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Discussions of the Kolmogorov-Obukhov theory often touch on
the question: can the two-thirds law; or, alternatively, the
minus five-thirds law, be derived from the equations of motion
(NSE)? And the answer is almost always: ‘no, they can’t’! Yet
virtually every aspect of this theory is based on what can be
readily deduced from the NSE, and indeed has so been deduced,
many years ago. So our preliminary here to the actual summary,
is to consider what we know from a consideration of the NSE,
in both $x$-space and $k$-space. As another preliminary, all
the notation is standard and can be found in the two books
cited below as references.

We begin with the familiar NSE, consisting of the equation of
motion, \begin{equation}\frac{\partial u_{\alpha}}{\partial t}
+  \frac{\partial  (u_{\alpha}u_\beta)}{\partial  x_\beta}  =-
\frac{1}{\rho}\frac{\partial  p}{\partial  x_\alpha}  +  \nu
\nabla^2  u_\alpha,\end{equation}which  expresses  conservation
of momentum and is local, in that it gives the relationship
between the various terms at one point in space; and the
incompressibility  condition  \begin{equation}\frac{\partial
u_\beta}{\partial x_\beta} = 0.\end{equation} It is well known
that  taking  these  two  equations  together  allows  us  to
eliminate the pressure by solving a Poisson-type equation. The
result is an expression for the pressure which is an integral
over the entire velocity field: see equations (2.3) and (2.9)
in [1].
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In $k$-space we may write the Fourier-transformed version of
(1)  as:  \begin{equation}\frac{\partial
u_\alpha(\mathbf{k},t)}{\partial  t}  +  i  k_\beta\int  d^3  j
u_\alpha(\mathbf{k-j}.t)u_\beta(\mathbf{j},t)  =  k_\alpha
p(\mathbf{k},t)  -\nu  k^2  u_\alpha
(\mathbf{k},t).\end{equation} The derivation can be found in
Section 2.4 of [2]. Also, the discrete Fourier-series version
(i.e. in finite box) is equation (2.37) in [2].

The  crucial  point  here  is  that  the  modes
$\mathbf{u}(\mathbf{k},t)$ form a complete set of degrees of
freedom and that each mode is coupled to every other mode by
the  non-linear  term.  So  this  is  not  just  a  problem  in
statistical  physics,  it  is  an  example  of  the  many-body
problem.

Note that (1) gives no hint of the cascade, but (3) does. All
modes are coupled together and, if there were no viscosity
present, this would lead to equipartition, as the conservative
non-linear term merely shares out energy among the modes. The
viscous term is symmetry-breaking due to the factor $k^2$
which increases the dissipation as the wavenumber increases.
This prevents equipartition and leads to a cascade from low to
high wavenumbers. All of this becomes even clearer when we
multiply the equation of motion by the velocity and average.
We then obtain the energy-balance equations in both $x$-space
and $k$-space.

We begin in real space with the Karman-Howarth equation (KHE).
This can be written in various forms (see Section 3.10.1 in
[2]), and here we write in terms of the structure functions
for the case of free decay: \begin{equation}\varepsilon =-
\frac{3}{4}\frac{\partial  S_2}{\partial
t}+\frac{1}{4r^4}\frac{\partial  (r^4  S_3)}{\partial  r}
+\frac{3\nu}{2r^4}\frac{\partial}{\partial
r}\left(r^4\frac{\partial  S_2}{\partial
r}\right).\end{equation}Note  that  the  pressure  does  not
appear, as a correlation of the form $\langle up \rangle$



cannot contribute to an isotropic field, and that strictly the
left hand side should be the decay rate $\varepsilon_D$ but it
is usual to replace this by the dissipation as the two are
equal in free decay. Full details of the derivation can be
found in Section 3.10 of [2].

For our present purposes, we should emphasise two points.
First, this is one equation for two dependent variables and so
requires a statistical closure in order to solve for one of
the two. In other words, it is an instance of the notorious
statistical  closure  problem.  Second,  it  is  local  in  the
variable $r$ and does not couple different scales together. It
holds for any value of $r$ but is an energy balance locally at
any chosen value of $r$.

The Lin equation is the Fourier transform of the KHE. It can
be derived directly in $k$-space from the NSE (see Section
3.2.1 in [2]):\begin{equation} \left(\frac{\partial}{\partial
t}  +  2\nu  k^2\right)E(k,t)  =  T(k,t).\end{equation}  Here
$T(k,t)$ is called the transfer spectrum, and can be written
as:  \begin{equation}T(k,t)=  \int_0^\infty  dj\,
S(k,j:t),\end{equation}where  $S(k,j;t)$  is  the  transfer
spectral density and can be expressed in terms of the third-
order  moment  $C_{\alpha\beta\gamma}(\mathbf{j},\mathbf{k-
j},\mathbf{-k};t)$.

Unlike  the  KHE,  which  is  purely  local  in  its  independent
variable, the Lin equation is non-local in wavenumber. We can
define  its  associated  inter-mode  energy  flux
as:\begin{equation}\Pi  (\kappa,t)  =  \int_\kappa^\infty
dk\,T(k,t) = -\int_0^\kappa dk \, T(k,t).\end{equation}

We have now laid a basis for a summary of the Kolmogorov-
Obhukov theory and one point should have emerged clearly: the
energy cascade is well defined in wavenumber space. It is not
defined at all in the context of energy conservation in real
space. It can only exist as an intuitive phenomenon which is
extended in space and time.
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