experimental and numerical
results in the field, with LET tending to give greater rates
of energy transfer (and higher values of the evolved skewness
factor) than DIA, which was assumed to be connected with its
compatibility  with  the  Kolmogorov  spectrum.  However,  our
calculation of the DIA value of the skewness was about 4%
larger than Herring and Kraichnan found [4], which could only
be explained by the different mathematical formulation.

Let  us  consider  the  two  different  ways  of  handling  the
wavenumber constraint, as follows.

Kraichnan’s  notation  involved  the  three  wave  vectors
$\mathbf{k}$,  $\mathbf{p}$,  and  $\mathbf{q}$;  and  used  the
identity:  \begin{equation}\int  d^3p\int  d^3q
\,\delta(\mathbf{k}-\mathbf{p}-
\mathbf{q})f(k,p,q)=\int_{p+q=k}dpdq\frac{2\pi  pq}{k}f(k,p,q),
\end{equation} where the constraint is expressed by the Dirac
delta function and $ f(k,p,q)$ is some relevant function. Note
that the domain of integration is in the $(p,q)$ plane, such
that the condition $p+q=k$ is always satisfied.

Edwards [3] used a more conventional notation of $\mathbf{k}$,
$\mathbf{j}$,  and  $\mathbf{l}$;  and  followed  a  more
conventional route of simply integrating over one of the dummy



wave vectors in order to eliminate the delta function, thus:
\begin{equation}\int  d^3j\int  d^3l  \,\delta(\mathbf{k}-
\mathbf{j}-\mathbf{l})f(k,j,l)=\int_0^\infty  2\pi  j^2
dj\int_{-1}^{1}d\mu  f(k,j,|\mathbf{k}-
\mathbf{j}|),\end{equation}where $\mu = \cos \theta_{kj}$ and
$\theta_{kj}$ is the angle between the vectors $\mathbf{k}$
and $\mathbf{j}$.

Of course the two formulations are mathematically equivalent.
Where differences arise is in the way they handle rounding and
truncation errors in numerical procedures. It was pointed out
by  Kraichnan  [2],  that  corrections  had  to  be  made  when
triangles took the extreme form of having one side very much
smaller than the other two. If this problem can lead to an
error of about 4%, then it is worth investigating further. I
will enlarge on this matter in my next post.

[1]  W.  D.  McComb  and  V.  Shanmugasundaram.  Numerical
calculations of decaying isotropic turbulence using the LET
theory. J. Fluid Mech., 143:95-123, 1984.
[2] R. H. Kraichnan. Decay of isotropic turbulence in the
Direct-Interaction  Approximation.  Phys.  Fluids,
7(7):1030{1048,  1964.
[3] S. F. Edwards. The statistical dynamics of homogeneous
turbulence. J. Fluid Mech., 18:239, 1964.
[4] J. R. Herring and R. H. Kraichnan. Comparison of some
approximations  for  isotropic  turbulence  Lecture  Notes  in
Physics, volume 12, chapter Statistical Models and Turbulence,
page 148. Springer, Berlin, 1972.

 

 

 



From  minus  five  thirds  in
wavenumber to plus two-thirds
in real space.
From $k^{-5/3}$ to $x^{2/3}$.

From time to time, I have remarked that all the controversy
about Kolmogorov’s (1941) theory arises because his real-space
derivation is rather imprecise. A rigorous derivation relies
on a wavenumber-space treatment; and then, in principle, one
could derive the two-thirds law for the second-order structure
function from Fourier transformation of the minus five-thirds
law for the energy spectrum. However, the fractional powers
can seem rather daunting and when I was starting out I was
fortunate to find a neat way of dealing with this in the book
by Hinze [1].

We  will  work  with  $E_1(k_1)$,  the  energy  spectrum  of
longitudinal  velocity  fluctuations,  and  $f(x_1)$,  the
longitudinal correlation coefficient. Hinze [1] cites Taylor
[2] as the source of the cosine-Fourier transform relationship
between these two quantities, thus:\begin{equation}U^2 f(x) =
\int_0^\infty\,  dk_1\,E_1(k_1)  \cos(k_1x_1),\end{equation}and
\begin{equation}E_1(k_1)  =\frac{2}{\pi}\int_0^\infty\,  dx_1\,
f(x_1) \cos(k_1x_1),\end{equation} where $U$ is the root mean
square velocity.

In general, the power laws only apply in the inertial range,
which  means  that  we  need  to  restrict  the  limits  of  the
integrations. However, Hinze obtained a form which allows one
to work with the definite limits given above, and reference
should be made to page 198 of the first edition of his book

https://blogs.ed.ac.uk/physics-of-turbulence/2022/03/24/from-minus-five-thirds-in-wavenumber-to-plus-two-thirds-in-real-space/
https://blogs.ed.ac.uk/physics-of-turbulence/2022/03/24/from-minus-five-thirds-in-wavenumber-to-plus-two-thirds-in-real-space/
https://blogs.ed.ac.uk/physics-of-turbulence/2022/03/24/from-minus-five-thirds-in-wavenumber-to-plus-two-thirds-in-real-space/


[1]  for  the  expression:  \begin{equation}U^2\left[1-
f(x_1)\right]  =  C  \int_0^\infty\,dk_1\,k_1^{-5/3}\left[1-
\cos(k_1x_1)\right],\label{hinze} \end{equation} where $C$ is
a universal constant.

The trick he employed to evaluate the right hand side is to
make the change of variables:\begin{equation}y= k_1x_1 \quad
\mbox{hence} \quad dk_1 =\frac{dy}{x_1}. \end{equation} With
this  substitution,  the  right  hand  side  of  equation
(\ref{hinze}) becomes: \begin{equation}\mbox{RHS of (3)} = C
x_1^{2/3}\,\int_0^\infty  \,dy  [1-\cos  y].\end{equation}
Integration  by  parts  then  leads  to:
\begin{equation}\int_0^\infty  \,dy  [1-\cos
y]=\frac{3}{2}\int_0^\infty\,  dy\,  y^{-2/3}\,  \sin  y
=\frac{3}{4}\Gamma(1/3),\end{equation} where $\Gamma$ is the
gamma function. Note that I have omitted any time dependence
for sake of simplicity, but of course this is easily added.

[1]  J.  O.  Hinze.  Turbulence.  McGraw-Hill,  New  York,  1st
edition, 1959. (2nd edition, 1975).
[2] G. I. Taylor. Statistical theory of turbulence. Proc. R.
Soc., London, Ser.A, 151:421, 1935.

 

Compatibility  of  temporal
spectra  with  Kolmogorov
(1941)  and  with  random
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sweeping
Compatibility of temporal spectra with Kolmogorov (1941) and
with random sweeping.

I previously wrote about temporal frequency spectra, in the
context of the Taylor hypothesis and a uniform convection
velocity of $U_c$, in my post of 25 February 2021. At the
time,  I  said  that  I  would  return  to  the  more  difficult
question of what happens when there is no uniform convection
velcocity present. I also said that this would not necessarily
be next week, so at least I was right about that.

As in the earlier post, we consider a turbulent velocity field
$u(x,t)$ which is stationary and homogeneous with rms value
$U$. This time we just consider the dimensions of the temporal
frequency spectrum $E(\omega)$. We use the angular frequency
$\omega = 2\pi n$, where $n$ is the frequency in Hertz, in
order to be consistent with the usual definition of wavenumber
$k$.  Integrating  the  spectrum,  we  have  the  condition:
\begin{equation}\int_0^\infty  E(\omega)  d\omega  =
U^2,\end{equation}which  gives  us  the  dimensions:
\begin{equation}\mbox{Dimensions of}\; E(\omega)d\omega = L^2
T^{-2};\end{equation} or velocity squared.

For many years, the literature relating to the wavenumber-
frequency correlation $C(k,\omega)$ has been dominated by the
question: is decorrelation due to random sweeping effects,
which would mean that the characteristic time is the sweeping
timescale  $(Uk)^{-1}$;  or  is  it  characterised  by  the
Kolmogorov  timescale  $(\varepsilon^{1/3}k^{2/3})^{-1}$?  A
recent  article  [1]  makes  a  typical  point  about  the
consequences for the frequency spectrum of the dominance of
the  sweeping  effect:  ‘…  the  frequency  energy  spectrum  of
Eulerian velocities exhibits a $\omega^{-5/3}$ decay, instead
of the $\omega^{-2}$ expected from K41 scaling’. Which is
counter-intuitive at first sight! As we saw in my blog of
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26/02/21, for the case of uniform convection $\omega^{-5/3}$
is associated with K41.

Let us begin by clearing up the latter point. The authors of
[1] cite the book by Monin and Yaglom, but I was unable to
find it. (I mean the reference, not the book which is quite
conspicuous on my bookshelves. I think that anyone giving a
reference to a book, should cite the page number. Sometimes I
do that and sometimes I forget!) In any case, it is easy
enough to work out. From equation (2) we have the dimensions
of $E(\omega)$ as $L^{2}T^{-1}$. From the K41 approach we can
write for the inertial range: \begin{equation}E(\omega) \sim
\varepsilon^{n}\omega^{m}  \sim  \varepsilon
\omega^{-2},\end{equation} where we fixed the dependence on
the index $n$ first.

The interest in random convective sweeping mainly stems from
Kraichnan’s analysis of his direct-interaction approximation
(DIA), dating back to 1959. A general discussion of this will
be found in the book [2], but we can take a shortcut by noting
that  Kraichnan  obtained  an  approximate  solution  for  the
reponse function $G(k,\tau)$ of his theory (see page 219 of
[2])  as:  \begin{equation}G(k,\tau)=\frac{exp(-\nu
k^2\tau)J_1(2Uk\tau)}{Uk\tau},\end{equation} where $\tau = t-
t’$, $\nu$ is the kinematic viscosity, and $J_1$ is a Bessel
function of the first kind. The interesting thing about this
is that the K41 characteristic time for the inertial range
does not appear. Also, in the inertial range, the exponential
factor can be put to one, and the decay is determined by the
sweeping time $(Uk)^{-1}$.

Corresponding to this solution for the inertial range, the
energy spectrum takes the form: \begin{equation} E(k) \sim
(\varepsilon  U)^{1/2}k^{-3/2},\end{equation}  as  given  by
equation (6.50) in [2]. As is well known, this $-3/2$ law is
sufficiently  different  from  the  observed  form,  which  is
generally compatible with the K41 $-5/3$ wavenumber spectrum,
to  be  regarded  as  incorrect.  We  can  obtain  the  frequency



spectrum corresponding to the random sweeping hypothesis by
simply replacing the convective velocity $U_c$, as used in
Taylor’s hypothesis, by the rms velocity $U$. From equation
(8) of the earlier blog, we have; \begin{equation}E(\omega)
\sim  (\varepsilon  U_c)^{2/3}\omega^{-5/3}  \rightarrow
(\varepsilon U)^{2/3}\omega^{-5/3} , \quad \mbox{when} \quad
U_c \rightarrow U. \end{equation}
This result is rather paradoxical to say the least. In order
to get a $-5/3$ dependence on frequency, we have to have a
$-3/2$ dependence on wavenumber! It is many years since I
looked into this and in view of the continuing interest in the
subject, I have begun to rexamine it. For the moment, I would
make just one observation.

Invoking Taylor’s expression for the dissipation rate, which
is: $\varepsilon = C_\varepsilon U^3/L$, where $L$ is the
integral lengthscale (not to be confused with the symbol for
the  length  dimension)  and  $C_\varepsilon$  asymptotes  to  a
constant  value  for  Taylor-Reynolds  numbers  $R_\lambda  \sim
100$ [3], we may examine the relationship between the random
sweeping  and  K41  timescales.  Substituting  for  the  rms
velocity,  have:  \begin{equation}\tau_{sweep}  =(Uk)^{-1}\sim
(\varepsilon^{1/3}L^{1/3}k)^{-1}.\end{equation}  Then,  putting
$k\sim  1/L  \equiv  k_L$,  we
obtain:\begin{equation}\tau_{sweep}\sim
(\varepsilon^{1/3}k_L^{2/3})^{-1}  =
\tau_{K41}(k_L).\end{equation}  So  the  random  sweeping
timescale becomes equal to the K41 timescale for wavenumbers
in  the  energy-containing  range.  Just  to  make  things  more
puzzling!

[1] A. Gorbunova, G. Balarac, L. Canet, G. Eyink, and V.
Rossetto.  Spatiotemporal  correlations  in  three-dimensional
homogeneous and isotropic turbulence. Phys. Fluids, 33:045114,
2021.
[2] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.



[3] W. D. McComb, A. Berera, S. R. Yoffe, and M. F. Linkmann.
Energy  transfer  and  dissipation  in  forced  isotropic
turbulence.  Phys.  Rev.  E,  91:043013,  2015.

The question of notation.
The question of notation.

In  recent  years,  when  I  specify  the  velocity  field  for
turbulence, I invariably add a word of explanation about my
use of Greek letters for Cartesian tensor indices. I point out
that these Greek indices should not be confused with those
used  in  four-space  for  four-dimensional  tensors,  as
encountered in Einstein’s Relativity. I think that I began do
this round about the time I retired in 2006 and at the same
time began looking at problems in phenomenology. Previously I
had just followed Sam Edwards, who had been my PhD supervisor,
because it seemed such a very good idea. By reserving Greek
letters for indices, one could use letters like $k$, $j$, $l$,
$p$  $\dots$  for  wavenumbers,  which  reduced  the  number  of
primed  or  multiply-primed  variables  needed  in  perturbation
theory.

Presumably it had occurred to me that a different audience
might not be familiar with this convention, or perhaps some
referee rejected a paper because he didn’t know what Greek
letters were [1]? In any case, it was only recently that it
occurred to me that Kolmogorov actually uses this convention
too. In fact in the paper that I refer to as Kolmogorov 41A
[2],  one  finds  the  first  sentence:  ‘We  shall  denote  by
\[u_{\alpha}  (P)  =  u_{\alpha}  (x_1,x_2,x_3),  \quad
\alpha=1,\,2,\,3,\]  the  components  of  the  velocity  at  the
moment $t$ at the point with rectangular Cartesian coordinates
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$  x_1,x_2,x_3$.  So  in  future,  I  could  say  ‘as  used  by
Kolmogorov’.

Kolmogorov also introduced the second-order and third-order
longitudinal  structure  functions  as  $B_{dd}(r,t)$  and
$B_{ddd}(r,t)$ (the latter appearing in K41B [3]), and others
followed similar schemes, with the number of subscript $d$s
increasing with order. This was potentially clumsy, and when
experimentalists became able to measure high-order moments in
the 1970s, they resorted to the notation $S_n(r,t)$. That is,
$S$ for ‘structure function’ and integer $n$ for order, which
is nicely compact.

During the sixties, statistical turbulence theories used a
variety of notations. Unfortunately, for some people a quest
for an original approach to a well known problem can begin
with a new notation. On one occasion, I remember thinking that
I didn’t even know how to pronounce the strange symbol that
one optimistic theorist had used for the vertex operator of
the Navier-Stokes equation. That was back in the early 1970s
and it is still somewhere in my office filing cabinets. I
don’t think I missed anything significant by not reading it!

Notational changes should be undertaken with caution. During
the late 1990s I was just about the only person working on
statistical closure theory (at least, in Eulerian coordinates)
and I decided to adopt an emerging convention in dynamical
systems  theory.  That  is,  I  decided  to  represent  all
correlations  by  $C$  and  response  tensors  by  $R$.

The only other change I made was to change the symbol for the
transverse projection operator to Kraichnan’s use of $P$, from
Edwards’s  use  of  $D$.  The  result  is,  in  my  view,  a
notationally more elegant formalism; and perhaps if people
again start taking an interest in renormalized perturbation
theories and renormalization group, this would get them off to
a good start.



However,  there  can  be  more  to  a  formalism  than  just  the
notation. The true distinction between the two really lies in
the  formulation.  Starting  with  the  basic  vector  triad
$\mathbf{k},\mathbf{j},\mathbf{l}$, Edwards used the triangle
condition  to  eliminate  the  third  vector  as
$\mathbf{l}=\mathbf{k}-\mathbf{j}$. This was done by others,
but  in  the  context  of  the  statistical  theories  virtually
everyone followed Kraichnan’s much more complicated approach,
in which he retained the three scalar magnitudes and imposed
on all sums/integrals the constraint that they should always
add  up  to  a  triangle.  The  resulting  formulation  is  more
opaque,  more  difficult  to  compute  and  does  not  permit
symmetries to be deduced by simple inspection. Yet for some
reason virtually everyone follows it, particularly obviously
in the use of EDQNM as a model for applications. A concise
account  of  the  two  different  formalisms  can  be  found  in
Section 3.5 of the book [4].

[1] Just joking! I’ve never had a paper rejected for that
reason, but some rejections over the years have not been a
great deal more sensible.
[2] A. N. Kolmogorov. The local structure of turbulence in
incompressible viscous fluid for very large Reynolds numbers.
C. R. Acad. Sci. URSS, 30:301, 1941.
[3]  A.  N.  Kolmogorov.  Dissipation  of  energy  in  locally
isotropic turbulence. C. R. Acad. Sci. URSS, 32:16, 1941.
[4]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.



The last post of the weekly
Blogs  …  but  intermittently
hereafter!
The  last  post  of  the  weekly  Blogs  …  but  intermittently
hereafter!
I posted the first of these blogs on 6 February 2020, just as
the pandemic was getting under way. Since then (and slightly
to my surprise) I have managed to post a blog every week. In
the case of holidays, I wrote an appropriate number of blogs
in  advance  and  scheduled  them  to  post  at  the  appropriate
times.

I wouldn’t like to say that I couldn’t have managed this
without the pandemic, but it has certainly cut down on my
other ways of spending time. And, for that matter energy,
because in normal times I play badminton twice a week. At the
same time, I should acquit myself of taking advantage of the
pandemic. A year or so earlier, I had set up a WordPress site
on servers installed on my own computer, and had constructed a
somewhat satirical blog dealing with the mythical activities
at a fictitious university. This gave me practice, and when
the  University  of  Edinburgh  advertised  a  blogging  support
service for academic staff, I was ready to go. As I hesitated
on  the  brink,  a  very  helpful  young  person  in  Information
Services gave me the requisite push and my blogging career was
fairly launched.

Now that I have completed two years, I am finding the regular
weekly deadline rather onerous. To be blunt, it is getting in
the way of jobs that need a longer-term approach. At the same
time, there are still many things that I wish to blog about.
So from now on, I intend to blog only when I can do so without
losing momentum at some other task.
What I hope that you will do, is fill in the little form that
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you will find beside any blog, with your email address. This
will ensure that in future you will receive a notification of
each blog as it is posted. I realise that people can be
hesitant about putting their name on a list. I can myself, one
worry being that it may be difficult to get off again. In this
case  nothing  could  be  simpler.  When  you  receive  your
notification email, you just have to click on a link and you
will be automatically removed. I have checked this and can
assure you that it works.

To end on a positive note, I intend to produce a book which
will literally just consist of the individual posts organised
into chapters corresponding to the months. I think there is
sufficient material contained in them to make an index helpful
and,  in  the  case  of  the  ebook  version,  it  will  also  be
searchable. I am very conscious of the need for these things,
as at the moment I have to rely on my memory to be sure that
I’m not repeating myself!

 

From  ‘wavenumber  murder’  to
wavenumber muddle?
From ‘wavenumber murder’ to wavenumber muddle?
In my post of 20 February 2020, I told of the referee who
described  my  use  of  Fourier  transformation  as  ‘the  usual
wavenumber  murder’.  I  speculated  that  the  situation  had
improved over the years due to the use of pseudo-spectral
methods in direct numerical simulation, although I was able to
quote a more recent example where a referee rejected a paper
because he wasn’t comfortable with the idea that structure
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functions could be evaluated from the corresponding spectra.

However, while it is good to see a growing use of spectral
methods, at the same time there are differences between the
$x$-space and $k$-space pictures, and this can be confusing.
Essentially, the phenomenology of fluid dynamicists has been
based  on  the  energy  conservation  equation  in  real-space,
mostly  using  structure  functions;  whereas  theorists  have
worked  with  the  energy  balance  in  wavenumber  space  as  a
closure problem for renormalization methods. This separation
of activities has gone on over many decades.

For the purpose of this post, I want to look again at the
Kolmogorov-Obhukov (1941) theory in $x$-space and $k$-space.
Kolmogorov worked in real space and it is convenient to denote
his two different derivations of inertial range forms as K41A
[1] and K41B [2]. We will concentrate on the second of these,
where he derived the well-known `4/5′ law for $S_3(r)$, from
the KHE equation. We have quoted this previously and it may be
obtained from the book [3] as: \begin{equation}\varepsilon =-
\frac{3}{4}\frac{\partial  S_2}{\partial
t}+\frac{1}{4r^4}\frac{\partial  (r^4  S_3)}{\partial  r}
+\frac{3\nu}{2r^4}\frac{\partial}{\partial
r}\left(r^4\frac{\partial  S_2}{\partial
r}\right),\end{equation} and all the symbols have their usual
meanings.

In  order  to  solve  this  equation  for  $S_3$,  Kolmogorov
neglected both the time-derivative of $S_2$ and the viscous
term, and thus obtained a de facto closure. In the case of
stationary turbulence the first step is exact but for decaying
turbulence it is an approximation for the inertial range which
Kolmogorov called local stationarity. Later Batchelor referred
to this as equilibrium [4], which is rather unfortunate as
turbulence is the archetypal non-equilibrium problem. In fact
Batchelor was carrying on Taylor’s idea that the Fourier modes
acted as mechanical degrees of freedom and so could be treated
by the methods of statistical mechanics. As the classical



canon of solved problems in statistical mechanics is limited
to  thermal  equilibrium  (normally  referred  to  simply  as
equilibrium),  Batchelor  was  arguing  that  Taylor’s  approach
would  be  valid  for  the  inertial  range.  In  fact  it  isn’t
because the modes are strongly coupled and this too is not
canonical.

In any case, the neglect of the time-derivative of $S_2$ is a
key step and its justification in time-dependent flows poses a
problem. More recently, McComb and Fairhurst [5] showed that
the neglect of this term cannot be an exact step and also
cannot be justified by appeal to large Reynolds numbers or
restriction to any particular range of values of $r$. In other
words, it is a constant term and its neglect must be justified
by either measurement or numerical simulation.

The situation is really quite different in wavenumber space.
Here we have the Lin equation which is the Fourier transform
of  the  KHE  and  takes  its  simplest  form  as:
\begin{equation}\left(\frac{\partial}{\partial  t}  +  2\nu
k^2\right)E(k,t)  =
T(k,t).\end{equation}where\begin{equation}T(k,t)=
\int_0^\infty dj\, S(k,j:t), \end{equation}and $S(k,j;t)$ can
be  expressed  in  terms  of  the  third-order  moment
$C_{\alpha\beta\gamma}(\mathbf{j},\mathbf{k-j},\mathbf{-
k};t)$.

One immediate difference is that the KHE is purely local in
the variable $r$, whereas the Lin equation is non-local in
wavenumber. In fact all Fourier modes are coupled together. We
can define the inter-mode energy flux as: \begin{equation}\Pi
(\kappa,t) = \int_\kappa^\infty dk\,T(k,t) = -\int_0^\kappa dk
\, T(k,t).\end{equation}The criterion for an inertial range of
wavenumbers is that the condition $\Pi = \varepsilon$ should
hold and this is nowadays referred to as scale invariance. It
does not apply in any way to the situation in real space and
it has no connection with the concept of local stationarity
which was renamed equilibrium by Batchelor.



Lastly,  the  interpretation  of  the  time-derivative  term  in
wavenumber space is quite different from that in real space.
We  may  see  this  by  rearranging  the  Lin  equation  as:
\begin{equation}-T(k,t)  =  I(k,t)  –  2\nu  k^2  E(k,t),  \quad
\mbox{where} \quad I(k,t) = -\frac{\partial E(k,t)}{\partial
t}.\label{diff}\end{equation}Evidently  for  free  decay  the
input term $I(k)$ is positive, and this is actually how Uberoi
[6] made the first measurements of the transfer spectrum in
grid turbulence. He measured the input term and the viscous
term and used equation (\ref{diff}) to evaluate $T(k,t)$.

McComb and Fairhurst [5] pointed out that the constant value
of the time derivative term in the limit of infinite Reynolds
numbers in $r$-space Fourier transforms to a delta function at
the origin in $k$-space. In other words this amounts to a
derivation of the form postulated by Edwards [7] (following
Batchelor [4]) that the transfer spectrum is given in terms of
the Dirac delta function $\delta$ by:\begin{equation}-T(k,t) =
\varepsilon  \delta(k,t)  -\varepsilon  \delta(k  –
\infty,t),\end{equation}  in  the  limit  of  infinite  Reynolds
numbers, although the Edwards form was for the stationary
case.

This of course is a very extreme situation. The key point to
note  is  that,  while  the  time-derivative  of  $S_2$  poses  a
problem  for  local  stationarity  in  $r$-space,  the  time-
derivative of $E(k,t)$ poses no problem for scale invariance
in $k$-space. This is why the $-5/3$ spectrum is so widely
observed.

[1] A. N. Kolmogorov. The local structure of turbulence in
incompressible viscous fluid for very large Reynolds numbers.
C. R. Acad. Sci. URSS, 30:301, 1941.
[2]  A.  N.  Kolmogorov.  Dissipation  of  energy  in  locally
isotropic turbulence. C. R. Acad. Sci. URSS, 32:16, 1941.
[3]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.



[4] G. K. Batchelor. The theory of homogeneous turbulence.
Cambridge University Press, Cambridge, 1st edition, 1953.
[5]  W.  D.  McComb  and  R.  B.  Fairhurst.  The  dimensionless
dissipation rate and the Kolmogorov (1941) hypothesis of local
stationarity in freely decaying isotropic turbulence. J. Math.
Phys., 59:073103, 2018.
[6] M. S. Uberoi. Energy transfer in isotropic turbulence.
Phys. Fluids, 6:1048, 1963.
[7] S. F. Edwards. Turbulence in hydrodynamics and plasma
physics. In Proc. Int. Conf. on Plasma Physics, Trieste, page
595. IAEA, 1965.

 

Is the concept of an energy
cascade  a  help  or  a
hindrance?
Is the concept of an energy cascade a help or a hindrance?

In his 1947 exegesis of Kolmogorov’s theory, Batchelor [1]
explained the underlying idea of a transfer of energy from
large  eddies  to  progressively  smaller  eddies,  until  the
(local) Reynolds number becomes too small for new eddies to
form. He pointed out that the situation had been summarized in
a rhyme which he believed was due to L. F. Richardson (no
reference given) and which is very well known as:

Big whirls have little whirls, Which feed on their velocity,

And little whirls have lesser whirls, And so on to viscosity!

Incidentally he misquoted ‘whirls’ as ‘whorls’, and since then
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most people seem to have followed suit.

In his discussion Batchelor sometimes followed Kolmogorov, and
referred to ‘pulsations’ while at other times he used the more
usual ‘eddies’. This variation seems to actually underline the
lack of precision of the concept; although, despite this, it
is intuitively appealing.

The  term  ‘cascade’,  with  its  connotations  of  a  stepwise
process, and indeed of localness, is also appealing. According
to Eyink and Sreenivasan [2] it was first used by Onsager [3];
but it is his earlier use of the concept of energy transfer in
wavenumber space [4] that is truly significant. Obukhov had
already obtained the inertial-range spectrum corresponding to
Kolmogorov’s result for the second-order structure function,
but this involved the introduction of an ad hoc eddy viscosity
[5]. In [4], Onsager essentially pointed out that the energy
flux through modes must be constant in the inertial range.
This  is  the  property  that  is  often  referred  to  as  scale
invariance.

The physics of turbulent energy transfer and dissipation can
readily be deduced from the equation of motion in wavenumber
space; but it is interesting to put oneself in the position of
Richardson,  looking  at  (one  imagines)  snapshots  of  flow
visualizations and creating his mental picture of a cascade of
eddies. The equation of motion in real space would have given
some limited help perhaps. Evidently the nonlinear term had to
be responsible for the creation of new, smaller eddies; and it
was known that this term conserved energy. Also, one could
deduce that the viscous term would be more significant at the
smallest scales. Nevertheless, it was a remarkable achievement
to summarise the essence of turbulence in this very persuasive
way. So what are its disadvantages?

The  first  disadvantage,  in  my  view,  is  that  it  focuses
attention  on  a  single  snapshot  of  the  turbulence.  Or,  in
statistical terms, on a single realization. This leads to



people drawing conclusions that require a single realization
(e.g. the importance of internal intermittency). However, we
must always bear in mind that we need average quantities, and
to get to them we actually have to take an average. So, if we
average our single snapshot of a flow visualization by taking
many  such  snapshots  and  constructing  a  form  of  ensemble
average, the result is a blur! For instance, the recent paper
by  Yoffe  and  McComb  [6]  shows  how  internal  intermittency
disappears under ensemble averaging.

Paradoxically, my choice for second disadvantage is that I
have  concluded  that  the  term  ‘cascade’  is  unhelpful  when
applied to the inter-mode energy flux. And this, I may say, is
despite the fact that I have spent a working lifetime doing
just that! In principle, every wavenumber is coupled to every
other wavenumber by the nonlinear term. So we can see the
attraction  of  having  some  sort  of  cascade  or  idea  of
localness. Indeed, in the 1980s/90s there was quite a lot of
attention given, using numerical simulations, to the relative
importance  of  different  triads  of  wavenumbers  for  energy
transfer. Now I am not disparaging that work in any way, but
it is very complicated and should not distract us from the
essential  fact:  the  flux  of  energy  through  a  wavenumber
$\kappa$, from all other wavenumbers less than $\kappa$, is
constant for all values of $\kappa$ in the inertial range.
This fact is all the ‘localness’ that we need for the Obukhov-
Onsager energy spectrum.

Lastly, it should be understood that the cascade in real space
is spread out in space and time. That is, if we distinguish
between  scale  and  position  by  introducing  relative  and
centroid coordinates, thus: \[r= (x-x’) \quad \mbox{and}\quad
R=(x+x’)/2,\] then in order to observe a cascade through scale
$r$ we have to change the position of observation $R$ with
time. In contrast, the flux through a mode with wavenumber
$\kappa$ takes place at a single value of $R$. It is for this
reason that the flux in wavenumber space cannot be applied to



the cascade in real space.

Still, the term ‘cascade’, in the context of wavenumber space,
is so embedded in the general consciousness (including my
own!) that there is little possibility of making a change.

[1] G. K. Batchelor. Kolmogorov’s theory of locally isotropic
turbulence. Proc. Camb. Philos. Soc., 43:533, 1947.
[2] G. L. Eyink and K. R. Sreenivasan. Onsager and the Theory
of Hydrodynamic Turbulence. Rev. Mod. Phys., 87:78, 2006.
[3] L. Onsager. Statistical Hydrodynamics. Nuovo Cim. Suppl.,
6:279, 1949.
[4] L. Onsager. The Distribution of Energy in Turbulence.
Phys. Rev., 68:281, 1945. (Abstract only).
[5]  A.  M.  Obukhov.  On  the  distribution  of  energy  in  the
spectrum of turbulent flow. C.R. Acad. Sci. U.R.S.S, 32:19,
1941.
[6] S. R. Yoffe and W. D. McComb. Does intermittency affect
the inertial transfer rate in stationary isotropic turbulence?
arXiv:2107.09112v1[physics.flu-dyn], 2021.

Chaos and Complexity.
Chaos and Complexity.
In the previous blog we discussed the growth of interest in
deterministic chaos in low-dimensional dynamical systems, and
the way in which it impinged on turbulence theory. Altogether,
it seemed like a paradigm shift; in that we learned that only
quantum effects were truly random, and that all classical
effects were deterministic. If one knew the initial conditions
of a classical dynamical system then one could, in principle,
predict its entire evolution in time. If! Anyway, in those
days we began to refer to the turbulent velocity field as
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being  chaotic  rather  than  random;  but  I  suspect  that  the
majority are now back to random.

However, such ideas also arose in the late 19th Century, as
part  of  the  invention  of  Statistical  Mechanics,  with
Boltzmann’s assumption of molecular chaos. This was to the
effect  that  molecular  motion  was  uncorrelated  immediately
before and after a two-body collision. It was made in the
context of a gas modelled as $N$ particles in a box (where $N$
is of the order of Avogadro’s number), and the motion of the
particles is governed by Hamilton’s equations. The system can
be specified by the $N$-particle distribution (or density)
which is the solution of Liouville’s equation. Although an
exact  formulation,  this  theory  is  contrary  to  experience
because the entropy is found to be constant in time, which
contradicts the second law of thermodynamics. This result is a
well-known paradox and it was resolved by Boltzmann in his
famous $H$-theorem.

Boltzmann wrote the entropy $S$ in terms of a measure $H$ of
the  information  about  the  system,  thus:\[S=-k_B  H  \quad
\mbox{where} \quad H=\int \, du \, f(u,t) \,ln\,f(u,t),\] $u$
is the molecular speed and $f(u,t)$ is the single-particle
distribution of molecular speeds. In obtaining the equation
for $f$, Boltzmann had to overcome a closure problem (much as
in turbulence!) and his principle of molecular chaos justified
the  factorization  of  the  two-particle  function  into  the
product of two single-particle functions. So Boltzmann’s $H$-
theorem is that $H$ decreases with time, meaning that the
entropy increases.

Although this is not so well known, the paradox was also
resolved by Gibbs, albeit in a more fundamental way. He showed
that if a small amount of the information was lost from $H$,
then it was no longer invariant and would increase with time.
In his case, this was achieved by coarse-graining the exact
Liouville  distribution  function  so  that  it  was  no  longer
exact, but it could equally well be achieved in practice by a



slight  deficiency  in  our  specification  of  the  initial
conditions  (position  and  momentum)  of  each  of  the  $N$
particles. In fact, to put it bluntly, it would be difficult
(or perhaps impossible) to specify the initial state of a
system of order $10^{20}$ degrees of freedom with sufficient
accuracy to avoid the system entropy increasing with time.

The  point  to  be  taken  from  all  this  is  that  Hamilton’s
equations,  although  themselves  reversible  in  time,  can
nevertheless describe a real system which has properties that
are not reversible in time. The answer lies in the complexity
of the system.
This applies just as much to the quantum form of Hamilton’s
equations. Recently there has been an international discussion
(by  virtual  means)  of  the  Einstein-Podolsky-Rosen  paradox,
which asserts that quantum mechanics is not a complete theory.
I  read  some  of  the  contributions  to  this,  but  was  not
impressed. In particular the suggestion was put forward that
the time-reversal symmetry of the basic quantum equations of
motion, ruled out their ability to describe a real world which
undergoes irreversible changes; something that is generally
referred to as ‘time’s arrow’. But of course the same applies
to the classical form of the equations, and one must bear in
mind that one has to take not only large-$N$ limits but also
continuum limits to describe the real world.

There are lessons here, at least in principle, for turbulence
theorists too, and I have given specific instances such as the
irrelevance  of  intermittency  or  the  incorrectness  of  the
Onsager conjecture (when judged by the physics). No doubt I
will give more in the months to come. Background material for
this blog can be found in the lecture notes [1], which can be
downloaded free of charge.

[1] W. David McComb. Study Notes for Statistical Physics: A
concise,  unified  overview  of  the  subject.  Bookboon,  2014.
(Free download of pdf from Bookboon.com)



Fashions  in  turbulence
theory.
Fashions in turbulence theory.

Back in the 1980s, fractals were all the rage. They were going
to solve everything, and turbulence was no exception. The only
thing  that  I  can  remember  from  their  use  in  microscopic
physics  was  that  the  idea  was  applied  to  the  problem  of
diffusion-limited  aggregation,  and  I’ve  no  memory  of  how
successful they were (or were not). In turbulence they were a
hot topic for solving the supposed problem of intermittency,
and  there  was  a  rash  of  papers  decorated  with  esoteric
mathematical  terms.  This  could  be  regarded  as  ‘Merely
corroborative detail, intended to give artistic verisimilitude
to an otherwise bald and unconvincing narrative.’[1]. When
these  proved  inadequate,  the  next  step  was  multifractals,
which rather underlined the fact that this approach was at
best a phenomenology, rather than a fundamental theory. And
that activity too seems to have died away.

Another fashion of the 1970s/80s was the idea of deterministic
chaos. This began around 1963 with the Lorentz system, a set
of simple differential equations intended to model atmospheric
convection. These equations were readily computed, and it was
established  that  their  solutions  were  sensitive  to  small
changes in initial conditions. With the growing availability
of desktop computers in the following decades, low-dimensional
dynamical systems of this kind provided a popular playground
for mathematicians and we all began to hear about Lorentz
attractors, strange attractors, and the butterfly effect. Just
to make contact with the previous fashion, the phase space
portraits of these systems often were found to have a fractal
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structure!

In 1990, a reviewer of my first book [2] rebuked me for saying
so little about chaos and asserted that it would be a dominant
feature of turbulence theory in the future. Well, thirty years
on and we are still waiting for it. The problem with this
prediction  is  that  turbulence,  in  contrast  to  the  low-
dimensional models studied by the chaos enthusiasts, involves
large numbers of degrees of freedom; and these are all coupled
together.  As  a  consequence,  the  average  behaviour  of  a
turbulent fluid is really quite insensitive to fine details of
its initial conditions. In reality that butterfly can flap its
wings as much as it likes, but it isn’t going to cause a
storm.

In fairness, although we have gone back to using our older
language  of  ‘random’  rather  than  ‘chaotic’  when  studying
turbulence,  the  fact  remains  that  deterministic  chaos  is
actually a very useful concept. This is particularly so when
taken in the context of complexity, and that will be the
subject of our next post.

[1] W. S. Gilbert, The Mikado, Act 2, 1852.
[2] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.

Summary  of  the  Kolmogorov-
Obukhov  (1941)  theory:
overview.
Summary of the Kolmogorov-Obukhov (1941) theory: overview.
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In the last three posts we have summarised various aspects of
the Kolmogorov-Obukhov (1941) theory. When considering this
theory, the following things need to be borne in mind.

[a] Whether we are working in $x$-space or $k$-space matters.
See my posts of 8 April and 15 April 2021 for a concise
general discussion.
[b] In $x$-space the equation of motion (NSE) simply presents
us  with  the  problem  of  an  insoluble,  nonlinear  partial
differential equation.
[c] In $k$-space the NSE presents a problem in statistical
physics and in itself tells us much about the transfer and
dissipation of turbulent kinetic energy.
[d] The Karman-Howarth equation is a local energy balance that
holds for any particular value of the distance $r$ between two
measuring points.
[e] There is no energy flux between different values of $r$;
or, alternatively, through scale.
[f] The energy flux $\Pi(k)$ is derived from the Lin equation
(i.e. in wavenumber space) and cannot be applied in $x$-space.
[g]  The  maximum  value  of  the  energy  flux,
$\Pi_{max}=\varepsilon_T$ (say), is a number, not a function,
and can be used (like the dissipation $\varepsilon$) in both
$k$-space and $x$-space.
[h] It also matters whether the isotropic turbulence we are
considering is stationary or decaying in time.
[g] If the turbulence is decaying in time, then K41B relies on
Kolmogorov’s hypothesis of local stationarity. It has been
pointed out in a previous post (Part 2 of the present series)
that this cannot be the case by virtue of restriction to a
range of scales nor in the limit of infinite Reynolds number
[1]. See also the supplemental material for [2].
[h] In $k$-space this is not a problem and the $k^{-5/3}$
spectrum can still be expected [1], as of course is found in
practice.
[i] If the turbulence is stationary, then K41B is exact for a
range of wavenumbers for sufficiently large Reynolds numbers.



The extent of this inertial range increases with increasing
Reynolds numbers.

I have not said anything in this series about the concept of
intermittency corrections or anomalous exponents. This topic
has been dealt with in various blogs and soon will be again.
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Obukhov  is  regarded  as  having  begun  the  treatment  of  the
problem in wavenumber space. In [1] he referred to an earlier
paper by Kolmogorov for the spectral decomposition of the
velocity  field  in  one  dimension  and  pointed  out  that  the
three-dimensional case is carried out similarly by multiple
Fourier integrals. He employed the Fourier-Stieltjes integral
but fortunately this usage did not survive. For many decades
the  standard  Fourier  transform  has  been  employed  in  this
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field.

[a] Obukhov’s paper [1] was published between K41A and K41B,
and was described by Batchelor ‘as to some extent anticipating
the work of Kolmogorov’. He worked with the energy balance in
$k$-space and, influenced by Prandtl’s work, introduced an ad
hoc closure based on an effective viscosity.

[b] The derivation of the ‘-5/3’ law for the energy spectrum
seems  to  have  been  due  to  Onsager  [2].  He  argued  that
Kolmogorov’s similarity principles in $x$-space would imply an
invariant  flux  (equal  to  the  dissipation)  through  those
wavenumbers  where  the  viscosity  could  be  neglected.
Dimensional  analysis  then  led  to  $E(k)  \sim
\varepsilon^{2/3}k^{-5/3}$.

[c] As mentioned in the previous post (points [c] and [d]),
Batchelor discussed both K41A and K41B in his paper [3], but
did not include K41B in his book [4]. Also, in his book [4],
he discussed K41A entirely in wavenumber space. The reasons
for this change to a somewhat revisionist approach can only be
guessed at, but there may be a clue in his book. On page 29,
first paragraph, he says: ‘Fourier analysis of the velocity
field provides us with an extremely valuable analytical tool
and one that is well-nigh indispensable for the interpretation
of equilibrium or similarity hypotheses.’ (The emphasis is
mine.)

[d]  This  is  a  very  strong  statement,  and  of  course  the
reference is to Kolmogorov’s theory. There is also the fact
that K41B is not easily translated into $k$-space. Others
followed suit, and Hinze [5] actually gave the impression of
quoting from K41A but used the word ‘wavenumber’, which does
not in fact occur in that work. By the time I began work as a
postgraduate student in 1966, the use of spectral methods had
become universal in both experiment and theory.

[e] There does not appear to be any $k$-space ad hoc closure



of the Lin equation to parallel K41B (i.e. the derivation of
the  ‘4/5’  law);  but,  for  the  specific  case  of  stationary
turbulence, I have put forward a treatment which uses the
infinite  Reynolds  number  limit  to  eliminate  the  energy
spectrum, while retaining its effect through the dissipation
rate [6]. It is based on the scale invariance of the inertial
flux,  thus:  \begin{equation}\Pi(\kappa)=-
\int_0^{\kappa}dk\,T(k) = \varepsilon, \end{equation}which of
course can be written in terms of the triple-moment of the
velocity field. As the velocity field in $k$-space is complex,
we can write it in terms of amplitude and phase. Accordingly,
\begin{equation}u_{\alpha}(\mathbf{k})  =
V(\kappa)\psi_{\alpha}(k’),\end{equation} where $V(\kappa)$ is
the  root-mean-square  velocity,  $k’=k/\kappa$  and  $\psi$
represents  phase  effects.  The  result  is:
\begin{equation}V(\kappa)=B^{-1/3}\varepsilon^{1/3}\kappa^{-10
/3},\end{equation}where $B$ is a constant determined by an
integral over the triple-moment of the phases of the system.
The Kolmogorov spectral constant is then found to be: $4\pi\,
B^{-2/3}$.

[f] Of course a statistical closure, such as the LET theory,
is needed to evaluate the expression for $B$. Nevertheless, it
is of interest to note that this theory provides an answer to
Kraichnan’s interpretation of Landau’s criticism of K41A [7].
Namely, that the dependence of an average (i.e. the spectrum)
on the two-thirds power of an average (i.e. the term involving
the  dissipation)  destroys  the  linearity  of  the  averaging
process. In fact, the minus two-thirds power of the average in
the form of $B^{-2/3}$ cancels the dependence associated with
the dissipation.
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