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Before we discuss Onsager’s contribution, it will be helpful
to first make some observations
about Kolmogorov’s derivation of the $r^{2/3} $ law for the
second-order  structure  function  in  the  inertial  range  of
scales $r$ [1]. This is sometimes referrred to as K41A and
there are many treatments of it (e.g. see the book [2]) so we
will not reproduce the details here. Instead, we will attempt
to highlight aspects of it, when it is judged in the context
of its pioneering status. What I mean by this will quickly
emerge.

First  of  all,  Kolmogorov  envisaged  the  effect  of  the
nonlinearity in terms of Richardson’s pictorial view of eddies
being created at ever smaller scales until the smallest eddies
are damped by viscosity (see page 11 of the book [2]). Of
course, Kolmogorov did not acknowledge this at the time, but
he  subsequently  did  so  in  his  1962  paper  [3].  He  then
introduced the idea, familiar in statistical physics, that a
stepwise stochastic process with decreasing scale, could lead
to  a  range  of  scales  in  which  average  properties  were
independent  of  the  conditions  of  formation.  Among  other
things, he also introduced the ideas of local isotropy and
local stationarity; but although these are of considerable
importance, for a purely theoretical look at the problem, we
will restrict our attention for the moment, to fields that are
both isotropic and stationary.
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Now, we are dealing with a model in which the basic entities –
Richardson’s `whirls’ – are not well defined. Hence, different
people have different ideas of what types of eddies may be
involved. Accordingly, we should examine just how sensitive
the measurement of the structure functions is to the form
assumed for the eddies making up the turbulent field. Let us
consider  an  experiment  where  an  anemometer  measures  the
instantaneous velocity $u(x; t)$ at points $x = 0$ and $x =
r$, and we take the difference between these values $\Delta
u(r;  t)  =  u(r;  t)  –  u(0;  t)$.  Trivially,  this  velocity
difference  $\Delta  u(r;  t)$  is  a  random  variable,  which
fluctuates rapidly about a zero mean. Note that its mean is
identically  zero  because  its  two  constituent  means  are
themselves zero.

Next, we consider the second-order moment of $\Delta u(r; t)$,
which we obtain by ensemble
average.  That  is,  labelling  a  single  realization  of  the
velocity field by a superscript $i$, we define the ensemble
average  by:  \begin{equation}S_2(r)  =  \lim_{N\rightarrow
\infty}
\frac{1}{N}\sum_{i=1}^N\left[\Delta^{\{I\}}u(r,t)\right]^2,\en
d{equation}  where  $S_2(r)$  is  the  second-order  structure
function of the velocity field. The value of $N$ has to be
determined empirically from a consideration of the limit.

It  should  be  clear  that  the  ensemble  average  involves  a
summation  over  many  random  phases  with  consequent
cancellations. Thus, dogmatic arguments about the form of the
`whirls’, particularly those arguments which seek to refute
the Richardson-Kolmogorov picture, have little place. To argue
otherwise is to give undue weight to the one particular eddy
structure that one is visualizing. Even so, when Kolmogorov
made the assumption that, for values of $r$ that are not too
large, the structure function can only depend on the variables
$r$, $\varepsilon$ and $\nu$, then that is just an assumption.

The next step, in obtaining the two-thirds law, is to argue



that, for very small values of $r$ and/or very large values of
the Reynolds number, the dependence on the viscosity can be
dropped.  This  is  an  empirical  matter,  as  it  involves
evaluating  the  appropriate  limits,  and
stems from the Navier-Stokes equation (NSE). While it is often
said that Kolmogorov’s result
does not stem from the NSE, in fact this particular step does.

The final step is to assume that the inertial-range structure
function takes the form of a power law and to use dimensional
analysis. Evidently, expressing the energy in terms of a rate
of change of energy with time necessarily brings in the two-
thirds power law. I emphasise that this step is an assumption
because in a later post I shall argue that the power-law may
have a different status in Onsager’s theory.

I am publishing this post a day earlier than usual, as I will
be going on holiday on Thursday. My hope is to carry on this
series of posts in early June.
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