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Obukhov  is  regarded  as  having  begun  the  treatment  of  the
problem in wavenumber space. In [1] he referred to an earlier
paper by Kolmogorov for the spectral decomposition of the
velocity  field  in  one  dimension  and  pointed  out  that  the
three-dimensional case is carried out similarly by multiple
Fourier integrals. He employed the Fourier-Stieltjes integral
but fortunately this usage did not survive. For many decades
the  standard  Fourier  transform  has  been  employed  in  this
field.

[a] Obukhov’s paper [1] was published between K41A and K41B,
and was described by Batchelor ‘as to some extent anticipating
the work of Kolmogorov’. He worked with the energy balance in
$k$-space and, influenced by Prandtl’s work, introduced an ad
hoc closure based on an effective viscosity.

[b] The derivation of the ‘-5/3’ law for the energy spectrum
seems  to  have  been  due  to  Onsager  [2].  He  argued  that
Kolmogorov’s similarity principles in $x$-space would imply an
invariant  flux  (equal  to  the  dissipation)  through  those
wavenumbers  where  the  viscosity  could  be  neglected.
Dimensional  analysis  then  led  to  $E(k)  \sim
\varepsilon^{2/3}k^{-5/3}$.

[c] As mentioned in the previous post (points [c] and [d]),
Batchelor discussed both K41A and K41B in his paper [3], but
did not include K41B in his book [4]. Also, in his book [4],
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he discussed K41A entirely in wavenumber space. The reasons
for this change to a somewhat revisionist approach can only be
guessed at, but there may be a clue in his book. On page 29,
first paragraph, he says: ‘Fourier analysis of the velocity
field provides us with an extremely valuable analytical tool
and one that is well-nigh indispensable for the interpretation
of equilibrium or similarity hypotheses.’ (The emphasis is
mine.)

[d]  This  is  a  very  strong  statement,  and  of  course  the
reference is to Kolmogorov’s theory. There is also the fact
that K41B is not easily translated into $k$-space. Others
followed suit, and Hinze [5] actually gave the impression of
quoting from K41A but used the word ‘wavenumber’, which does
not in fact occur in that work. By the time I began work as a
postgraduate student in 1966, the use of spectral methods had
become universal in both experiment and theory.

[e] There does not appear to be any $k$-space ad hoc closure
of the Lin equation to parallel K41B (i.e. the derivation of
the  ‘4/5’  law);  but,  for  the  specific  case  of  stationary
turbulence, I have put forward a treatment which uses the
infinite  Reynolds  number  limit  to  eliminate  the  energy
spectrum, while retaining its effect through the dissipation
rate [6]. It is based on the scale invariance of the inertial
flux,  thus:  \begin{equation}\Pi(\kappa)=-
\int_0^{\kappa}dk\,T(k) = \varepsilon, \end{equation}which of
course can be written in terms of the triple-moment of the
velocity field. As the velocity field in $k$-space is complex,
we can write it in terms of amplitude and phase. Accordingly,
\begin{equation}u_{\alpha}(\mathbf{k})  =
V(\kappa)\psi_{\alpha}(k’),\end{equation} where $V(\kappa)$ is
the  root-mean-square  velocity,  $k’=k/\kappa$  and  $\psi$
represents  phase  effects.  The  result  is:
\begin{equation}V(\kappa)=B^{-1/3}\varepsilon^{1/3}\kappa^{-10
/3},\end{equation}where $B$ is a constant determined by an
integral over the triple-moment of the phases of the system.



The Kolmogorov spectral constant is then found to be: $4\pi\,
B^{-2/3}$.

[f] Of course a statistical closure, such as the LET theory,
is needed to evaluate the expression for $B$. Nevertheless, it
is of interest to note that this theory provides an answer to
Kraichnan’s interpretation of Landau’s criticism of K41A [7].
Namely, that the dependence of an average (i.e. the spectrum)
on the two-thirds power of an average (i.e. the term involving
the  dissipation)  destroys  the  linearity  of  the  averaging
process. In fact, the minus two-thirds power of the average in
the form of $B^{-2/3}$ cancels the dependence associated with
the dissipation.
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