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In the preceding posts we have discussed the fact that the
Euler  equation  can  behave  like  the  Navier-Stokes  equation
(NSE) as a transient for sufficiently short times [1], [2]. It
has been found that spectra at lower wavenumbers are very
similar to those of turbulence, and there appears to be a
transfer  of  energy  to  the  `thermal’  modes  at  higher
wavenumbers.  This  raises  some  rather  intriguing  questions
about the general class of renormalized perturbation theories
which  are  often  interpreted  as  renormalizing  the  fluid
viscosity.  As  these  theories  are  broadly  in  quite  good
qualitative  and  quantitative  agreement  with  the  observed
behaviour of the NSE, they should also be in good agreement
with the spectrally-truncated Euler equation, which of course
is inviscid. So in this case there is nothing to renormalize!

In effect this latter point has already been demonstrated, in
that [1] was based on direct numerical simulation of the Euler
equation and [2] used the EDQN model with the viscosity set
equal to zero. So this raises doubts about the concept of a
renormalized fluid viscosity as an interpretation of the two-
point statistical closure theories. As indicated at the end of
the previous post, it may be helpful to consider a case where
the renormalization of the fluid viscosity is central to the
method and therefore unambiguous. This is provided by the
application of renormalization group (RG) to turbulence. A
background discussion of this method may be found in [3] and a
schematic outline was given in my blog post of 7 May 2020.
Here we will just summarise a few points.

Consider isotropic turbulence with wavenumber modes in the
range $0\leq k\leq k_{max}$. The basic idea is to average out
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the modes with $k_1\leq k \leq k_{max}$, while keeping those
modes with $0\leq k\leq k_1$ constant. It should be emphasised
that such an average is a $\emph{conditional}$ average: it is
not the same as the usual ensemble or time average. Once
calculated,  this  average  can  be  added  to  the  molecular
viscosity in order to represent the effect of the eliminated
modes by an effective viscosity on the retained modes. Then
the  variables  are  all  scaled  (Kolmogorov  scaling)  on  the
increased viscosity; and the process repeated for a new cut-
off wavenumber $k_2< k_1$; and so on, until the effective
viscosity ceases to change. The result is a scale-dependent
renormalized viscosity.

Now this appears to round off my series of posts on this topic
quite well. There is no viscosity in the Euler equation and so
we do not have a starting point for RG. It is as simple as
that. Any attempt to categorise the energy sink provided by
the equilibrium modes by an effective viscosity still does not
appear to provide a starting point for RG. On the other hand,
unlike in the so-called renormalized perturbation theories,
there  is  no  question  about  the  fact  that  the  kinematic
viscosity of the fluid is renormalized.

My overall conclusion is a rather vague and open-ended one.
Namely,  that  it  would  be  interesting  to  consider  all  the
renormalization  approaches  to  turbulence  very  much  in  the
context of how they look when applied to the Euler equation as
well as the NSE, and I hope to make this the subject of
further work. Lastly, before finishing I should enter a caveat
about RG and also correct a typographical error.

$\emph{Caveat}$: The choice of the wavenumber $k_{max}$ is
crucial. The pioneering applications of RG to random fluid
motion chose it to be small enough to exclude the turbulence
cascade and found a trivial fixed point as $k \rightarrow 0$.
This choice rendered the conditional average trivial, as it
restricted  the  formulation  to  perturbation  theory  using
Gaussian  averages,  and  of  course  Gaussian  distributions



factorize.  Unfortunately  many  supposed  applications  to  NSE
turbulence also treated the conditional average as trivial. In
fact one must choose $k_{max}$ to be large enough to capture
all the dissipation, at least to a good approximation.

$\emph{Correction}$: The last word of the first paragraph of
my  post  on  19  May  2022  should  have  been  `viscosity’  not
velocity. The correction has been made online.
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