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In the previous blog we discussed the growth of interest in
deterministic chaos in low-dimensional dynamical systems, and
the way in which it impinged on turbulence theory. Altogether,
it seemed like a paradigm shift; in that we learned that only
quantum effects were truly random, and that all classical
effects were deterministic. If one knew the initial conditions
of a classical dynamical system then one could, in principle,
predict its entire evolution in time. If! Anyway, in those
days we began to refer to the turbulent velocity field as
being  chaotic  rather  than  random;  but  I  suspect  that  the
majority are now back to random.

However, such ideas also arose in the late 19th Century, as
part  of  the  invention  of  Statistical  Mechanics,  with
Boltzmann’s assumption of molecular chaos. This was to the
effect  that  molecular  motion  was  uncorrelated  immediately
before and after a two-body collision. It was made in the
context of a gas modelled as $N$ particles in a box (where $N$
is of the order of Avogadro’s number), and the motion of the
particles is governed by Hamilton’s equations. The system can
be specified by the $N$-particle distribution (or density)
which is the solution of Liouville’s equation. Although an
exact  formulation,  this  theory  is  contrary  to  experience
because the entropy is found to be constant in time, which
contradicts the second law of thermodynamics. This result is a
well-known paradox and it was resolved by Boltzmann in his
famous $H$-theorem.

Boltzmann wrote the entropy $S$ in terms of a measure $H$ of
the  information  about  the  system,  thus:\[S=-k_B  H  \quad
\mbox{where} \quad H=\int \, du \, f(u,t) \,ln\,f(u,t),\] $u$
is the molecular speed and $f(u,t)$ is the single-particle
distribution of molecular speeds. In obtaining the equation
for $f$, Boltzmann had to overcome a closure problem (much as

https://blogs.ed.ac.uk/physics-of-turbulence/2022/01/06/chaos-and-complexity/


in turbulence!) and his principle of molecular chaos justified
the  factorization  of  the  two-particle  function  into  the
product of two single-particle functions. So Boltzmann’s $H$-
theorem is that $H$ decreases with time, meaning that the
entropy increases.

Although this is not so well known, the paradox was also
resolved by Gibbs, albeit in a more fundamental way. He showed
that if a small amount of the information was lost from $H$,
then it was no longer invariant and would increase with time.
In his case, this was achieved by coarse-graining the exact
Liouville  distribution  function  so  that  it  was  no  longer
exact, but it could equally well be achieved in practice by a
slight  deficiency  in  our  specification  of  the  initial
conditions  (position  and  momentum)  of  each  of  the  $N$
particles. In fact, to put it bluntly, it would be difficult
(or perhaps impossible) to specify the initial state of a
system of order $10^{20}$ degrees of freedom with sufficient
accuracy to avoid the system entropy increasing with time.

The  point  to  be  taken  from  all  this  is  that  Hamilton’s
equations,  although  themselves  reversible  in  time,  can
nevertheless describe a real system which has properties that
are not reversible in time. The answer lies in the complexity
of the system.
This applies just as much to the quantum form of Hamilton’s
equations. Recently there has been an international discussion
(by  virtual  means)  of  the  Einstein-Podolsky-Rosen  paradox,
which asserts that quantum mechanics is not a complete theory.
I  read  some  of  the  contributions  to  this,  but  was  not
impressed. In particular the suggestion was put forward that
the time-reversal symmetry of the basic quantum equations of
motion, ruled out their ability to describe a real world which
undergoes irreversible changes; something that is generally
referred to as ‘time’s arrow’. But of course the same applies
to the classical form of the equations, and one must bear in
mind that one has to take not only large-$N$ limits but also



continuum limits to describe the real world.

There are lessons here, at least in principle, for turbulence
theorists too, and I have given specific instances such as the
irrelevance  of  intermittency  or  the  incorrectness  of  the
Onsager conjecture (when judged by the physics). No doubt I
will give more in the months to come. Background material for
this blog can be found in the lecture notes [1], which can be
downloaded free of charge.

[1] W. David McComb. Study Notes for Statistical Physics: A
concise,  unified  overview  of  the  subject.  Bookboon,  2014.
(Free download of pdf from Bookboon.com)


