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Compatibility of temporal spectra with Kolmogorov (1941) and
with random sweeping.

I previously wrote about temporal frequency spectra, in the
context of the Taylor hypothesis and a uniform convection
velocity of $U_c$, in my post of 25 February 2021. At the
time,  I  said  that  I  would  return  to  the  more  difficult
question of what happens when there is no uniform convection
velcocity present. I also said that this would not necessarily
be next week, so at least I was right about that.

As in the earlier post, we consider a turbulent velocity field
$u(x,t)$ which is stationary and homogeneous with rms value
$U$. This time we just consider the dimensions of the temporal
frequency spectrum $E(\omega)$. We use the angular frequency
$\omega = 2\pi n$, where $n$ is the frequency in Hertz, in
order to be consistent with the usual definition of wavenumber
$k$.  Integrating  the  spectrum,  we  have  the  condition:
\begin{equation}\int_0^\infty  E(\omega)  d\omega  =
U^2,\end{equation}which  gives  us  the  dimensions:
\begin{equation}\mbox{Dimensions of}\; E(\omega)d\omega = L^2
T^{-2};\end{equation} or velocity squared.

For many years, the literature relating to the wavenumber-
frequency correlation $C(k,\omega)$ has been dominated by the
question: is decorrelation due to random sweeping effects,
which would mean that the characteristic time is the sweeping
timescale  $(Uk)^{-1}$;  or  is  it  characterised  by  the
Kolmogorov  timescale  $(\varepsilon^{1/3}k^{2/3})^{-1}$?  A
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recent  article  [1]  makes  a  typical  point  about  the
consequences for the frequency spectrum of the dominance of
the  sweeping  effect:  ‘…  the  frequency  energy  spectrum  of
Eulerian velocities exhibits a $\omega^{-5/3}$ decay, instead
of the $\omega^{-2}$ expected from K41 scaling’. Which is
counter-intuitive at first sight! As we saw in my blog of
26/02/21, for the case of uniform convection $\omega^{-5/3}$
is associated with K41.

Let us begin by clearing up the latter point. The authors of
[1] cite the book by Monin and Yaglom, but I was unable to
find it. (I mean the reference, not the book which is quite
conspicuous on my bookshelves. I think that anyone giving a
reference to a book, should cite the page number. Sometimes I
do that and sometimes I forget!) In any case, it is easy
enough to work out. From equation (2) we have the dimensions
of $E(\omega)$ as $L^{2}T^{-1}$. From the K41 approach we can
write for the inertial range: \begin{equation}E(\omega) \sim
\varepsilon^{n}\omega^{m}  \sim  \varepsilon
\omega^{-2},\end{equation} where we fixed the dependence on
the index $n$ first.

The interest in random convective sweeping mainly stems from
Kraichnan’s analysis of his direct-interaction approximation
(DIA), dating back to 1959. A general discussion of this will
be found in the book [2], but we can take a shortcut by noting
that  Kraichnan  obtained  an  approximate  solution  for  the
reponse function $G(k,\tau)$ of his theory (see page 219 of
[2])  as:  \begin{equation}G(k,\tau)=\frac{exp(-\nu
k^2\tau)J_1(2Uk\tau)}{Uk\tau},\end{equation} where $\tau = t-
t’$, $\nu$ is the kinematic viscosity, and $J_1$ is a Bessel
function of the first kind. The interesting thing about this
is that the K41 characteristic time for the inertial range
does not appear. Also, in the inertial range, the exponential
factor can be put to one, and the decay is determined by the
sweeping time $(Uk)^{-1}$.

Corresponding to this solution for the inertial range, the



energy spectrum takes the form: \begin{equation} E(k) \sim
(\varepsilon  U)^{1/2}k^{-3/2},\end{equation}  as  given  by
equation (6.50) in [2]. As is well known, this $-3/2$ law is
sufficiently  different  from  the  observed  form,  which  is
generally compatible with the K41 $-5/3$ wavenumber spectrum,
to  be  regarded  as  incorrect.  We  can  obtain  the  frequency
spectrum corresponding to the random sweeping hypothesis by
simply replacing the convective velocity $U_c$, as used in
Taylor’s hypothesis, by the rms velocity $U$. From equation
(8) of the earlier blog, we have; \begin{equation}E(\omega)
\sim  (\varepsilon  U_c)^{2/3}\omega^{-5/3}  \rightarrow
(\varepsilon U)^{2/3}\omega^{-5/3} , \quad \mbox{when} \quad
U_c \rightarrow U. \end{equation}
This result is rather paradoxical to say the least. In order
to get a $-5/3$ dependence on frequency, we have to have a
$-3/2$ dependence on wavenumber! It is many years since I
looked into this and in view of the continuing interest in the
subject, I have begun to rexamine it. For the moment, I would
make just one observation.

Invoking Taylor’s expression for the dissipation rate, which
is: $\varepsilon = C_\varepsilon U^3/L$, where $L$ is the
integral lengthscale (not to be confused with the symbol for
the  length  dimension)  and  $C_\varepsilon$  asymptotes  to  a
constant  value  for  Taylor-Reynolds  numbers  $R_\lambda  \sim
100$ [3], we may examine the relationship between the random
sweeping  and  K41  timescales.  Substituting  for  the  rms
velocity,  have:  \begin{equation}\tau_{sweep}  =(Uk)^{-1}\sim
(\varepsilon^{1/3}L^{1/3}k)^{-1}.\end{equation}  Then,  putting
$k\sim  1/L  \equiv  k_L$,  we
obtain:\begin{equation}\tau_{sweep}\sim
(\varepsilon^{1/3}k_L^{2/3})^{-1}  =
\tau_{K41}(k_L).\end{equation}  So  the  random  sweeping
timescale becomes equal to the K41 timescale for wavenumbers
in  the  energy-containing  range.  Just  to  make  things  more
puzzling!
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