
The  non-Markovian  nature  of
turbulence  3:  the  Master
Equation.
The non-Markovian nature of turbulence 3: the Master Equation.

In the previous post we established that the ‘loss’ term in
the transport equation depends on the number of particles in
the  state  currently  being  studied.  This  followed
straightforwardly  from  our  consideration  of  hard-sphere
collisions. Now we want to establish that this is a general
consequence of a Markov process, of which the problem of $N$
hard spheres is a particular example.

We follow the treatment given in pages 162-163 of the book [1]
and consider the case of Brownian motion, as this is relevant
to the Edwards self-consistent field theory of turbulence. We
again consider a multipoint joint probability distribution and
now consider a continuous variable $X$ which takes on specific
values  $x_1$  at  time  $t_1$,  $x_2$  at  time  $t_2$,  and  in
general $x_n$ at time $t_n$; thus; \[f_n(x_1,t_1; x_2,t_2;
\dots  x_n,t_n).\]  We  then  introduce  the  conditional
probability  density:  \[p(x_1,t_1|x_2,t_2),\]  which  is  the
probability density that $X=x_2$ at $t=t_2$, given that $X$
had the value $X=x_1$ when $t=t_1\leq t_2$. It is defined by
the  identity:
\begin{equation}f_1(x_1,t_1)p(x_1,t_1|x_2,t_2)=f_2(x_1,t_1;
x_2,t_2).\label{pdef}\end{equation}

From  this  equation  (see  [1]),  we  can  obtain  a  general
relationship  between  the  single-particle  probabilities  at
different  times  as:  \begin{equation}f_1(x_2,t_2)=\int
p(x_1,t_1|x_2,t_2)f_1(x_1,t_1)dx_1.
\label{pprop}\end{equation}

Next we formally introduce the concept of a Markov process. We
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now define this in terms of the conditional probabilities. If:
\begin{equation}p(x_1,t_1;x_2,t_2;  \dots
n_{n-1},t_{n-1}|x_n,t_n)=p(n_{n-1},t_{n-1}|x_n,t_n),\label{mar
kdef}\end{equation}then the current step depends only on the
immediately preceding step, and not on any other preceding
steps. Under these circumstances the process is said to be
Markovian.

It  follows  that  the  entire  hierarchy  of  probability
distributions  can  be  constructed  from  the  single-particle
distribution  $f_1(x_1,t_1)$  and  the  transition  probability
$p(x_1,t_1|x_2,t_2)$.  The  latter  quantity  can  be  shown  to
satisfy  the  Chapman-Kolmogorov  equation:
\begin{equation}p(x_1,t_1|x_3,t_3)=\int
p(x_1,t_1|x_2,t_2)p(x_2,t_2|x_3,t_3)
dx_2,\label{ck}\end{equation}  indicating  the  transitive
property of the transition probability.

It is of interest to consider two specific cases.

First, for a chain which has small steps between events, the
integral relation (\ref{ck}) can be turned into a differential
equation by expanding the time dependences to first order in
Taylor  series.  Putting  $f_1  =  f$  for  simplicity,  we  may
obtain:  \begin{equation}\frac{\partial  f(x_2,t_2)}{\partial
t}=\int\,  dx_1\left\{W(x_1,x_2)f(x_1,t)-
W(x_2,x_1)f(x_2,t)\right\},  \label{me}\end{equation}  where
$W(x_1,x_2)$ is the rate per unit time at which transitions
from state $x_1$ to state $x_2$ take place. This is known as
the master equation.

Secondly,  if  $X$  is  a  continuum  variable,  we  can  further
derive  the  Fokker-Planck  equation  as:  \begin{equation}
\frac{\partial  f(x,t)}{\partial  t}=  \frac{\partial
[A(x)f(x,t)]}{\partial  x}  +
\frac{\frac{1}{2}\partial^2[B(x)f(x,t)]}{\partial  x^2}.
\label{fp}\end{equation} This equation describes a random walk
with  diffusivity  $B(x)$  and  friction  damping  $A(x)$.  A



discussion of this equation as applied to Brownian motion may
be found on pages 163-164 of [1] but we will not pursue that
here.

In  the  next  post  we  will  discuss  the  Edwards  theory  of
turbulence (and by extension the other pioneering theories of
Kraichnan and of Herring) in the context of the present work.
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