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In this post we take a closer look at the analysis by Tennekes
[1] in which he differed from the earlier analysis of Tennekes
and Lumley [2] and concluded that large-scale sweeping is the
determining  factor  in  the  decorrelation  of  the  two-time
correlation in the inertial range. As noted in my post of 27
April 2023, this leads (rather confusingly) to a `$-5/3$’
power  law  for  the  Eulerian  temporal  spectrum,  when  the
Kolmogorov form is actually $n=-2$. His starting point is
equation (1) in [1], which may be written in our present
notation as: \begin{equation}\frac{\partial u_1}{\partial t}=-
\left(u_1\frac{\partial  u_1}{\partial  x_1}+u_2\frac{\partial
u_1}{\partial  x_2}+u_3\frac{\partial  u_1}{\partial
x_3}\right),\end{equation} and this is justified by assuming
that Taylor’s hypothesis of frozen convection applies.

The usual application of Taylor’s hyopothesis is to situations
where there is a mean or free stream velocity $U_1$, which is
much  larger  than  the  turbulent  velocity
$\mathbf{u}(\mathbf{x},t)$. Then the changes in the velocity
field with time at a fixed measuring point could be due to the
passage of a frozen pattern of turbulent motion past that
point. Hence the local time derivative at a point may be
replaced  by  the  convective  derivative,  thus:
\begin{equation}\frac{\partial}{\partial  t}  \rightarrow  -
U_1\frac{\partial}{\partial x_1} \quad \mbox{if} \quad U_1 \gg
u.\end{equation}  Or  in  the  context  of  spectra,
\begin{equation}k_1  =  \omega/U_1.\end{equation}  A  fuller
discussion of this can be found in Section 2.6.5 of [3].
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Thus  (1)  seems  a  rather  extreme  application  of  Taylor’s
hypothesis. In fact we can write down an exact expression for
${\partial u_1}/{\partial t}$ by invoking the Navier-Stokes
equation.  This  gives  us  \begin{equation}\frac{\partial
u_1}{\partial  t}=-\left(u_1\frac{\partial  u_1}{\partial
x_1}+u_2\frac{\partial  u_1}{\partial  x_2}+u_3\frac{\partial
u_1}{\partial  x_3}\right)-\frac{\partial  p}{\partial  x_1}  +
\nu \nabla^2 u_1,\end{equation} where $p$ is the kinematic
pressure and $\nu$ is the kinematic viscosity. Thus in using
equation (1), Tennekes neglects both the pressure and the
viscous terms. The latter may seem reasonable, as his main
concern was with the inertial range, but it must be borne in
mind  that  the  subsequent  analysis  involves  squaring  and
averaging both sides of equation (1) so the neglect of the
viscous term may introduce significant error. However, the
neglect of the pressure term is even more concerning, as this
is a highly non-local term with the pressure being expressed
in terms of integrals of functions of the velocity field over
the entire system volume: see Section 2.1 of [3].

This analysis relies on imponderable assumptions about scale
separation  and  statistical  independence.  Such  ideas  were
discussed much later on, and rather more quantitatively, in
the context of mode eliminations and large eddy simulation:
see Chapter 8 in the book [4] for an account of this work. It
is clear that the analysis by Tennekes has swept a great deal
under the carpet. In contrast, the arguments given by Tennekes
and Lumley [2] seem, to me at least, more confident and well
justified than those given in [1]. In his conclusion, Tennekes
remarked on the difference between the two analyses, stating
that it was `embarrassing in a personal sense.’ Certainly both
sets of arguments might repay closer study.

As a final point, he expresses the view that the implications
of [1] support Kraichnan’s view that Lagrangian coordinates
are more suited to statistical closure theories than the more
usual Eulerian variety. However, it is worth pointing out that



all the analyses that support such a view are valid (if at
all) only for stationary turbulence, whereas all the numerical
assessments  of  closure  theories  are  restricted  to  freely
decaying turbulence. I intend to go on working on this topic
as time permits.
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In my previous post on 27 April 2023, I promised to come back
to the Lagrangian case. Over the years, I have taken the view
that the discussion of the Lagrangian case along with the
Eulerian case, which is the one that is of more practical
importance, is an unnecessary complication. At the same time,
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I have had to acknowledge that the application of these ideas
to the assessment of statistical closure theories should take
account of the fact that there are Lagrangian theories as well
as Eulerian theories. However, there is an interesting point
to be made when we compare the treatment in the book by
Tennekes and Lumley [1] with the later analysis of Tennekes
[2].

In the previous post, we only mentioned the discussion by
Tennekes and Lumley [1] of the inertial range behaviour of the
Eulerian spectrum. In fact they not only derive the inertial
range form of the Lagrangian spectrum, and find it to be the
same  power  law  as  the  Eulerian  case,  but  also  obtain  a
relationship between the constants of proportionality in the
two cases.

The crucial step in this work is the equivalence of the two
correlations (see Section 8.5 of [1]), where the authors refer
back to their discussion of Lagrangian forms in Section 7.1
(actually they incorrectly give this as 7.2). Following their
notation, we represent the Lagrangian velocity of a fluid
point by $V_{\alpha}(t)$ where $\alpha = 1, 2, \mbox{or}, 3$.
Then,  they  assert  that  $\langle  V_{\alpha}V_{\alpha}\rangle
=\langle u_{\alpha} u_{\alpha}\rangle$, where $u_{\alpha}$ is
of course the Eulerian velocity; leading on to their equation
(8.5.3). This is the step that provides the basis for their
assertion of the equivalence of the Eulerian and Lagrangian
inertial range spectra.

However, the later work of Tennekes [2] leads to the Eulerian
spectrum being different from the Lagrangian form, due to the
supposed predominance of sweeping effects. This would seem to
be an inconsistency and we will return to this in future posts
when we examine the work of Tennekes more closely.

We close by pointing out that in our previous post we noted
that the form of two-time correlation being studied in [1] was
limited to stationary flows. This point was also made by Hinze



[3]:  see  equation  (1.57),  page  39  in  the  first  edition.
However,  in  discussing  the  motion  of  fluid  points  in
Lagrangian coordinates, Tennekes and Lumley emphasise the need
for  both  homogeneity  and  stationarity.  So  in  effect  this
restriction  has  already  been  made.  We  also  note  that  an
alternative discussion of the original work by Lumley can be
found in Section 12.2 of [4].
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