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Occasionally I still see references in the literature to the
Zeroth Law of Turbulence. The existence of a zeroth law would
seem to imply that there is at least a first law as well. But,
so far as I know, there are no other laws of turbulence, and
hence my question is purely rhetorical.

The so-called zeroth law is the fact the turbulent dissipation
tends to a limit as the Reynolds number increases. Some people
seem to be obsessed by the fact that this is equivalent to a
finite  dissipation  limit  as  the  viscosity  tends  to  zero.
Unfortunately, they become hypnotised by the zero viscosity
and  completely  overlook  the  word  `limit’!  This  becomes
translated  into  `finite  turbulent  dissipation  at  zero
viscosity’  and  is  also  referred  to  as  the  `dissipation
anomaly’.  If  this  were  true,  then  it  certainly  would  be
anomalous, to say the least. But it isn’t true. Turbulent
dissipation  is  ultimately,  like  all  dissipation  in  fluid
systems, the transformation of macroscopic kinetic energy into
heat  by  the  action  of  viscosity.  No  viscosity  means  no
dissipation.

I do not wish to become hypnotised myself by this particular
manifestation of folklore. I have written about it before in
these blogs and will write about it again. Right now I wish to
concentrate only on the oddity of the terminology: `zeroth
law’. Presumably it has been so named by analogy with the
situation in thermodynamics, where the well-established first
and second laws were later supplemented by both a third law
and a zeroth law. The third law was part of the subject when I
took my first degree but the zeroth law wasn’t. It amounts
essentially to a definition of temperature that provides a
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basis for its measurement. I suppose that it became thought to
be so fundamental that it really ought to precede the existing
first and second laws.

However, if that was the case, then surely it would be better
to  name  it  something  like  `The  fundamental  principle  of
thermodynamics’? The trouble with zeroth law is that zero
means nothing. That is, when you don’t have any of something,
then you have zero.

It is a failure to recognise this that causes confusion about
the calendar when a century changes. One needs to realize that
there is no `year zero’. Everything is zero to begin with.
Then we start counting seconds, minutes, days and 365 days
later we have achieved one year which we denote by `1’. When
we reach ten years, we have completed a decade, and we can
label that year by `10’, with zero fulfilling its mathematical
significance by giving us a symbol for `10’. Thus the year 10
is the last year of the decade, the year 100 is last year of
the  century,  and  the  year  1000  is  the  last  year  of  the
millennium. Thus Year 2000 is the last year of the second
millennium  and  Year  2001  is  the  first  year  of  the  third
millennium. (I hope that digression made sense!)

In my view, the use of the term `zeroth law’ is lame in
thermodynamics and doubly lame in turbulence, where we do not
even  have  an  agreed  first  law.  It  also  reflects  muddled
thinking, based very largely on a failure to understand the
mathematical  concept  of  a  limit,  which  ends  up  with  the
erroneous supposition that the infinite Reynolds number limit
corresponds to the Euler equation. This amounts to a failure
to recognize that the Euler equation throughout its entire
life has been indomitably non-dissipative.

This will be my last blog of this year. I intend to resume
posting in the new year. In the meantime, I hope that we shall
all have a pleasant holiday.
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In  this  series  of  posts  we  have  argued  that  the  three
pioneering theories of turbulence (due to Kraichnan, Edwards
and Herring, respectively) are all Markovian with respect to
wavenumber interactions. Thus, despite their many successful
features, the ultimate failure of these theories to give the
correct infinite-Reynolds number limit arises from the fact
that they cannot reproduce the non-Markovian nature of fluid
turbulence.  In  the  immediately  preceding  post,  we  drew  a
distinction between the concept of a process being Markovian
in  its  wavenumber  interactions  and  the  `almost-Markovian’
nature  of  certain  single-time  theories,  where  the  term
`Markovian’ refers to their development with time. In this
final post in the series, we may shed some further light on
these matters by considering the use of closures to calculate
the subgrid viscosity for a large-eddy simulation.

This  activity  was  initiated  in  1976  by  Kraichnan  [1]  who
considered isotropic turbulence and based his approach on his
own test-field model. In fact this publication led to quite a
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lot of activity by others, although this was generally based
on the very similar EDQNM model (see the previous post).

The LES equations for isotropic turbulence can be formulated
in wavenumber space by filtering the velocity field at some
fixed  cut-off  wavenumber  $k_c$.  Then,  for  the  explicit
(resolved)  wavenumbers  $k\leq  k_c$,  we  have  the  resolved
velocity field $u^{<}(\mathbf{k,t})$; while the subgrid field
takes the form $u^{>}(\mathbf{k,t})$ for $k_c\leq k$. Then
substituting  into  the  Navier-Stokes  equations,  we  obtain
separate  equations  for  the  low-$k$  and  high-$k$,  ranges.
However, the nonlinear term ensures that the two equations of
motion are coupled together. This coupling of explicit and
implicit modes is the subgrid modelling problem.

A detailed discussion of these matters may be found in Section
10.3 of the book [2], but here we only wish to sketch out some
features of Kraichnan’s approach insofar as they bear on the
earlier posts in this series. We may do this schematically in
terms  of  the  Lin  equation,  as  follows.  Evidentally,
corresponding to the explicit modes of the velocity field, we
may  define  an  explicit  modes  energy  spectral  density
$C^{<}(k,t)$, and correspondingly the filtered energy spectrum
$E^{<}(k,t) = 4\pi k^2 C^{<}(k,t)$. Accordingly we may write
the  energy  balance  for  the  explicit  modes  as:
\begin{equation}\left(\frac{\partial}{\partial t} + 2\nu k^2
\right)E^{<}(k,t)  =  T^{<}(k,t)  +  T^{<>}(k,t),\end{equation}
where $T^{<}(k,t)$ is the transfer spectrum for the explicit
modes and contains only couplings within these modes; whereas
$T^{<>}(k,t)$  contains  terms  involving  the  implicit  modes.
Kraichnan proposed [1] that the second transfer term could be
modelled  in  terms  of  an  effective  subgrid  viscosity
$\nu(k|k_c)$,  such  that  \begin{equation}T^{<>}(k,t)  \equiv
T(k|k_c) =-2\nu(k|k_c)k^2 E^{<}(k,t),\end{equation} where at
the same time he introduced the parametric notation shown.

The point that we wish to highlight here is that in using
$T(k|k_c)$ Kraichnan only took the output term into acccount.



In fact the input term, even if small, must be included. In
fact there are circumstances where it is not small and in
general $\nu(k_c|k)$ is not positive definite, nor should it
be. Thus, an adherence to the Markovian point of view that
underpinned the DIA and the other pioneering closures, leads
to an incorrect result. A full discussion of this may by found
in Section 10.3 of [2] and on page 394 Kraichnan’s effective
viscosity  can  be  found  as  equation  (10.17),  while  the
corrected form with the input term of the transfer spectrum
included may be found as a footnote on page 403 of the same
reference.

As a corollary here, on page 392 of [2] I have noted that
Kraichnan showed that his first lagrangian theory reduced to a
Markovian form under certain circumstances. In the case of the
LET theory, I know that it is non-Markovian but I had only
assumed that was the case for all the Lagrangian theories. So,
at least for the first one, it has been shown to be the case.

[1]  R.  H.  Kraichnan.  Eddy-viscosity  in  two  and  three
dimensions.  J.  Atmos.  Sci.,  33:1521,  1976.
[2] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
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Previously,  in  my  post  of  10  November  2022,  I  mentioned,
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purely  for  completeness,  the  work  of  Phythian  [1]  who
presented a self-consistent theory that led to the DIA. The
importance of this for Kraichnan was that it also led to a
model representation of the DIA and in turn to the development
of what he called `almost-Markovian’ theories. Some further
discussion of this topic can be found in Section 6.3.2 of the
book [2], but here we will concentrate on the general class of
almost-Markovian models and theories. My concern here is to
draw a distinction between their use of `Markovian’, which
refers to evolution in time, and my use in this series of
posts, which refers to interactions in wavenumber.

This  class  consists  of  the  Eddy-damped,  Quasi-normal,
Markovian (EDQNM) model of Orszag in 1970 [3], the test-field
model of Kraichnan in 1971 [4], the modified LET theory of
McComb and Kiyani in 2005 [5], and the theory of Bos and
Bertoglio in 2006 [6]. Here we follow the example of Kraichnan
who described a theory which relied on a specific assumption
that involved the introduction of an adjustable constant as a
model. In order to illustrate what is going on in this kind of
approach, I will discuss the EDQNM in some detail, as follows.

We begin with the quasi-normal expression for the transfer
spectrum $T(k)$ from the Lin equation. This is found to be:
\begin{eqnarray}T(k,t)  &  &  =8\pi^2\int
d^{3}j\,L\left(\mathbf{k},\mathbf{j}\right)\int_{0}^{t}ds\,R_0
\left(k;t,s\right)R_0\left(j;t,s\right)R_0\left(\left|\mathbf{
k}-\mathbf{j}\right|;t,s\right)  \nonumber  \\&  \times
&\left[C\left(j,s\right)C\left(\left|\mathbf{k}-
\mathbf{j}\right|,s\right)-
C\left(k,s\right)C\left(\left|\mathbf{k}-
\mathbf{j}\right|,s\right)\right],\label{KWE2}  \end{eqnarray}
where  the  viscous  response  function  is  given  by
\[R_0(k;t,t’)=\exp[-\nu  k^2  (t-t’)],\]  and  the  coefficient
$L(\mathbf{k,j})$  is  defined  as:
\begin{equation}L(\mathbf{k,j})  =
-2M_{\alpha\beta\gamma}(\mathbf{k})M_{\beta\alpha\delta}(\math



bf{j})P_{\gamma\delta}(\mathbf{k-
j}),\label{lkj1}\end{equation} and can be evaluated in terms
of three scalar variables as \begin{equation}L(\mathbf{k,j}) =
-\frac{\left[\mu\left(k^{2}+j^{2}\right)-
kj\left(1+2\mu^{2}\right)\right]\left(1-
\mu^{2}\right)kj}{k^{2}+j^{2}-2kj\mu},\label{lkj2}\end{equatio
n} where $\mu$ is the cosine of the angle between the vectors
$\mathbf{k}$  and  $\mathbf{j}$.  For  further  discussion  and
details see Appendix C of the book [7].

Now Orszag argued that the failure of QN was basically due to
the use of the viscous response function, when in fact one
would expect that the turbulence interactions would contribute
to the response function. Accordingly he proposed a modified
response  function:  \begin{equation}R(k;t,t’)=\exp[-
\omega(k)(t-t’)],\end{equation}where  $\omega(k)$  is  a
renormalized inverse modal response time. One may note that
this is now becoming the same form as that of the Edwards
transfer spectrum, but that it is also ad hoc and thus there
is  the  freedom  to  choose  $\omega(k)$.  After  some
experimentation using dimensional analysis, Orszag chose the
form: \begin{equation}\omega(k)=\nu k^2 + g\left[\int_0^k dj
j^2 E(j)\right]^{1/2},\end{equation} where the constant $g$ is
chosen to give the correct (i.e. experimental) result for the
Kolmogorov  spectrum.  This  is  the  eddy  damped  part  of  the
model, so replacing $R_0$ by $R$ gives us the EDQN.

Even with the introduction of the damping term, the EDQN model
can  still  lead  to  negative  spectra.  This  was  cured  by
introducing the Markovian step with respect to time. This
rested  on  the  assumption  that  the  characteristic  time
$[\omega(k)  +\omega(j)  +  \omega(|\mathbf{k-j}|)]^{-1}$  is
negligible compared to the evolution time of the products of
covariances in the expression for $T(k)$. The equation for the
transfer  spectrum  was  Markovianised  by  replacing  the  time
integral  by  a  memory  function  $D(k,j;t)$,  thus:
\begin{equation}T(k,t)  =8\pi^2\int



d^{3}j\,L\left(\mathbf{k},\mathbf{j}\right)
D(k,j;t)\left[C\left(j,s\right)C\left(\left|\mathbf{k}-
\mathbf{j}\right|,s\right)-
C\left(k,s\right)C\left(\left|\mathbf{k}-
\mathbf{j}\right|,s\right)\right],\end{equation}  where  the
memory function is given by \begin{equation}D(k,j;t)= \int_0^t
ds  \,  \exp[\omega(k)+\omega(j)+\omega(|\mathbf{k-j}|)](t-
s).\end{equation}This is now the EDQNM model.

When applied to the stationary case, this result for $T(k)$ is
identical to the Edwards result, as given in the post of 3
November 2022; but there are crucial differences. The function
$\omega(k)$ in the Edwards theory arises from a Markovian
theory  with  respect  to  wavenumber  interactions  and  is
accordingly related to $T(k)$, thus giving the second equation
of the closure. In contrast, the function $\omega(k)$ in EDQNM
is fixed independently of the transfer spectrum by means of
dimensional analysis and accordingly is not Markovian in the
sense  of  the  Edwards  SCF.  It  is  important  to  distinguish
between the two kinds of Markovianisation.

In our next post, we will conclude this series of posts by
discussing how these considerations affect the application of
closures to large-eddy simulation.
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