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In his 1964 paper, Corrsin [1] explained Onsager’s theory in a
more up to date notation. We will build on that treatment
here,  but  we  shall  use  an  even  more  modern  notation.  In
particular, we will use $E(k)$ for the energy spectrum and
$\varepsilon$ for the dissipation rate.

In general, energy flows from small wavenumbers to large, and
Corrsin  noted  that  Onsager  envisaged  this  cascade  as
proceeding stepwise, with the sequence of wavenumbers involved
taking the form of a geometric progression. He had chosen this
to be wavenumber doubling at each step, with the implication
that the step length was $\Delta k = k$. Arguably the amount
of energy transferred at each step is: \begin{equation}\Delta
E = \Delta k E(k)= kE(k)\end{equation}

Representing the flux of energy through wavenumber $k$ by
$\Pi(k)$, we may write an approximate expression for it as:
\begin{equation}\Pi(k) \sim kE(k)/\tau(k),\end{equation} where
$\tau(k)$ is an appropriate characteristic time for energy
transfer through mode $k$.

We now concentrate on the inertial range and note that as the
cascade is conservative and there is no significant loss of
energy to viscous dissipation in this range, we may write:
\begin{equation}d\Pi/dk =0, \end{equation} with the integral
result: \begin{equation}\Pi = \varepsilon.\end{equation} This
means that the energy flux is independent of wavenumber in the
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inertial  range.  Nowadays,  this  is  referred  to  as  `scale-
invariance’ of the energy flux in the inertial range and is
widely used as a criterion for the presence of an inertial
range. It is a very important concept and we shall subject it
to critical scrutiny in later posts. For the moment, we will
concentrate on showing how it leads to the $-5/3$ wavenumber
spectrum in Onsager’s theory.

In order to make progress, we introduce a characteristic time
for  energy  transfer  through  mode  $k$,  which  we  denote  by
$\tau(k)$. From a simple dimensional argument, this is taken
to  be:  \begin{equation}\tau(k)=
\left[k^3E(k)\right]^{-1/2}.\end{equation} Then we substitute
(5) into (4) and impose the invariance condition given by (4),
to obtain for the energy spectrum: \begin{equation}E(k)=\alpha
\varepsilon^{2/3}k^{-5/3},\end{equation}  where  the  prefactor
$\alpha$ is the well known Kolmogorov constant.

The introduction of the characteristic time $\tau(k)$ seems to
be  analogous  to  the  renormalised  inverse  modal  lifetime
$\omega(k)$ which arises in the Edwards self-consistent field
theory [2]. If we assume that one is the inverse of the other,
then the substitution of the Kolmogorov spectrum, as given by
(6), into (5) for the characteristic time yields:
\begin{equation}\omega(k)  =
\frac{1}{\tau(k)}=\alpha^{1/2}\varepsilon^{1/3}k^{2/3},\end{eq
uation} in agreement with the Edwards result.

It is worth noting that the power-law form of the energy
spectrum is not so much an additional assumption, as it was in
Kolmogorov’s  earlier  theory,  as  a  natural  consequence  of
scale-invariance because it is a scale-invariant form.
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