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In the previous post we saw that the mean-field and self-
consistent assumptions/approximations are separate operations,
although often referred to in the literature as if they could
be  used  interchangeably.  We  also  saw  that  the  screened
potential in a cloud of electrons could be interpreted as a
Coulomb potential due to a renormalized charge. This type of
interpretation was not immediately obvious for the magnetic
case  and  indeed  a  much  more  elaborate  statistical  field
theoretic approach would be needed to identify an analogous
procedure in this case. It will be helpful to keep these
thoughts in mind as we consider the theoretical approach to
turbulence by Kraichnan in his DIA theory [1] in 1959. The
other two key theories we shall consider are the diagrammatic
method of Wyld [2] and the self-consistent field method of
Edwards  [3].  In  what  follows,  we  will  adopt  a  simplified
notation. Fuller details may be found in the books [4] or [5].

Kraichnan  considered  an  infinitesimal  fluctuation  $\delta
f(k,t)$ in the driving forces producing a fluctuation in the
velocity field $\delta u(k,t)$. He then differentiated the NSE
with respect to $f$ to obtain a governing equation for $\delta
u$, with exact solution: \[\delta u(k,t) = \int_{-\infty}^t
\hat{G}(k;t,t’) \delta f(k,t’)dt’,\] where $\hat{G}$ is the
infinitesimal response function. In this work Kraichnan made
use  of  a  mean-field  assumption,  viz.  \[\langle
\hat{G}(t,t’)u(t)u(t’)\rangle  =  \langle\hat{G}(t,t’)\rangle
\langle u(t)u(t’)\rangle = G(t,t’) \langle u(t)u(t’)\rangle,\]
where  $G$  is  the  response  function  that  is  used  for  the
subsequent perturbation theory.

For perturbation theory, a book-keeping parameter $\lambda$

https://blogs.ed.ac.uk/physics-of-turbulence/2022/06/02/turbulence-renormalization-and-the-euler-equation-3/
https://blogs.ed.ac.uk/physics-of-turbulence/2022/06/02/turbulence-renormalization-and-the-euler-equation-3/


(ultimately set equal to unity) is introduced to mutliply the
nonlinear term and $G$ is expanded in powers of $\lambda$,
thus:  \[G(t,t’)=  G_0(t,t’)+\lambda  G_1(t,t’)  +  \lambda^2
G_2(t,t’)  +  \dots\]  For  the  zero-order  term,  we  set  the
nonlinear term in the Navier-Stokes equation (NSE) equal to
zero and the exact solution is: \[ G_0(k,t-t’) = \exp[-\nu
k^2(t-t’)],\quad\mbox{for}\quad t\geq t’;\] where we have now
introduced  stationarity.  This  is  the  viscous  response
function. So the technique is to calculate an approximation to
the exact response function by means of partial summations of
the perturbation series to all orders. This can be thought of
as renormalizing the viscosity and that interpretation emerges
more clearly in the diagrammatic method of Wyld [2].

The work of Wyld is a very straightforward analysis of the
closure problem using conventional perturbation theory and a
field-theoretic  approach.  It  has  received  criticism  and
comment  over  the  years  but  the  underlying  problems  are
procedural and are readily addressed [6]. From our point of
view the pedagogic aspects of his formalism are attractive and
it is beyond dispute that at second-order of renormalized
perturbation theory his results verify those of Kraichnan.
This is an important point as Wyld’s method does not involve a
mean-field approximation.

At this stage it is clear that these two approaches cannot be
directly  applied  to  the  Euler  equation  as  there  is  no
viscosity,  and  indeed  the  idea  of  forcing  it  would  raise
questions which we will not explore here. The interesting
point here is that the Edwards self-consistent method does not
rely  explicitly  on  viscosity;  nor,  in  the  absence  of
viscosity, does it require stirring forces. Essentially it
involves a self-consistent solution of the Liouville equation
for the probability distribution of the velocities and, as it
was applied to the forced NSE, it actually does involve both
viscosity and stirring. Indeed it is known to be cognate with
both the Kraichnan and the Wyld theories [4], [5]. Hence, like



them it can be interpreted in terms of a renormalization of
the viscosity.

These three theories, and other related theories, are all
Markovian with respect to wavenumber (as opposed to time). The
exception is the Local Energy Transfer (LET) theory [7], which
does not divide the nonlinear energy transfer spectrum into
input and output parts. Recently it has been found that the
application of the Edwards self-consistent field method to the
case of two-time correlations leads to a non-Markovian (in
wavenumber) theory which has the response function R(t,t’)
determined  by:\[R(t,t’)  =  \left\langle
u(t)\tilde{f}(t’)\right\rangle_{0},\] where $\tilde{f}(t)$ is
a quasi-entropic force derived from the base distribution and
the subscript 0 denotes an average against that distribution.
As pointed out in [8], the tilde distinguishes the quasi-
entropic force from the stirring force $f$. Edwards showed
that $\langle uf\rangle$ was the rate of doing work by the
stirring  forces  on  the  velocity  field,  whereas  the  new
quantity $\langle u\tilde{f}\rangle$ determines the two-time
response. It would seem that the LET theory can be applied
directly to the Euler equation and this is something I hope to
report on in the near future.
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