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Turbulence theories are usually referred to by acronyms e.g.
DIA, SCF, ALHDIA, \dots, and so on. Here SCF is Herring’s
theory and, to avoid confusion, Herring and Kraichnan referred
to the Edwards SCF as EDW [1]. Later on, when I came to write
my first book on turbulence [2], I referred to it as EFP,
standing  for  `Edwards-Fokker-Planck’  theory.  This  seemed
appropriate as Edwards was guided by the theory of Brownian
motion. But it did not occur to me at the time that the
significance of this was that his theory was Markovian with
respect to interactions in wavenumber space; nor indeed that a
Markovian form was the common denominator in all three of the
pioneering Eulerian theories. In recent years, it did occur to
me that it was not necessary to be so prescriptive; and if one
took  a  less  constrained  approach  the  result  was  a  non-
Markovian theory, in fact the LET theory.

Following Edwards [3], we define a model system in terms of a
Gaussian distribution $P_0[\mathbf{u}]$, which is chosen such
that  it  is  normalised  to  unity  and  recovers  the  exact
covariance.  That  is:  \begin{equation}\int
\mathcal{D}\mathbf{u} \ P_0[\mathbf{u}] = 1,\end{equation} and
\begin{equation}\int \mathcal{D}\mathbf{u} \ P_0[\mathbf{u}]\
u_\mu(\mathbf{k},t)  u_\beta(\mathbf{k’},t’)  =  \langle
u_\alpha(\mathbf{k},t)
u_\beta(\mathbf{k’},t’)\rangle=\delta(\mathbf{k}+\mathbf{k’})C
_{\alpha\beta}  \mathbf{k};t,t’)  \  ,\end{equation}
respectively. Then one solves the Liouville equation for the
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exact  probability  distribution  in  terms  of  a  perturbation
series with $ P_0[\mathbf{u}]$ as the zero-order term. We will
not  go  into  further  details  here,  as  we  just  want  to
understand how the Edwards theory was constrained to give a
Markovian form.

Equations  (1)  and  (2)  introduce  the  two-time  covariance.
However,  in  order  to  explain  the  Edwards  theory,  we  will
consider the single-time case. Also, for sake of simplicity,
we  will  employ  the  reduced  notation  of  Herring,  as  used
extensively  by  Leslie  [4]  and  others  (see  [2]).  In  this
notation we represent the velocity field by $X_i$, where the
index is a combined wave-vector and cartesian tensor index
(i.e our $\mathbf{k}$ and $\alpha$). Accordingly, we introduce
the Edwards-Fokker-Planck operator as the sum of single-mode
operators, in the form: \begin{equation} L_{EFP} = -\omega_i
\frac{\partial}{\partial  X_i}\left(X_i  +  \phi_i
\frac{\partial}{\partial  X_i}\right),  \label{efp}
\end{equation} where $\omega_i$ is a renormalized eddy decay
rate and $\phi_i$ is the covariance of the velocity field,
such that \begin{equation} \phi_i =\int_{-\infty}^\infty X_i^2
P(X_i)dX_i, \end{equation} and $P$ is the exact distribution.
Then  it  is  readily  verified  that  the  model  equation:
\begin{equation}L_{EFP}P^{(F)}  =  0  \end{equation}  has  the
Gaussian  solution  \begin{equation}  P^{(F)}  =  \frac{e^{
X_i^2/2\phi_i}}{(2\pi\phi_i)^\frac{1}{2}}. \end{equation}

However,  it  is  important  to  note,  and  is  also  readily
verified, that a more general form of the operator $L_0$,
which is given by \begin{equation} L_0 = H(X_i)\left[X_i +
\phi_i  \frac{\partial}{\partial  X_i}\right],\end{equation}
where $H(X_i)$ is an arbitrarily chosen well behaved function,
also yields the same Gaussian solution for the zero-order
equation:  \begin{equation}L_0P_0  =0.\label{base-
op}\end{equation} Hence at this stage the operator $L_0$ is
not fully determined. Edwards was guided by an analogy with
the theory of Brownian motion and in effect made the choice



\begin{equation} H(X_i) = -\omega_i \frac{\partial}{\partial
X_i}, \end{equation}in order to generate a base operator which
could be inverted in terms of an eigenfunction expansion of
Hermite  polynomials.  In  this  process,  the  $\{\omega_i\}$
appeared as eigenvalues.

It is this specific choice which over-determines the basic
operator which constrained the Edwards theory to be Markovian.
More recently it was found that a more minimalist choice,
allied to a two-time representation, leads formally to the LET
theory [5]. We will consider a more physical basis for the LET
theory in the next post.
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