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The pioneering theories of turbulence which we discussed in
the previous post were formulated by theoretical physicists
who  were  undoubtedly  influenced  by  their  background  in
statistical  physics.  In  this  post  we  will  look  at  one
particular aspect of this, the Boltzmann equation; and in the
next post we will consider the idea of Markov processes more
explicitly.

For  many  people,  a  Markov  process  is  associated  with  the
concept of a random walk, where the current step depends only
on  the  previous  one  and  memory  effects  are  unimportant.
However,  for  our  present  purposes,  we  will  need  the  more
general formulation as developed in the context of the kinetic
equations  of  statistical  mechanics.  A  reasonably  full
treatment of this topic may be found in chapter four of the
book [1], along with some more general references. Here we
will only need a brief summary, as follows.

We begin with a system of $N$ particles satisfying Hamilton’s
equations (e.g. a gas in a box). We take this to be spatially
homogeneous, so that distributions depend only on velocities
and not on positions. Conservation of probability implies the
exact  Liouville  equation  for  the  $N$-particle  distribution
function $f_N$, but in practice we would like to have the
single-particle distribution $f_1(u,t)$. If we integrate out
independent  variables  progressively,  this  leads  to  a

https://blogs.ed.ac.uk/physics-of-turbulence/2022/10/20/the-non-markovian-nature-of-turbulence-2-the-influence-of-the-kinetic-equation-of-statistical-physics/
https://blogs.ed.ac.uk/physics-of-turbulence/2022/10/20/the-non-markovian-nature-of-turbulence-2-the-influence-of-the-kinetic-equation-of-statistical-physics/
https://blogs.ed.ac.uk/physics-of-turbulence/2022/10/20/the-non-markovian-nature-of-turbulence-2-the-influence-of-the-kinetic-equation-of-statistical-physics/
https://blogs.ed.ac.uk/physics-of-turbulence/2022/10/20/the-non-markovian-nature-of-turbulence-2-the-influence-of-the-kinetic-equation-of-statistical-physics/


statistical hierarchy of governing equations, in which each
reduced distribution depends on the previous member of the
hierarchy: a closure problem!

The hierarchy terminates with an equation for the single-point
distribution $f_1$ in terms of the two-particle distribution
$f_2$. This is known as the kinetic equation. The kinetic
equation  for  $f_1(x,u,t)$  may  be  written  as:
\begin{equation}\frac{\partial f_1}{\partial t} + (u.\nabla)
f_1 =\{\mbox{Term involving}\, f_2\}, \end{equation} where $x$
is the position of a single particle, $u$ is its velocity, and
$\nabla$ is the gradient operator with respect to the variable
$x$. If we follow Boltzmann and model the gas molecules as
hard spheres, then we can assume that the right hand side of
the equation is entirely due to collisions. Accordingly, we
may  write  the  kinetic  equation  as:
\begin{equation}\frac{\partial  f}{\partial  t}  =
\left(\frac{\partial  f}{\partial  t}\right)_{collisions},
\end{equation} where the convective term vanishes because of
the  previously  assumed  homogeneity.  Also,  we  drop  the
subscript `$1$’ as we will only be working with the single-
particle distribution.

Now let us consider the basic physics of the collisions. We
assume that three-body collisions are unlikely and restrict
our attention to the two-body case. Assume we have a collision
in which a particle with velocity $u$ collides with another
particle moving with velocity $v$, resulting in two particles
with velocities $u’$ and $v’$. Evidently this represents a
loss of one particle from the set of particles with velocity
$u$. Conversely, the inverse two-body collision can result in
the gain of one particle to the state $u$. Hence we may
interpret  the  right  hand  side  of  (2)  as:
\begin{equation}\left(\frac{\partial  f}{\partial
t}\right)_{collisions} = \mbox{Rate of gain to state}\,u\,-
\mbox{Rate of loss from state}\,u. \end{equation}

The  right  hand  side  can  be  calculated  using  elementary



scattering  theory,  along  with  the  assumption  of  molecular
chaos or stossahlansatz, in the form $f_2=f_1f_1$; with the
result  that  equation  (1)  becomes:  \begin{equation}
\frac{\partial f(u,t)}{\partial t} = \int dv \int d\,\omega
\,\sigma_d\,|u-v|  \{f(u’,t)f(v’,t)  –
f(v,t)f(u,t)\},\end{equation}  where  $\sigma_d$  is  the
differential  scattering  cross-section,  the  integral  with
respect  to  $\omega$  is  over  scattering  angles,  and  the
integral with respect to $v$ stands for integration over all
dummy velocity variables.

This is the Boltzmann equation and its key feature from our
present point of view is that the rate of loss of particles
from the state $u$ depends on the number in that state, as
given by $f(u,t)$. We will develop this further in the next
post as being a general characteristic of Markovian theories.
Of  course  the  present  treatment  is  rather  sketchy,  but  a
pedagogic discussion can be found in the book [2], which is
free to download from Bookboon.com.
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