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In the early 1970s, my former PhD supervisor Sam Edwards asked
me  to  be  the  external  examiner  for  one  of  his  current
students. It was only a few years since I had been on the
receiving end of this process so naturally I approached the
task in a merciful way! Anyway, if memory serves, the thesis
was about a statistical theory of surface roughness and it
cited  various  papers  that  applied  methods  of  theoretical
physics to practical engineering problems such as properties
of polymer solutions, stochastic behaviour of structures and
(of course) turbulence. To me this crystallized a problem that
was then troubling me. If you regarded yourself as belonging
to this approach (and I did), what would you call it? The
absence  of  a  recognisable  generic  title  when  filling  in
research grant applications or other statements about one’s
research seemed to be a handicap.

Ultimately I decided on the term renormalization methods but
the term renormalization did not really come into general use,
even in physics, until the success of renormalization group
(or RG) in the early 1980s. Actually, the common element in
these problems is that one is dealing with systems where the
degrees  of  freedom  interact  with  each  other.  So,  another
possible title would be many-body theory. We can also expect
to observe collective behaviour, which is another possible
label. We will begin by looking briefly at two pioneering
theories  in  condensed  matter  physics,  as  comparing  and
contrasting these will be helpful when we go on to the theory
of turbulence.

We begin with the Weiss theory of ferromagnetism which dates
from 1907 (see Section 3.2 of [1]), in which a piece of
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magnetic material was pictured as being made up from tiny
magnets at the molecular level. This predates quantum theory
and nowadays we would think in terms of lattice spins. There
are two steps in the theory. First there is the mean field
approximation.  Weiss  considered  the  effect  of  an  applied
magnetic  field  $B$  producing  a  magnetization  $M$  in  the
specimen, and argued that the tendency of spins to line up
spontaneously would lead to a molecular field $B_m$, such that
one could expect an effective field $B_E$, such that: \[B_E =
B + B_m.\] This is the mean-field approximation.

Then Weiss made the assumption \[B_m\propto M.\] This is the
self-consistent approximation. Combining the two, and writing
the  magnetization  as  a  fraction  of  its  saturation  value
$M_\infty$, an updated treatment gives: \[\frac{M}{M_\infty}=
\tanh\left[\frac{JZ}{kT}\frac{M}{M_\infty}\right],\] where $J$
is  the  strength  of  interaction  between  spins,  $Z$  is  the
number of nearest neighbours of any one spin, $k$ is the
Boltzmann constant and $T$ is the absolute temperature. This
expression can be solved graphically for the value of the
critical temperature $T_C$: see [1].

Our second theory dates from 1922 and considers electrons (in
an electrolyte, say) and evaluates the effect all the other
electrons on the potential due to any one electron. For any
one electron in isolation, we have the Coulomb potential,
thus: \[V(r)\sim \frac{e}{r}\] where $e$ is the electronic
charge and $r$ is distance from the electron. This theory too
has mean-field and self-consistent steps (see [1] for details)
and leads to the so-called screened potential, \[V_s(r) \sim
\frac{e \exp[-r/l_D]}{r},\] where $l_D$ is the Debye length
and depends on the electronic charge and the number density of
electrons.  This  potential  falls  off  much  faster  than  the
Coulomb form and is interpreted in terms of the screening
effect of the cloud of electrons round the one that we are
considering.

However,  we  can  interpret  it  as  a  form  of  charge



renormalization,  in  which  the  free-field  charge  $e$  is
replaced  by  a  charge  which  has  been  renormalized  by  the
interactions with the other electrons, or:\[e \rightarrow e
\times  \exp[-r/l_D].\]  Note  that  the  renormalized  charge
depends on $r$ and this type of scale dependence is absolutely
characteristic of renormalized quantities. In the next blog
post we will discuss statistical theories of turbulence in
terms of what we have learned here. For sake of completeness,
we should also mention here that the idea of an `effective’ or
`apparent’ or `turbulence’ viscosity was introduced in 1877 by
Boussinesq. For details, see the book by Hinze [2]. This may
possibly  be  the  first  recognition  of  a  renormalization
process.
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