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There  has  been  an  increasing  awareness  in  the  turbulence
community of the significance of finite-Reynolds-number (FRN)
effects,  corresponding  to  an  impression  that  Kolmogorov’s
theory requires an infinite Reynolds number. At the same time,
there  has  been  a  recent  growth  of  interest  in  Onsager’s
Conjecture, which is essentially taken to mean that turbulent
dissipation is still present even when the Reynolds number is
infinite, and this is normally interpreted as being when the
fluid viscosity is zero. Oddly, there never seems to be any
mention of the word ‘limit’; and one detects a degree of
uncertainty  about  the  whole  matter,  with  typical  comments
like: ‘when the Reynolds number is infinite, or at least very
large’.

In order to examine this topic, we may begin by remarking that
the Newtonian fluids we study always have a finite viscosity.
Also, reducing the viscosity seems like an unlikely method of
increasing the Reynolds number. If we take pipe flow as an
example, the normal procedure is to increase the velocity of
the  fluid,  as  being  much  easier  than  increasing  the  pipe
diameter or decreasing the fluid viscosity. Nevertheless, the
idea of varying the viscosity has been around for a long time,
with Batchelor discussing the idea of taking the limit as $\nu
\rightarrow 0$, at a constant rate of dissipation. He argued
that this would push the effect of viscosity to an infinite
value of the wavenumber, i.e. $k=\infty$ [1]. Edwards took the
idea further; and, in order to test his statistical theory,
argued that the input (due to forces) and the output (due to
viscosity) could be represented by delta functions at $k=0$
and $k=\infty$, respectively [2]. However, both examples were
in the context of continuum mechanics and, most importantly,
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involved the taking of limits. That is, the case of $\nu=0$ is
the Euler equation, and there is no dissipation. The case $\nu
\rightarrow 0$, such that dissipation is maintained constant,
involves a limiting process and is the Navier-Stokes equation
in the infinite Reynolds limit. It is not the Euler equation.

This procedure of taking the viscosity to tend to zero can
seem counter-intuitive; but an example that is even more so
can be found in microscopic physics, where the classical limit
can be obtained by letting Planck’s constant $h$ tend to zero.
This is definitely counter-intuitive: after all, $h$ is not
just a constant, it is a universal constant. The answer to
this is that we must be taking a limit where the quantum
levels  become  infinitesimally  small  in  comparison  to  the
energies involved in the macroscopic system.

We can apply the same idea to turbulence. For pipe flow, we
can  work  with  a  non-dimensional  viscosity  of  the  form
$\tilde{\nu}=\nu/U d$, where $U$ is the bulk mean velocity and
$d$ is the diameter of the pipe. Evidently increasing the
velocity is the equivalent of decreasing the scaled viscosity.
Moreover, as the scaled velocity is a pure number, concepts of
large and small are better defined.

The  idea  of  zero  scaled  viscosity  then  corresponds  to  an
infinite value of the velocity and clearly is not achievable.
So, in practice, zero scaled viscosity means that it is small
enough compared to other relevant quantities that it may be
neglected. The best way to do this, is to look for a limit.
That  is,  as  the  scaled  viscosity  tends  to  zero,  the
dissipation (say) tends asymptotically to a constant value.
When variations in the dissipation are too small to resolve,
either numerically or experimentally, we have in fact reached
a limiting value. This behaviour can be seen in the variation
of  dissipation  rate  with  increasing  Reynolds  number  in
reference [3].
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Postscript. This is my first post in some time because I have
been busy with acting as Guest Editor in a special edition of
Atmosphere. I hope to post frequently from now on. The link to
the journal is:
https://www.mdpi.com/journal/atmosphere/special_issues/FOH7AK5
UB1

 

 


