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Carrying on from my previous post, I thought it would be
interesting  to  look  at  the  effect  of  the  different
formulations on statistical closure theories. In order to keep
matters as simple as possible, I am restricting my attention
to  single-time  theories  and  their  forms  for  the  transfer
spectrum $T(k,t)$ as it occurs in the Lin equation (see page
56 in [1]). For instance, the form for this due to Edwards [2]
may  be  written  in  terms  of  the  spectral  energy  density
$C(k,t)$ (or spectral covariance) as: \begin{equation}T(k,t) =
4\pi  k^{2}\int  d^{3}j  L(k,j,|\mathbf{k}-
\mathbf{j}|)D(k,j,|\mathbf{k}-\mathbf{j}|)C(  |\mathbf{k}-
\mathbf{j}|,t)[C(j,t)-C(k,t)],\end{equation}where
\begin{equation}D(k,j,|\mathbf{k}-\mathbf{j}|)  =
\frac{1}{\omega(k,t)+\omega(j,t)+\omega(|\mathbf{k}-
\mathbf{j}|,t)},\end{equation}and $\omega(k,t)$ is the inverse
modal  response  time.  The  geometric  factor
$L(\mathbf{k},\mathbf{j})$  is  given
by:\begin{equation}L(\mathbf{k},\mathbf{j})  =
[\mu(k^{2}+j^{2})-kj(1+2\mu^{2})]\frac{(1-
\mu^{2})kj}{k^{2}+j^{2}-2kj\mu},\end{equation} and can be seen
by  inspection  to  have  the
symmetry:\begin{equation}L(\mathbf{k},\mathbf{j})  =
L(\mathbf{j,}\mathbf{k}).\end{equation}From  this  it  follows,
again  by  inspection,  that  the  integral  of  the  transfer
spectrum vanishes, as it must to conserve energy.

Edwards derived this as a self-consistent mean-field solution
to the Liouville equation that is associated with the Navier-
Stokes equation, and specialised it to the stationary case.
Later  Orszag  [3]  derived  a  similar  form  by  modifying  the
quasi-normality theory to obtain a closure called the eddy-
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damped quasi-normality markovian (or EDQNM) model. Although
physically  motivated,  this  was  an  ad  hoc  procedure  and
involved  an  adjustable  constant.  For  this  reason  it  is
strictly regarded as a model rather than a theory. As this
closure is much used for practical applications, we write in
terms  of  the  energy  spectrum  $E(k,t)=4\pi  k^2  C(k,t)$
as:\begin{equation}T(k,t) = \int _{p+q=k} D(k,p,q)(xy+z^{3})
E(q,t)[E(p,t)pk^{2}-
E(k,t)p^{3}]\frac{dpdq}{pq},\end{equation}where
\begin{equation}D(k,p,q)  =
\frac{1}{\eta(k,t)+\eta(p,t)+\eta(q,t)},  \end{equation}and
$\eta(k,t)$ is the inverse modal response time (equivalent to
$\omega(k,t)$  in  the  Edwards  theory,  but  determined  in  a
different way). Also $(xy+z^{3})$ is a geometric factor, where
$x$, $y$ and $z$ are the cosines of the angles of the triangle
subtended, respectively, by $k$, $p$ and $q$.

My  point  here  is  that  Orszag,  like  many  others,  followed
Kraichnan rather than Edwards and it is clear that you cannot
deduce  the  conservation  properties  of  this  formulation  by
inspection. I should emphasise that the formulation can be
shown to be conservative. But it is, in my opinion, much more
demanding and complicated than the Edwards form, as I found
out when beginning my postgraduate research and I felt obliged
to  plough  my  way  through  it.  At  one  point,  Kraichnan
acknowledged a personal communication from someone who had
drawn his attention to an obscure trigonometrical identity
which had proved crucial for his method. Ultimately I found
the same identity in one of my old school textbooks [5]. The
authors,  both  masters  at  Harrow  School,  had  shown  some
prescience, as they noted that this identity was useful for
applications!

During  the  first  part  of  my  research,  I  had  to  evaluate
integrals which relied on the cancellation of pairs of terms
which were separately divergent at the origin in wavenumber.
At the time I felt that Kraichnan’s way of handling the three



scalar wavenumbers would have been helpful, but I managed it
nonetheless in the Edwards formulation. Later on I was to find
out, as mentioned in the previous blog, that there were in
fact snags to Kraichnan’s method too.

In 1990 [4] I wrote about the widespread use of EDQNM in
applications. What was true then is probably much more the
case today. It seems a pity that someone does not break ranks
and  employ  this  useful  model  closure  in  the  Edwards
formulation, rather than make ad hoc corrections afterwards
for the case of wavenumber triangles with one very small side.
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