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In this post we look at some of the fundamental problems
involved  in  taking  a  conditional  average  over  the  high-
wavenumber  modes,  while  leaving  the  low-wavenumber  modes
unaffected.

Let  us  consider  isotropic,  stationary  turbulence,  with  a
velocity field in wavenumber space which is defined on $0\leq
k \leq k_0$. Note that the maximum wavenumber $k_0$ is not the
Kolmogorov dissipation wavenumber, although in both large-eddy
simulation and in the application of renormalisation group
(RG) to turbulence, it is often taken to be so. The only
definition that I know of, is the one I put forward in 1986
[1], which is:\begin{equation}\int^{k_0}_0 2\nu_0 k^2 E(k)dk
\approx  \int^{\infty}_0  2  \nu_0  k^2  E(k)dk  =  \varepsilon,
\end{equation} where $\nu_0$ is the kinematic viscosity of the
fluid, $E(k)$ is the energy spectrum, and $\varepsilon$ is the
dissipation rate. Obviously the value of $k_0$ depends on how
closely  the  integral  on  the  left  approximates  the  actual
dissipation rate, which corresponds to the upper limit on the
integral being taken as infinity. Some people apparently find
this definition puzzling, possibly because they are familiar
with RG in the context of the theory of critical phenomena,
where the maximum wavenumber is determined by the inverse of
the lattice constant. In contrast, fluid dynamicists may find
our definition here quite intuitive, as it is analogous to
Prandtl’s definition of the laminar boundary layer.

Something which may be counter-intuitive for many, is the
choice of $k_0$ as the maximum wavenumber. This is because in
RG  we  progressively  eliminate  modes  in  wavenumber  bands:
$k_1\leq k \leq k_0$, $k_2 \leq k \leq k_1$, $k_3\leq k \leq
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k_2$, and so on, where $k_n$ decreases with increasing integer
$n$, until the iteration reaches a fixed point. Also, the
fluid  viscosity  $\nu_0$  is  so  denoted,  because  it  is
progressively  renormalized  until  it  reaches  a  value
$\nu_{n-1}=\nu_n \equiv \nu_N$, at the fixed point $n=N$.

The  first  step  in  eliminating  a  band  of  modes  is  quite
straightforward.  We  high-pass,  and  low-pass,  filter  the
velocity field at $k=k_1$, thus: \begin{eqnarray} u^{-}(k,t) =
u(k,t) \quad \mbox{for} \quad 0 \leq k \leq k_1; \nonumber\\
u^{+} (k,t)= u(k,t) \quad \mbox{for} \quad k_1 \leq k \leq
k_2,\end{eqnarray}  where  we  have  adopted  a  simplified
notation. Then we can substitute the decomposition given by
equation (2) into the Navier-Stokes equation in wavenumber,
and study the effect. However we will not pursue that here,
and further details can be found in Section 5.1.1 of [2].
Instead, we will concentrate here on the following question:
how do we average out the effect of the $u^+$ modes, while
keeping the $u^-$ modes constant?

The  condition  for  such  an  average  can  be  written  as:
\begin{equation}\langle  u^-(k,t)\rangle_c  =  u^{-
}(k,t),\end{equation}where  the  subscript  `$c$’  denotes
`conditional’. We should also recall that isotropic turbulence
requires  a  zero  mean  velocity,  that  is:  $\langle
u(k,t)\rangle=0$.

Actually,  it  would  be  quite  simple  to  carry  out  such  an
average,  provided  that  the  velocity  field  $u(k,t)$  were
multivariate normal. In that case, each of the various modes
could be averaged out, independently of all the rest. However,
the turbulent velocity field is not Gaussian so, in attempting
to  carry  out  a  such  an  average,  we  would  run  into  the
following two problems.

First, we must satisfy the boundary condition between the two
regions  of  $k$-space.  Hence,  \begin{equation}  u^-
(k_1,t)=u^+(k_1,t). \end{equation} This is the extreme case,



where we would be trying to average out a high-$k$ mode while
leaving the identical low-$k$ mode unaffected. At the very
least, this draws attention to the need for scale separation.

Secondly, there are some questions about the nature of the
averaging  over  modes,  in  terms  of  the  averaging  of  the
velocity field in real space. In order to consider this, let
us  introduce  a  combined  Fourier  transform  and  filter
$F_T^{\pm}(k,x;t)$ acting on the velocity field $u(x,t)$, such
that:\begin{equation}u^{\pm}(k,t)=F_T^{\pm}(k,x;t)u(x,t).
\end{equation} Noting that both the Fourier transform and the
filter are purely deterministic entities, the average can only
act on the real-space velocity field, leading to zero!

So it seems that a simple filtered average, as used in various
attempts at subgrid modelling or RG applied to turbulence,
cannot be correct at a fundamental level. We will see in the
next  post  how  the  introduction  of  a  particular  kind  of
conditional average led to a more satisfactory situation [3].
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