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I previously discussed this topic in my posts of 25 February
2021 and 10 March 2022. In the succeeding months I have become
increasingly aware that there is dissension in the literature,
with people citing the temporal spectrum as $\omega^{-2}$, if
the arguments of Kolmogorov apply; and $\omega^{-5/3}$, if
convective sweeping applies. Statements about these forms are
often made without any supporting reference, so my next step
was to identify the sources; and then try to make a critical
assessment of both forms and their relationship to each other.
In fact the source of the first result seems to be the book by
Tennekes and Lumley [1], while the second form is due to later
work by Tennekes [2]. So here I will make a start by outlining
the general problem, in order to fix notation and definitions.

We  begin  with  the  general  two-point,  two-time  correlation
tensor  $R_{\alpha\beta}(\mathbf{x},\mathbf{x’};t,t’)$,  where
$\alpha$ and $\beta$ are the cartesian tensor indices, taking
the values $1,2$ or $3$. The correlation is defined in terms
of  the  velocity  field  $u(\mathbf{x},t)$,  thus:
\begin{equation}R_{\alpha\beta}(\mathbf{x},\mathbf{x’};t,t’)=\
langle  u_\alpha(\mathbf{x},t)u_\beta(\mathbf{x’},t’)\rangle,
\end{equation} where the angle brackets denote the ensemble
average.  In  everything  that  follows  we  will  restrict  our
attention to homogeneous turbulence and consider a fixed point
in space. This means that we may simplify the notation by
omitting the space variables, and write the correlation tensor
as:
\begin{equation}R_{\alpha\beta}(\mathbf{x},\mathbf{x’};t,t’)=R
_{\alpha\beta}(t,t’). \end{equation} Then, for generality, we
may introduce the sum and difference variables for the times,
as:  \begin{equation}  \mathcal{T}=(t+t’)/2  \quad  \mbox{and}
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\quad \tau = (t’-t). \end{equation} Accordingly, the two-time
correlation  tensor  may  be  written  in  the  form:
\begin{equation}  R_{\alpha\beta}(t,t’)  =
R_{\alpha\beta}(\mathcal{T},\tau) \end{equation} We still have
one more restriction to make: Tennekes and Lumley restrict
their attention to isotropic turbulence, which means that we
can  replace  the  correlation  tensor  by  a  single  scalar
correlation function which we will denote by $R_E$, where the
subscript  $E$  denotes  `Eulerian’.  Thus,  for  isotropic
turbulence,  \begin{equation}R_{\alpha\beta}(\mathcal{T},\tau)
\rightarrow R_E(\mathcal{T},\tau), \end{equation} In a later
post we will introduce the Lagrangian correlation function.

Now, at this stage, we have imposed all the restrictions that
Tennkekes and Lumley have made in specifying their problem.
However their subsequent analysis seems to imply that they are
also  considering  stationary  turbulence  and  this  is  an
important point. We will underline this fact by continuing to
treat the problem more generally.

The energy spectrum $\phi_E(\mathcal{T},\omega)$ is defined by
the Fourier transform, \begin{equation}R_E(\mathcal{T},\tau) =
\int_{-\infty}^\infty  \exp(i\omega  \tau)
\phi_E(\mathcal{T},\omega)d\omega,\end{equation}where  $\omega$
is the angular frequency; and the Fourier pair is completed
by:  \begin{equation}\phi_E(\mathcal{T},\omega)=
\frac{1}{2\pi}\int_{-\infty}^\infty  \exp(-i\omega
\tau)R_E(\mathcal{T},\tau)d\tau.\end{equation}

As a preliminary to considering the inertial-range form of
$\phi_E(\mathcal{T},\omega)$  we  need  to  establish  its
dimensions. If we integrate the spectrum over all frequencies,
we  have:  \begin{equation}  \int_{-
\infty}^{\infty}\phi_E(\mathcal{T},\omega)d\omega  =
U^2(\mathcal{T}),\end{equation}  where  $U$  is  the  root  mean
square velocity. Recall that $\mathcal{T}$ is the clock time,
as  opposed  to  the  difference  time  $\tau$.  From  this
relationship it follows that the dimensions of the spectrum



are:  \begin{equation}  [\phi_E(\mathcal{T},\omega)]  =  L^2
T^{-1}, \end{equation} where as usual square brackets indicate
the dimensions of a quantity.

At this point we assume stationarity, which is in effect what
Tennekes and Lumley have done [1] and we omit the dependence
on $\mathcal{T}$. Having, in effect, done this, they apply the
well known argument of Kolmogorov to limit the dependence of
the spectrum to the two independent variables $\omega$ and the
dissipation  rate  $\varepsilon$.  They  state  that  the  only
dimensionally  consistent  result  is:  \begin{equation}
\phi_E(\omega)  \equiv  f(\varepsilon,  \omega)  =  \beta
\varepsilon  \omega^{-2},\end{equation}  where  $f$  is  some
arbitrary function, assumed to be a power and $\beta$ is a
constant. Checking the dimensions, we find: \begin{equation}
[\phi_E(\omega)]  =  (L^2  T^{-3})T^{2}  =  L^2  T^{-1},
\end{equation}  as  required.

Later Tennekes presented a different analysis [2] in which he
argued  that  the  inertial-range  temporal  spectrum  would  be
determined by convective sweeping and this led to the result:
\begin{equation}\phi_E(\omega)=  \beta_E
\varepsilon^{2/3}U^{2/3}\omega^{-5/3}.  \end{equation}  It  is
readily verified that this result has the correct dimensions,
thus:  \begin{equation}  [\phi_E(\omega)]  =
(L^2T^{-1})^{2/3}(LT^{-1})^{2/3}T^{5/3}=
L^2T^{-1}.\end{equation}
It  should  be  noted  that  irrespective  of  the  merits  or
otherwise  of  this  analysis  by  Tennekes,  it  is  limited  to
stationary turbulence in principle due to omission of any
dependence on the clock time $\mathcal{T}$. In future posts I
intend to give some critical attention to both these theories.

[1]  H.  Tennekes  and  J.  L.  Lumley.  A  first  course  in
turbulence.  MIT  Press.  Cambridge,  Mass.,  1972.
[2] H. Tennekes. Eulerian and Lagrangian time microscales in
isotropic turbulence. J. Fluid Mech., 87:561, 1975.


