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In this post we take a closer look at the analysis by Tennekes
[1] in which he differed from the earlier analysis of Tennekes
and Lumley [2] and concluded that large-scale sweeping is the
determining  factor  in  the  decorrelation  of  the  two-time
correlation in the inertial range. As noted in my post of 27
April 2023, this leads (rather confusingly) to a `$-5/3$’
power  law  for  the  Eulerian  temporal  spectrum,  when  the
Kolmogorov form is actually $n=-2$. His starting point is
equation (1) in [1], which may be written in our present
notation as: \begin{equation}\frac{\partial u_1}{\partial t}=-
\left(u_1\frac{\partial  u_1}{\partial  x_1}+u_2\frac{\partial
u_1}{\partial  x_2}+u_3\frac{\partial  u_1}{\partial
x_3}\right),\end{equation} and this is justified by assuming
that Taylor’s hypothesis of frozen convection applies.

The usual application of Taylor’s hyopothesis is to situations
where there is a mean or free stream velocity $U_1$, which is
much  larger  than  the  turbulent  velocity
$\mathbf{u}(\mathbf{x},t)$. Then the changes in the velocity
field with time at a fixed measuring point could be due to the
passage of a frozen pattern of turbulent motion past that
point. Hence the local time derivative at a point may be
replaced  by  the  convective  derivative,  thus:
\begin{equation}\frac{\partial}{\partial  t}  \rightarrow  -
U_1\frac{\partial}{\partial x_1} \quad \mbox{if} \quad U_1 \gg
u.\end{equation}  Or  in  the  context  of  spectra,
\begin{equation}k_1  =  \omega/U_1.\end{equation}  A  fuller
discussion of this can be found in Section 2.6.5 of [3].
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Thus  (1)  seems  a  rather  extreme  application  of  Taylor’s
hypothesis. In fact we can write down an exact expression for
${\partial u_1}/{\partial t}$ by invoking the Navier-Stokes
equation.  This  gives  us  \begin{equation}\frac{\partial
u_1}{\partial  t}=-\left(u_1\frac{\partial  u_1}{\partial
x_1}+u_2\frac{\partial  u_1}{\partial  x_2}+u_3\frac{\partial
u_1}{\partial  x_3}\right)-\frac{\partial  p}{\partial  x_1}  +
\nu \nabla^2 u_1,\end{equation} where $p$ is the kinematic
pressure and $\nu$ is the kinematic viscosity. Thus in using
equation (1), Tennekes neglects both the pressure and the
viscous terms. The latter may seem reasonable, as his main
concern was with the inertial range, but it must be borne in
mind  that  the  subsequent  analysis  involves  squaring  and
averaging both sides of equation (1) so the neglect of the
viscous term may introduce significant error. However, the
neglect of the pressure term is even more concerning, as this
is a highly non-local term with the pressure being expressed
in terms of integrals of functions of the velocity field over
the entire system volume: see Section 2.1 of [3].

This analysis relies on imponderable assumptions about scale
separation  and  statistical  independence.  Such  ideas  were
discussed much later on, and rather more quantitatively, in
the context of mode eliminations and large eddy simulation:
see Chapter 8 in the book [4] for an account of this work. It
is clear that the analysis by Tennekes has swept a great deal
under the carpet. In contrast, the arguments given by Tennekes
and Lumley [2] seem, to me at least, more confident and well
justified than those given in [1]. In his conclusion, Tennekes
remarked on the difference between the two analyses, stating
that it was `embarrassing in a personal sense.’ Certainly both
sets of arguments might repay closer study.

As a final point, he expresses the view that the implications
of [1] support Kraichnan’s view that Lagrangian coordinates
are more suited to statistical closure theories than the more
usual Eulerian variety. However, it is worth pointing out that



all the analyses that support such a view are valid (if at
all) only for stationary turbulence, whereas all the numerical
assessments  of  closure  theories  are  restricted  to  freely
decaying turbulence. I intend to go on working on this topic
as time permits.
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