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We stated Onsager’s criterion [1] for an inertial range in
terms of a scale-invariant flux as equation (4) in our post of
24 June 2024. In order to assess Onsager’s concept, we begin
by  considering  the  Lin  equation  in  terms  of  the  energy
spectrum $E(k,t)$ and the transfer spectrum $T(k,t)$. We may
write  it  in  its  well-known  form:  \begin{equation}\frac{d
E(k,t)}{dt}  =  T(k,t)  –  2\nu  k^2E(k,t)  \equiv  T(k,t)  –
D(k,t),\label{lin}\end{equation}where $D(k,t)$ is the energy
dissipation spectrum, as given by $D(k,t) = 2\nu k^{2}E(k,t)$.
Here, we assume that there are no forces acting. We may also
express the transfer spectrum in terms of its spectral density
$S(k,j;t)$ thus: \begin{equation} T(k,t) = \int_0^\infty\, dj
\,S(k,j;t),\quad  \mbox{where}  \quad  S(k,j;t)  =  -
S(j,k;t);\label{Tdef}\end{equation}and $S(k,j;t)$ contains the
triple moment in wavenumber space: see [2]. Note that the
antisymmetry of $S(k,j;t)$ under the interchange of $k$ and
$j$ guarantees that conservation of energy is maintained in
the form $\int_0^\infty\, dk T(k) = 0$. When we substitute for
$T(k)$ in terms of $S(k,j;t)$, we obtain the second form of
the Lin equation.

If we write it in this, its full form, the Lin equation, tells
us that all the Fourier modes are coupled to each other. It
is, in the language of physics, an example of the many-body
problem. It is in fact highly non-local, as in principle it
couples every mode to every other mode. A corollary of this is
that it predicts an energy cascade. This can be deduced from
the nonlinear term which couples all modes together plus the
presence of the viscous term which is symmetry-breaking. If
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the viscous term were set equal to zero, then the coupled but
inviscid equation would yield equipartition states.

We may consider the transfer of energy from wavenumbers less
than $\kappa$ to wavenumbers greater than $\kappa$. To do
this, we integrate the terms of the Lin equation from $k=0$ to
an  arbitarily  chosen  $k=\kappa$,  with  the
result:\begin{eqnarray}\frac{d}{dt}\int^{\kappa}_{0}dk  E(k,t)
&  =  &\int_{0}^{\kappa}dk\int^{\infty}_{0}dj  S(k,j;t)-
\int^{\kappa}_{0}dk  D(k,t)  \nonumber  \\&  =  &
\int_{0}^{\kappa}dk\int^{\infty}_{\kappa}dj  S(k,j;t)-
\int^{\kappa}_{0}dk  D(k,t),\label{linint}\end{eqnarray}where
the second form of the right hand side relies on the fact that
the double integral over $ 0\leq k,j \leq \kappa $ vanishes
due to the antisymmetry of $S(k,j;t)$. Evidently this equation
tells  us  that  the  loss  of  energy  from  modes  with  $k\leq
\kappa$ is due to transfer to modes with $k\geq \kappa$, as
well as the direct loss to dissipation.

In order to consider the inertial transfer further, we first
introduce the symbol $E_{\kappa}(t)$ for the amount of energy
contained  in  modes  $0\leq  k  \leq  \kappa$,
thus:\begin{equation}\frac{d}{dt}E_{\kappa}(t)  =
\frac{d}{dt}\int^{\kappa}_{0}dk  E(k,t).\end{equation}We  then
introduce  the  symbol  $\Pi(\kappa,t)$,  defined
by:\begin{equation}\Pi(\kappa,t)  =  \int^{\infty}_{\kappa}dk
T(k,t)  =  -\int^{\kappa}_{0}dk
T(k,t)\label{Pidef}\end{equation}which  represents  the  flux
through  mode  $k=\kappa$;  and,  in  terms  of  the  transfer
spectral  density,\begin{equation}  \Pi(\kappa,t)  =
\int^{\infty}_{\kappa}dk\int^{\kappa}_{0}dj\,S(k,j;t)  =  -
\int^{\kappa}_{0}dk\int^{\infty}_{\kappa}dj\,
S(k,j;t).\end{equation}
Accordingly,  we  may  write  the  partially  integrated  Lin
equation  (\ref{linint})
as:\begin{equation}\frac{d}{dt}E_{\kappa}(t)  =  -\Pi(\kappa,t)
–  \int^{\kappa}_{0}dk\,D(k,t).\end{equation}Thus,  the  energy



contained in modes $0\leq k \leq \kappa$ is lost partly to
direct  viscous  dissipation  and  partly  due  to  transfer  to
higher-wavenumber modes.This is the only concept of localness
which is required for the Richardson-Kolmogorov picture in
wavenumber space (K41).

This analysis holds for any wavenumber $k=\kappa$, but the
most important case occurs at $\kappa =k_{*}$, which is the
wavenumber where $T(k,t)$ has its single zero-crossing. As is
well  known,  the  zeros  of  the  transfer  spectrum  are  given
by:\begin{equation}T(0,t)  =0;\qquad  T(k_{*},t)=0;  \quad
\mbox{and}  \quad  \lim_{k  \to  \infty}  T(k,t)=0:
\end{equation}while, by simple calculus, the behaviour of the
energy flux is given by: \begin{equation}\Pi(0,t) =0;\qquad
\Pi(k_{*},t)=\Pi_{max};  \quad  \mbox{and}  \quad  \lim_{k  \to
\infty} \Pi(k,t)=0.\end{equation}
It follows from conservation of energy that the maximum value
that $\Pi_{max}$ can take is the rate of viscous dissipation,
thus we have the general result:\begin{equation}\Pi_{max} \leq
\varepsilon;\end{equation}where  the  equality  applies  if  the
local viscous dissipation can be neglected at $k=k_{*}$.

In our next post, we will take a more critical look at this
criterion.
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In his 1964 paper, Corrsin [1] explained Onsager’s theory in a
more up to date notation. We will build on that treatment
here,  but  we  shall  use  an  even  more  modern  notation.  In
particular, we will use $E(k)$ for the energy spectrum and
$\varepsilon$ for the dissipation rate.

In general, energy flows from small wavenumbers to large, and
Corrsin  noted  that  Onsager  envisaged  this  cascade  as
proceeding stepwise, with the sequence of wavenumbers involved
taking the form of a geometric progression. He had chosen this
to be wavenumber doubling at each step, with the implication
that the step length was $\Delta k = k$. Arguably the amount
of energy transferred at each step is: \begin{equation}\Delta
E = \Delta k E(k)= kE(k)\end{equation}

Representing the flux of energy through wavenumber $k$ by
$\Pi(k)$, we may write an approximate expression for it as:
\begin{equation}\Pi(k) \sim kE(k)/\tau(k),\end{equation} where
$\tau(k)$ is an appropriate characteristic time for energy
transfer through mode $k$.

We now concentrate on the inertial range and note that as the
cascade is conservative and there is no significant loss of
energy to viscous dissipation in this range, we may write:
\begin{equation}d\Pi/dk =0, \end{equation} with the integral
result: \begin{equation}\Pi = \varepsilon.\end{equation} This
means that the energy flux is independent of wavenumber in the
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inertial  range.  Nowadays,  this  is  referred  to  as  `scale-
invariance’ of the energy flux in the inertial range and is
widely used as a criterion for the presence of an inertial
range. It is a very important concept and we shall subject it
to critical scrutiny in later posts. For the moment, we will
concentrate on showing how it leads to the $-5/3$ wavenumber
spectrum in Onsager’s theory.

In order to make progress, we introduce a characteristic time
for  energy  transfer  through  mode  $k$,  which  we  denote  by
$\tau(k)$. From a simple dimensional argument, this is taken
to  be:  \begin{equation}\tau(k)=
\left[k^3E(k)\right]^{-1/2}.\end{equation} Then we substitute
(5) into (4) and impose the invariance condition given by (4),
to obtain for the energy spectrum: \begin{equation}E(k)=\alpha
\varepsilon^{2/3}k^{-5/3},\end{equation}  where  the  prefactor
$\alpha$ is the well known Kolmogorov constant.

The introduction of the characteristic time $\tau(k)$ seems to
be  analogous  to  the  renormalised  inverse  modal  lifetime
$\omega(k)$ which arises in the Edwards self-consistent field
theory [2]. If we assume that one is the inverse of the other,
then the substitution of the Kolmogorov spectrum, as given by
(6), into (5) for the characteristic time yields:
\begin{equation}\omega(k)  =
\frac{1}{\tau(k)}=\alpha^{1/2}\varepsilon^{1/3}k^{2/3},\end{eq
uation} in agreement with the Edwards result.

It is worth noting that the power-law form of the energy
spectrum is not so much an additional assumption, as it was in
Kolmogorov’s  earlier  theory,  as  a  natural  consequence  of
scale-invariance because it is a scale-invariant form.
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Returning to this topic after my holiday, I will focus on
Onsager’s 1945 abstract [1]. This is brief to the point of
being cryptic and requires exegesis, but we shall defer that
to the next post. For the moment we will concentrate on its
relationship to Kolmogorov K41A [2].

As  we  mentioned  earlier,  this  fragment  of  Onsager’s  work
introduced the term `cascade’ as his interpretation of the
Richardson-Kolmogorov  picture  of  the  nonlinear  transfer  of
energy from large scales to small. Or, as he worked with
wavenumber $k$, the energy cascade is from small wavenumbers
to  large,  where  it  is  terminated  by  the  action  of  the
viscosity. We shall not enlarge on that here, but merely note
that  he  states  that  dimensional  analysis  leads  to  the
expression  for  the  spectral  density  \begin{equation}C(k)  =
\frac{E(k)}{4\pi  k^2}  =  ({\mbox{universal
factor}})\varepsilon^{2/3}k^{-11/3},\end{equation}  where  the
`universal factor’ equals the Kolmogorov constant divided by
$4\pi$. The $-11/3$ power law may seem unfamiliar to most
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people who will be used to the $-5/3$ form, but in statistical
theory it is usual to work with the spectral density $C(k)$.

Onsager also pointed out that the corresponding correlation
function  takes  the  form  \begin{equation}f(r)=1-
(\mbox{constant})r^{2/3}.\end{equation}  The  term
`corresponding’ refers to Fourier transformation of equation
(1). Note that, as well as modernising the notation, I have
taken  the  correlation  function  to  be  the  `longitudinal
correlation function’. The relationship between $f(r)$ and the
energy spectrum can be found as equation (2.91) in the book
[3].

Bearing in mind that Kolmogorov worked with the structure
functions, equation (2) is just his result with the factor
$\varepsilon^{2/3}$  absorbed  into  the  constant.  In  other
words, we can derive Kolmogorov’s result for the second-order
structure function by Fourier transforming Onsager’s result,
and I shall argue in later posts that that is the fundamental
derivation.

However, the argument works both ways, and we can argue that
the $-5/3$ law for the spectrum can be derived trivially by
Fourier  transformation  of  Kolmogorov  K41A  for  $S_2(r)$.
Accordingly it is appropriate to refer to it as the Kolmogorov
spectrum.
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