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In the previous post we mentioned that Kraichnan’s DIA theory
[1] and Wyld’s [2] diagrammatic formalism both depended on the
use of an externally applied stirring force to define the
response function. This is also true of the later functional
formalism of Martin, Siggia and Rose [3]. Both formalisms
agree with DIA at second order, and a general discussion of
these matters can be found in references [4] and [5]. We also
pointed out that this use of applied forces poses problems for
the Euler equation. This is because the absence of viscosity
means that the kinetic energy will increase without limit.
That of course is the reason why numerical studies are limited
to the spectrally truncated Euler equation, where the modes
are restricted to $0\leq k\leq k_{max}$. So the fact that the
Euler  equation  can  behave  like  the  Navier-Stokes  equation
(NSE) in a transient way not only raises questions about the
interpretation of renormalized perturbation theory (RPT) as a
renormalization of the molecular viscosity, it also raises
doubts about the use of external forces to develop the RPT in
the first place.

In the investigations of Cichowlas \emph{et al} [6] and Bos
and Bertoglio [7], as discussed in the first of this series of
posts on 19 May, the system was given a finite amount of
energy which it then redistributed among the modes. For modes
with $k\leq k_{th}$, an NSE-like cascade was observed, with a
Kolmogorov  spectrum;  while  for  $k\geq  k_{th}$  the  $k^2$
equipartition spectrum was observed. Obviously, in the absence
of viscosity the total energy is constant and the system must
move to equipartition for all values of wavenumber. Thus the
value of $k_{th}$ separating the two forms of behaviour must
tend to zero in, it is reasonable to assume, a finite time.
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If we applied stirring forces to the spectrally truncated
Euler equation, such that they constituted an energy input at
low modes at a rate $\varepsilon_W$, then in the absence of
viscosity this could be balanced by a form of dissipation to
the equipartition modes, where the energy contained in these
modes  is  given  by\begin{equation}
E_{th}(t)=\int_{k_{th}}^{k_{}max}\,E(k,t) \,dk, \end{equation}
and the dissipation rate by \begin{equation} \varepsilon(t)=
dE_{th}(t)/dt,\end{equation}  as  discussed  in  reference  [6].
Evidently as time goes on, $k_{th}$ will decrease to some
minimum value, which would be determined by the peakiness of
the input spectrum near the origin, and after that the total
energy would increase without limit.

The only way one could maintain a quasi-NSE form of behaviour
in the presence of an input term would be by increasing the
value of $k_{max}$ and ultimately taking $k_{max} = \infty$.
This naturally rules out numerical simulation but possibly
some form of limit could be investigated numerically, rather
as the infinite Reynolds number limit can be established in
numerical simulations. Cichowlas \emph{et al} [6] introduced
an analogue of the Kolmogorov dissipation wavenumber $k_d$
such  that  \begin{equation}  k_d  \sim
\left(\frac{\varepsilon}{E_{th}^{3/2}}\right)^{1/4}k_{max}^{3/
4}.\end{equation} This raises the possibility that taking the
limit of $k_{max} \rightarrow \infty$ would correspond to the
infinite Reynolds number limit which is $\lim \nu \rightarrow
0$  such  that  $\varepsilon_W  =  constant$,  leading  to  $k_d
\rightarrow \infty$

I will extend the discussion to the use of Renormalization
Group (RG) in the next post. In the meantime, for sake of
completeness  I  should  mention  that  there  is  a  school  of
activity in which RPTs are derived in Lagrangian coordinates.
The  latest  developments  in  this  area,  along  with  a  good
discussion of its relationship to Eulerian theories, can be
found in the paper by Okamura [8].
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