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I previously discussed this topic in my posts of 25 February
2021 and 10 March 2022. In the succeeding months I have become
increasingly aware that there is dissension in the literature,
with people citing the temporal spectrum as $\omega^{-2}$, if
the arguments of Kolmogorov apply; and $\omega^{-5/3}$, if
convective sweeping applies. Statements about these forms are
often made without any supporting reference, so my next step
was to identify the sources; and then try to make a critical
assessment of both forms and their relationship to each other.
In fact the source of the first result seems to be the book by
Tennekes and Lumley [1], while the second form is due to later
work by Tennekes [2]. So here I will make a start by outlining
the general problem, in order to fix notation and definitions.

We  begin  with  the  general  two-point,  two-time  correlation
tensor  $R_{\alpha\beta}(\mathbf{x},\mathbf{x’};t,t’)$,  where
$\alpha$ and $\beta$ are the cartesian tensor indices, taking
the values $1,2$ or $3$. The correlation is defined in terms
of  the  velocity  field  $u(\mathbf{x},t)$,  thus:
\begin{equation}R_{\alpha\beta}(\mathbf{x},\mathbf{x’};t,t’)=\
langle  u_\alpha(\mathbf{x},t)u_\beta(\mathbf{x’},t’)\rangle,
\end{equation} where the angle brackets denote the ensemble
average.  In  everything  that  follows  we  will  restrict  our
attention to homogeneous turbulence and consider a fixed point
in space. This means that we may simplify the notation by
omitting the space variables, and write the correlation tensor
as:
\begin{equation}R_{\alpha\beta}(\mathbf{x},\mathbf{x’};t,t’)=R
_{\alpha\beta}(t,t’). \end{equation} Then, for generality, we
may introduce the sum and difference variables for the times,
as:  \begin{equation}  \mathcal{T}=(t+t’)/2  \quad  \mbox{and}
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\quad \tau = (t’-t). \end{equation} Accordingly, the two-time
correlation  tensor  may  be  written  in  the  form:
\begin{equation}  R_{\alpha\beta}(t,t’)  =
R_{\alpha\beta}(\mathcal{T},\tau) \end{equation} We still have
one more restriction to make: Tennekes and Lumley restrict
their attention to isotropic turbulence, which means that we
can  replace  the  correlation  tensor  by  a  single  scalar
correlation function which we will denote by $R_E$, where the
subscript  $E$  denotes  `Eulerian’.  Thus,  for  isotropic
turbulence,  \begin{equation}R_{\alpha\beta}(\mathcal{T},\tau)
\rightarrow R_E(\mathcal{T},\tau), \end{equation} In a later
post we will introduce the Lagrangian correlation function.

Now, at this stage, we have imposed all the restrictions that
Tennkekes and Lumley have made in specifying their problem.
However their subsequent analysis seems to imply that they are
also  considering  stationary  turbulence  and  this  is  an
important point. We will underline this fact by continuing to
treat the problem more generally.

The energy spectrum $\phi_E(\mathcal{T},\omega)$ is defined by
the Fourier transform, \begin{equation}R_E(\mathcal{T},\tau) =
\int_{-\infty}^\infty  \exp(i\omega  \tau)
\phi_E(\mathcal{T},\omega)d\omega,\end{equation}where  $\omega$
is the angular frequency; and the Fourier pair is completed
by:  \begin{equation}\phi_E(\mathcal{T},\omega)=
\frac{1}{2\pi}\int_{-\infty}^\infty  \exp(-i\omega
\tau)R_E(\mathcal{T},\tau)d\tau.\end{equation}

As a preliminary to considering the inertial-range form of
$\phi_E(\mathcal{T},\omega)$  we  need  to  establish  its
dimensions. If we integrate the spectrum over all frequencies,
we  have:  \begin{equation}  \int_{-
\infty}^{\infty}\phi_E(\mathcal{T},\omega)d\omega  =
U^2(\mathcal{T}),\end{equation}  where  $U$  is  the  root  mean
square velocity. Recall that $\mathcal{T}$ is the clock time,
as  opposed  to  the  difference  time  $\tau$.  From  this
relationship it follows that the dimensions of the spectrum



are:  \begin{equation}  [\phi_E(\mathcal{T},\omega)]  =  L^2
T^{-1}, \end{equation} where as usual square brackets indicate
the dimensions of a quantity.

At this point we assume stationarity, which is in effect what
Tennekes and Lumley have done [1] and we omit the dependence
on $\mathcal{T}$. Having, in effect, done this, they apply the
well known argument of Kolmogorov to limit the dependence of
the spectrum to the two independent variables $\omega$ and the
dissipation  rate  $\varepsilon$.  They  state  that  the  only
dimensionally  consistent  result  is:  \begin{equation}
\phi_E(\omega)  \equiv  f(\varepsilon,  \omega)  =  \beta
\varepsilon  \omega^{-2},\end{equation}  where  $f$  is  some
arbitrary function, assumed to be a power and $\beta$ is a
constant. Checking the dimensions, we find: \begin{equation}
[\phi_E(\omega)]  =  (L^2  T^{-3})T^{2}  =  L^2  T^{-1},
\end{equation}  as  required.

Later Tennekes presented a different analysis [2] in which he
argued  that  the  inertial-range  temporal  spectrum  would  be
determined by convective sweeping and this led to the result:
\begin{equation}\phi_E(\omega)=  \beta_E
\varepsilon^{2/3}U^{2/3}\omega^{-5/3}.  \end{equation}  It  is
readily verified that this result has the correct dimensions,
thus:  \begin{equation}  [\phi_E(\omega)]  =
(L^2T^{-1})^{2/3}(LT^{-1})^{2/3}T^{5/3}=
L^2T^{-1}.\end{equation}
It  should  be  noted  that  irrespective  of  the  merits  or
otherwise  of  this  analysis  by  Tennekes,  it  is  limited  to
stationary turbulence in principle due to omission of any
dependence on the clock time $\mathcal{T}$. In future posts I
intend to give some critical attention to both these theories.

[1]  H.  Tennekes  and  J.  L.  Lumley.  A  first  course  in
turbulence.  MIT  Press.  Cambridge,  Mass.,  1972.
[2] H. Tennekes. Eulerian and Lagrangian time microscales in
isotropic turbulence. J. Fluid Mech., 87:561, 1975.
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When I began this series of posts on the effects of phase, I
had quite forgotten that I had once looked into the effects of
phase in quite a specific way. This only came back to me when
I was using my own book [1] to remind me about conditional
averaging. And that book was published as recently as 2014!

In effect, McMillan and Ferziger tested the significance of
taking phase into account as long ago as 1979, in the context
of  sub-grid  modelling  [2].  They  did  this  by  measuring
correlations  between  exact  sub-grid  stresses  and  eddy
viscosity models. In the case of the Smagorinsky model, which
is widely used with reasonable success in shear flows, they
found correlations as low as 0.1 – 0.2. Then, in 1998, McComb
and Young [3] showed that, for isotropic turbulence at least,
low values of the correlations between sub-grid stresses and
eddy-viscosity  models  are  due  to  phase  effects.  A  brief
pedagogical demonstration of the need to take phases into
account in an eddy-viscosity model can be found in Section 8.7
of  [1],  but  we  will  not  pursue  that  here;  but  instead
concentrate on the numerical demonstration of the effects of
phase.

We carried out a numerical simulation of stationary, isotropic
turbulence, with the velocity field in wavenumber defined on
the interval $0\leq k \leq k_0$. Various cut-off wave numbers
$k_1 \leq k_0$, $k_2 \leq k_1$, $k_3 \leq k_2$; and so on,
were considered, so that a series of large-eddy simulations
could  be  compared  to  the  fully  resolved  simulation.  I
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discussed in my post of 23 March 2023 how the complex velocity
field in wavenumber (a.k.a the Fourier transform of the real-
space velocity field) could be separated into amplitude and
phase; and this was the method employed in [3], from which I
have  taken  three  figures.  In  all  cases,  we  evaluated  a
correlation coefficient $R(k)$ and this is plotted against
$k/k_$, where $k_1$ is the maximum resolved wavenumber in all
cases.

In  Figure  A,  we  show  the  correlation  $R(k)$  between  the
subgrid stresses and the eddy viscosity for seven cut-off
wavenumbers in the range $16.5 \leq k_1 \leq 112.5$ with $k_0
=  128$.  It  can  be  seen  that  for  most  cases  (shown  by
continuous lines) the correlation is not very good, varying
from $0.25 – 0.5$ at the cut-off wavenumber to essentially
being anti-correlated as $h/k_1 \rightarrow 0$. The exceptions
are the curves for the lowest cut-off wavenumbers $k_1 =16.5$
(long  dashes)  and  $k_1=  32.5$  (short  dashes);  and  in
particular the first of these. It should be noted that the
first of these is the only one to yield a finite plateau
region  in  the  plot  of  the  effective  viscosity  against
wavenumber [3]. This latter property is an indication that it
is only this lowest cut-off wavenumber which gives an adequate
degree of scale separation compared to the maximum value.

FIG A



Correlation R(k) between subgrid stresses and eddy-
viscosity model.

In Figure B, we show the phase correlations for the same
cases, and the similarity to the results of Figure A are quite
marked.

FIG B



The phase correlation R(k) between subgrid stresses and
the eddy-viscosity model.

On the other hand, the results for amplitude correlations in
Figure C show a high level of correlation over the entire
range of wavenumbers, with very little variation between the
results for the various cut-off wavenumbers.

FIG C



Amplitude  correlations  R(k)  between  subgrid  stresses
and eddy-viscosity models.

In this case, isotropic turbulence, we are mainly interested
in modelling the inertial transfer through wavenumber and for
this purpose a model which represents the amplitudes is quite
effective. However, given that all such formulations are based
on average quantities it is not easy to see how the phases can
be taken into account.

[1]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
[2] O. J. McMillan and J. H. Ferziger. Direct testing of
subgrid-scale models. AIAA Journal, 17:1340, 1979.
[3] W. D. McComb and A. J. Young. Explicit-Scales Projections
of  the  Partitioned  Nonlinear  Term  in  Direct  Numerical
Simulation of the Navier-Stokes Equation. Presented at 2nd
Monte Verita Colloquium on Fundamental Problematic Issues in
Turbulence: available at arXiv:physics/9806029 v1, 1998.
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In the previous post we came to the unsurprising conclusion
that as a matter of rigorous mathematics, we cannot average
out the high-wavenumber modes while leaving the low-wavenumber
modes unaffected. However, turbulence is a matter of physics
rather than pure mathematics and the initial conditions are
not known with mathematical precision. Here the concept of
deterministic chaos comes to our rescue. If we accept that the
initial condition must have some uncertainty attached to it,
then  there  is  a  possibility  that  such  an  average  can  be
carried out approximately.

We can generalise the conditional average, given as equation
(3) in the previous post, by extending it to some arbitrary
well-behaved functional $H[u(k,t)]$. Here we are also using
the simplified notation of the previous post; and in fact we
shall simplify it even further, and write $u(k,t)\equiv u_k$.
Then we can replace that equation by:\begin{equation}\langle
H[u_k]\rangle_c  =  \langle  H[u_k]\mid  u^-_k
\rangle,\end{equation} where, as before, the subscript `$c$’
on the left hand side denotes `conditional average’; and the
notation on the right hand side indicates that the ensemble
average is carried out while keeping the low-wavenumber part
of the velocity field $ u^-_k$ constant. From the previous
discussion,  we  know  that  this  average  amounts  to  a  delta
function, as both $u_k$ and $u^+_k$ are also held constant.

The way out of this impasse is the recognition that, in the
real physical situation, $u^-_k$ cannot be held precisely to
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any  exact  value.  There  must  be  some  uncertainty,  however
small, in the application of this constraint. Accordingly we
introduce an uncertainty into our definition of a conditional
average  by  writing  it  as:  \begin{equation}\langle
H[u_k]\rangle_c  =  \langle  H[u_k]\mid  u^-_k  +  \phi^-
_k\rangle.\end{equation} Evidentally, $ u^-_k + \phi^-_k$ must
be  a  solution  of  the  Navier-Stokes  equation,  but  the
uncertainty  $\phi^-_k$  is  otherwise  arbitrary  and  may  be
chosen to have convenient properties. In fact, McComb, Roberts
and  Watt  [1]  chose  it  to  satisfy  the
conditions:\begin{equation} \langle u^-_k\rangle_c = u^-_k +
\langle  \phi^-_k  \rangle_c,\end{equation}  along
with:\begin{equation} \langle u^-_k u^-_j\rangle_c = u^-_k +
\langle  \phi^-_k  \phi^-_j  \rangle_c,\end{equation}  and
\begin{equation} \langle u^-_ku^+_j\rangle_c = u^-_k \langle
u^+_k  \rangle_c.\end{equation}  These  relationships  are  then
used  in  decomposing  the  NSE  and  implementing  an  RGl
calculation.  It  should  be  noted  that  $  \langle  u^+_k
\rangle_c$ is not zero and an equation of motion must be
derived for it.

The  problem  posed  by  the  correction  terms  in  $\phi^-_k$
depends  on  just  how  chaotic  the  turbulence  is,  but  the
calculations suggest that these terms can be neglected. In
fact the calculation of the invariant energy flux yields a
value of the Kolmogorov spectral constant of $\alpha = 1.62$
which is the generally accepted value. Further details can be
found  in  the  original  paper  [1]  and  in  the  appropriate
sections of the book [2].

However, despite the above procedures, there are still phase
effects that are not being taken into account, and this will
be the subject of the next post.
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