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In my post of 20 February 2020, I told of the referee who
described  my  use  of  Fourier  transformation  as  ‘the  usual
wavenumber  murder’.  I  speculated  that  the  situation  had
improved over the years due to the use of pseudo-spectral
methods in direct numerical simulation, although I was able to
quote a more recent example where a referee rejected a paper
because he wasn’t comfortable with the idea that structure
functions could be evaluated from the corresponding spectra.

However, while it is good to see a growing use of spectral
methods, at the same time there are differences between the
$x$-space and $k$-space pictures, and this can be confusing.
Essentially, the phenomenology of fluid dynamicists has been
based  on  the  energy  conservation  equation  in  real-space,
mostly  using  structure  functions;  whereas  theorists  have
worked  with  the  energy  balance  in  wavenumber  space  as  a
closure problem for renormalization methods. This separation
of activities has gone on over many decades.

For the purpose of this post, I want to look again at the
Kolmogorov-Obhukov (1941) theory in $x$-space and $k$-space.
Kolmogorov worked in real space and it is convenient to denote
his two different derivations of inertial range forms as K41A
[1] and K41B [2]. We will concentrate on the second of these,
where he derived the well-known `4/5′ law for $S_3(r)$, from
the KHE equation. We have quoted this previously and it may be
obtained from the book [3] as: \begin{equation}\varepsilon =-
\frac{3}{4}\frac{\partial  S_2}{\partial
t}+\frac{1}{4r^4}\frac{\partial  (r^4  S_3)}{\partial  r}
+\frac{3\nu}{2r^4}\frac{\partial}{\partial
r}\left(r^4\frac{\partial  S_2}{\partial
r}\right),\end{equation} and all the symbols have their usual
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meanings.

In  order  to  solve  this  equation  for  $S_3$,  Kolmogorov
neglected both the time-derivative of $S_2$ and the viscous
term, and thus obtained a de facto closure. In the case of
stationary turbulence the first step is exact but for decaying
turbulence it is an approximation for the inertial range which
Kolmogorov called local stationarity. Later Batchelor referred
to this as equilibrium [4], which is rather unfortunate as
turbulence is the archetypal non-equilibrium problem. In fact
Batchelor was carrying on Taylor’s idea that the Fourier modes
acted as mechanical degrees of freedom and so could be treated
by the methods of statistical mechanics. As the classical
canon of solved problems in statistical mechanics is limited
to  thermal  equilibrium  (normally  referred  to  simply  as
equilibrium),  Batchelor  was  arguing  that  Taylor’s  approach
would  be  valid  for  the  inertial  range.  In  fact  it  isn’t
because the modes are strongly coupled and this too is not
canonical.

In any case, the neglect of the time-derivative of $S_2$ is a
key step and its justification in time-dependent flows poses a
problem. More recently, McComb and Fairhurst [5] showed that
the neglect of this term cannot be an exact step and also
cannot be justified by appeal to large Reynolds numbers or
restriction to any particular range of values of $r$. In other
words, it is a constant term and its neglect must be justified
by either measurement or numerical simulation.

The situation is really quite different in wavenumber space.
Here we have the Lin equation which is the Fourier transform
of  the  KHE  and  takes  its  simplest  form  as:
\begin{equation}\left(\frac{\partial}{\partial  t}  +  2\nu
k^2\right)E(k,t)  =
T(k,t).\end{equation}where\begin{equation}T(k,t)=
\int_0^\infty dj\, S(k,j:t), \end{equation}and $S(k,j;t)$ can
be  expressed  in  terms  of  the  third-order  moment
$C_{\alpha\beta\gamma}(\mathbf{j},\mathbf{k-j},\mathbf{-



k};t)$.

One immediate difference is that the KHE is purely local in
the variable $r$, whereas the Lin equation is non-local in
wavenumber. In fact all Fourier modes are coupled together. We
can define the inter-mode energy flux as: \begin{equation}\Pi
(\kappa,t) = \int_\kappa^\infty dk\,T(k,t) = -\int_0^\kappa dk
\, T(k,t).\end{equation}The criterion for an inertial range of
wavenumbers is that the condition $\Pi = \varepsilon$ should
hold and this is nowadays referred to as scale invariance. It
does not apply in any way to the situation in real space and
it has no connection with the concept of local stationarity
which was renamed equilibrium by Batchelor.

Lastly,  the  interpretation  of  the  time-derivative  term  in
wavenumber space is quite different from that in real space.
We  may  see  this  by  rearranging  the  Lin  equation  as:
\begin{equation}-T(k,t)  =  I(k,t)  –  2\nu  k^2  E(k,t),  \quad
\mbox{where} \quad I(k,t) = -\frac{\partial E(k,t)}{\partial
t}.\label{diff}\end{equation}Evidently  for  free  decay  the
input term $I(k)$ is positive, and this is actually how Uberoi
[6] made the first measurements of the transfer spectrum in
grid turbulence. He measured the input term and the viscous
term and used equation (\ref{diff}) to evaluate $T(k,t)$.

McComb and Fairhurst [5] pointed out that the constant value
of the time derivative term in the limit of infinite Reynolds
numbers in $r$-space Fourier transforms to a delta function at
the origin in $k$-space. In other words this amounts to a
derivation of the form postulated by Edwards [7] (following
Batchelor [4]) that the transfer spectrum is given in terms of
the Dirac delta function $\delta$ by:\begin{equation}-T(k,t) =
\varepsilon  \delta(k,t)  -\varepsilon  \delta(k  –
\infty,t),\end{equation}  in  the  limit  of  infinite  Reynolds
numbers, although the Edwards form was for the stationary
case.

This of course is a very extreme situation. The key point to



note  is  that,  while  the  time-derivative  of  $S_2$  poses  a
problem  for  local  stationarity  in  $r$-space,  the  time-
derivative of $E(k,t)$ poses no problem for scale invariance
in $k$-space. This is why the $-5/3$ spectrum is so widely
observed.
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