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I  will  complete  this  sequence  of  posts  by  discussing  the
scale-invariance paradox and showing how the Onsager criterion
for the inertial range should be modified in order to resolve
it.

We begin by noting that the first measurement of the transfer
spectrum was made in 1963 by Uberoi, who measured the time-
derivative  and  the  viscous  dissipation  terms  in  the  Lin
equation and obtained the transfer spectrum as the remaining
term in that equation [1]. He was surprised to find that
$T(k,t)$ had a single zero crossing when he had expected that
it  would  be  zero  over  an  extended  range  of  wavenumbers,
corresponding by simple calculus to an extended region of
scale-invariant  flux.  He  attributed  this  failure  to  the
Reynolds number being too low. However, over the following
years it became clear the transfer spectrum only ever has a
single zero-crossing at even the highest Reynolds numbers, and
so the scale-invariance paradox was born. A fuller account of
this topic can be found in the article [2] or the book [3].
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Sketch of the energy balance in the Lin equation.

The behaviour of the terms in the Lin equation is illustrated
schematically in the figure. Note that the input term is $I(k)
=- dE(k,t)/dt$ in this case, whereas if we were considering
stationary turbulence it would be the rate of work done by the
stirring forces. Further discussion of these points can be
found in [3].

It is of interest to note that we can use simple mathematical
reasoning to make two general observations from this figure.
First, it could have been anticipated that $T(k)$ would only
have a single zero-crossing at $k=k_{*}$. Evidently if the
input term decreases monotonically as the inertial range is
approached from below, while the dissipation spectrum also
decreases monotonically as the inertial range is approached
from above, then where these two terms are equal at $k=k_{*}$
(say) we must have the single zero of $T(k)$.

Secondly, from equation (9) in the first post in this sequence
(on  27  June),  we  may  infer  from  general  conditions  of



smoothness corresponding to physical behaviour, that the flux
must  go  through  a  maximum  value  at  $k=k_{*}$.  Thus  the
conclusion of Shanmugasundaram [4] from detailed computations
of the LET theory could also have been anticipated.

Let  us  now  consider  the  Onsager  criterion  in  rather  more
detail and apply it to the interval $0\leq k \leq k_{*} $. We
may  write  this  in  terms  of  the  spectral  density  function
$S(k,j)$  as:
\begin{equation}\Pi(k_{*})=\int_0^{k_*}T(k)dk=\int_0^{k_*}dk\l
eft[\int_0^\infty dj S(k,j)\right].\end{equation}We may then
divide up the range of integration over $j$ at $j=k_{*}$ to
obtain:\begin{equation}\Pi(k_{*})=\int_0^{k_{*}}dk=\int_0^{k_{
*}}dk\left[\int_0^{k_{*}}  dj\,S(k,j)+\int_{k_{*}}^\infty
dj\,S(k,j)\right].\end{equation}From  the  antisymmetry  of
$S(k,j)$ under the interchange of $k$ and $j$, it follows that
the first term in the square brackets gives zero and we are
left  with:
\begin{equation}\Pi(k_{*})=\int_0^{k_{*}}dk\int_{k_{*}}^\infty
dj\,S(k,j)\equiv  \int_0^{k_{*}}dk  T^{-
+}(k|k_{*}),\end{equation}  where  we  have  introduced  the
filtered-partitioned form of the spectral transfer function
$T^{-+}(k|k_{*})$.

Further details of these filtered-partitioned forms may be
found in [2], where some results are cited which suggest that
this  procedure  may  resolve  the  scale-invariance  paradox.
However our main conclusion here is that it is necessary to
introduce such forms, rather than just use $T(k)$, in order to
understand results such as [3] and [4], particularly if we are
to disentangle the effects of scaling on the Kolmogorov length
versus the Taylor microscale.
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