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When I began my post-graduate research in 1966, I found that I
immediately  had  to  get  used  to  a  new  terminology.  For
instance,  concepts  like  homogeneity  and  isotropy  were  a
definite novelty. In physics one takes these for granted and
they are never mentioned. Indeed the opposite is the case, and
the occasional instance of inhomogeneity is encountered: I
recall that one experiment relied on an inhomogeneity in the
magnetic field. Also, in relativity one learns that a light
source can only be isotropic in its co-moving frame. In any
other frame, in motion relative to it, the source must appear
anisotropic,  as  shown  by  Lorentz  transformation.  For  the
purposes of turbulence theory (and the theory of soft matter),
exactly  the  same  consideration  must  apply  to  Galilean
transformation.  Although,  to  be  realistic,  Galilean
transformations are actually of little value in these fields,
as they are normally satisfied trivially [1].

Then there was the transition from statistical physics to,
more  generally,  the  subject  of  statistics.  The  Maxwell-
Boltzmann distribution was replaced by the normal or Gaussian
distribution; and, in the case of turbulence, there was the
additional complication of a non-Gaussian distribution, with
flatness and skewness factors looming large. (I should mention
as an aside that the above does not apply to quantum field
theory which is pretty much entirely based on the Gaussian
distribution.)

Perhaps the most surprising change was from the concept of
equilibrium to one of stationarity. In physics, equilibrium
means  thermal  equilibrium.  Of  course,  other  examples  of
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equilibrium are sometimes referred to as special cases. For
instance, a body may be in equilibrium under forces. But such
references are always in context; and the term equilibrium,
when used without qualification of this kind, always means
thermal  equilibrium.  So  any  real  fluid  flow  is  a  non-
equilibrium process, and turbulence is usually classed as far
from equilibrium. Indeed, physicists normally seem to regard
turbulence as being the archetypal non-equilibrium process.

Unsurprisingly,  the  term  has  only  rarely  been  used  in
turbulence.  I  can  think  of  references  to  the  approximate
balance between production and dissipation near the wall in
pipe flow being referred to as equilibrium; but, apart from
that, all that comes to mind is Batchelor’s use of the term in
connection with the Kolmogorov (1941) theory [2]. This was
never widely used by theorists but recently there has been
some usage of the term, so I think that it is worth taking a
look at what it is; and, more importantly, what it is not.

Batchelor was carrying on the idea of Taylor, that describing
homogeneous turbulence in the Fourier representation allowed
the topic to be regarded as a part of statistical physics. He
argued that the concept of local stationarity that Kolmogorov
had introduced could be regarded as local equilibrium, in
analogy  with  thermal  equilibrium.  The  key  word  here  is
‘local’. If we consider a flow that is globally stationary (as
nowadays we can, because we have computer simulations), then
clearly it would be nonsensical to describe such a flow as
being in equilibrium.

However, recently Batchelor’s concept of local equilibrium has
been mis-interpreted as being the same as the condition for
the existence of an inertial range of wavenumbers, where the
flux through wavenumber becomes equal to the dissipation rate.
It is important to understand that this concept is not a part
of Kolmogorov’s $x$-space theory but is part of the Obukhov-
Onsager $k$-space theory. In contrast, the concept of local
stationarity can be applied to either picture; but in my view



is best avoided altogether.

I will say no more about this topic here, as I intend to
develop it over the next few weeks. In particular, I think it
would be helpful to make a pointwise summary of Kolmogorov-
Obukhov theory, emphasising the differences between $x$-space
and $k$-space forms, clarifying the historical position and
indicating some significant and more recent developments.

[1]  W.  D.  McComb.  Galilean  invariance  and  vertex
renormalization.  Phys.  Rev.  E,  71:37301,  2005.
[2] G. K. Batchelor. The theory of homogeneous turbulence.
Cambridge University Press, Cambridge, 2nd edition, 1971.

Turbulence in a box.
Turbulence in a box.
When the turbulence theories of Kraichnan, Edwards, Herring,
and so on, began attracting attention in the 1960s, they also
attracted attention to the underlying ideas of homogeneity,
isotropy, and Fourier analysis of the equations of motion.
These  must  have  seemed  very  exotic  notions  to  the  fluid
dynamicists and engineers who worked on single-point models of
the  closure  problem  posed  by  the  Reynolds  equation.
Particularly, when the theoretical physicists putting forward
these new theories had a tendency to write in the language of
the relatively new topic of quantum field theory or possibly
the even newer statistical field theory. In fact, the only
aspect of this new approach that some people working in the
field were apparently able to grasp was the fact that the
turbulence was in a box, rather than in a pipe or wake or
shear layer.

I became aware of this situation when submitting papers in the
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early 1970s, when I encountered referees who would begin their
report  with:  ‘the  author  invokes  the  turbulence  in  a  box
concept’. This seemed to me to have ominous overtones. I mean,
why comment on it? No one working in the field did: it was
taken  as  quite  natural  by  the  theorists.  However,  in  due
course it invariably turned out that the referee didn’t think
that my paper should be published. Reason? Apparently just the
unfamiliarity of the approach. Later on, with the subject of
turbulence theory having reached an impasse, they clearly felt
quite confident in turning it down. I have written before on
my experiences of this kind of refereeing (see, for example,
my post of 20 Feb 2020).

Another example of turbulence in a box is the direct numerical
simulation of isotropic turbulence, where the Navier-Stokes
equations are discretised in a cubical box in terms of a
discrete Fourier transform of the velocity field. Since Orszag
and Patterson’s pioneering development of the pseudo-spectral
method [1] in 1972, the simulation of isotropic turbulence has
grown in parallel with the growth of computers; and, in the
last few decades, it has become quite an everyday activity in
turbulence research. So, now we might expect box turbulence to
take its place alongside pipe turbulence, jet turbulence and
so on, in the jargon of the subject?

In fact this doesn’t seem to have happened. However, less than
twenty  years  ago,  a  paper  appeared  which  referred  to
simulation in a periodic box [2], and since then I have seen
references  to  this  in  microscopic  physics,  where  the
simulations are of molecular systems. I’m not sure why the
nature of the box is worth mentioning. It is, after all, a
commonplace fact of Fourier analysis, that representation of a
non-periodic  function  in  a  finite  interval  requires  an
assumption of periodic behaviour outside the interval. Much
stranger than this is that I am now seeing references to
periodic  turbulence  as,  apparently,  denoting  isotropic
turbulence that has been simulated in a periodic box. This



does not seem helpful! To most people in the field, periodic
turbulence means turbulence that is modulated periodically in
time or space. That is, the sort of turbulence that might be
found in rotating machinery or perhaps a coherent structure
[3]. We have to hope that this usage does not catch on.

[1] S. A. Orszag and G. S. Patterson. Numerical simulation of
three-dimensional  homogeneous  isotropic  turbulence.
Phys.Rev.Lett,  28:76,  1972.
[2] Y. Kaneda, T. Ishihara, M. Yokokawa, K. Itakura, and A.
Uno. Energy dissipation and energy spectrum in high resolution
direct numerical simulations of turbulence in a periodic box.
Phys. Fluids, 15:L21, 2003.
[3] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
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Large-scale resolution and finite-size effects.
This post arises out of the one on local isotropy posted on 21
October 2021; and in particular relates to the comment posted
by Alex Liberzon on the need to choose the size of volume $G$
within which Kolmogorov’s assumptions of localness may hold.
In fact, as is so often the case, this resolves itself into a
practical  matter  and  raises  the  question  of  large-scale
resolution in both experiment and numerical simulation.

In recent years there has been growing awareness of the need
to  fully  resolve  all  scales  in  simulations  of  isotropic
turbulence,  with  the  emphasis  initially  being  on  the
resolution of the small scales. In my post of 28 October 2021,
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I  presented  results  from  reference  [1]  showing  that
compensating for viscous effects and the effects of forcing on
the third-order structure function $S_3(r)$ could account for
the differences between the four-fifths law and the DNS data
at all scales. In this work, the small-scale resolution had
been judged adequate using the criteria established by McComb
et al [2].

However in [1], we noted that large-scale resolution had only
recently received attention in the literature. We ensured that
the  ratio  of  box  size  to  integral  length-scale  (i.e.
$L_{box}/L$)  was  always  greater  than  four.  This  choice
involved the usual trade-off between resolution requirements
and the magnitude of Reynolds number achieved, but the results
shown in our post of 28 October would indicate that this
criterion for large-scale resolution was perfectly adequate.
That  could  suggest  that  taking  $G\sim  (4L)^3$  might  be  a
satisfactory  criterion.  Nevertheless,  I  think  it  would  be
beneficial if someone were to carry out a more systematic
investigation of this, in the same way as reference [1] did
for the small-scale resolution.

Some attempts have been made at doing this in experimental
work on grid turbulence: see the discussion on pages 219-220
in reference [3], but it clearly is a subject that deserves
more attention. As a final point, we should note that this
topic can be seen as being related to finite-size effects
which are nowadays of general interest in microscopic systems,
because there the theory actually relies on the system size
being infinite. I suppose that we have a similar problem in
turbulence in that the derivation of the solenoidal Navier-
Stokes equation requires an infinitely large system, as does
the use of the Fourier transform.

[1] W. D. McComb, S. R. Yoffe, M. F. Linkmann, and A. Berera.
Spectral analysis of structure functions and their scaling
exponents  in  forced  isotropic  turbulence.  Phys.  Rev.  E,
90:053010, 2014.
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isotropic turbulence. Phys. Fluids, 13:2030, 2001.
[3]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.
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The second-order structure function corrected for systematic
error.

In  last  week’s  post,  we  discussed  the  corrections  to  the
third-order structure function $S_3(r)$ arising from forcing
and viscous effects, as established by McComb et al [1]. This
week we return to that reference in order to consider the
effect  of  systematic  error  on  the  second-order  structure
function, $S_2(r)$. We begin with some general definitions.

The longitudinal structure function of order $n$ is defined
by:\begin{equation}  S_n(r)  =  \left\langle  \delta  u^n_L(r)
\right\rangle,  \end{equation}  where  $\delta  u_L(r)$  is  the
longitudinal velocity difference over a distance $r$. From
purely dimensional arguments we may write: \begin{equation}
S_n(r) = C_n \varepsilon^{n/3}\,r^{n/3}, \end{equation} where
the $C_n$ are dimensionless constants.
However, as is well known, measured values imply $S_n(r)\sim
\, r^{\zeta_n}$ where the exponents $\zeta_n$ are not equal to
the dimensional result, with the one exception: $\zeta_3 = 1$.
In fact it is found that $\Delta_n = |n/3 – \zeta_n|$ is
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nonzero and increases with order $n$.

It is worth pausing to consider a question. Does this imply
that  the  measurements  give  $S_n(r)=C_n
\varepsilon^{\zeta_n}r^{\zeta_n}$?  No,  it  doesn’t.  Not  only
would this give the wrong dimensions but, more importantly,
the time dimension is controlled entirely by the dissipation
rate.  Accordingly,  we  must  have:  $S_n(r)=C_n
\varepsilon^{n/3}r^{\zeta_n}\mathcal{L}^{n/3-\zeta_n}$,  where
$\mathcal{L}$  is  some  length  scale.  Unfortunately  for
aficionados  of  intermittency  corrections  (aka  anomalous
exponents), the only candidate for this is the size of the
system  (e.g.  $\mathcal{L}  =  L_{box}$),  which  leads  to
unphysical  results.

Returning to our main theme, the obvious way of measuring the
exponent $\zeta_n$ is to make a log-log plot of $S_n$ against
$r$,  and  determine  the  local  slope:  \begin{equation}
\zeta_n(r) = d\,\log \,S_n(r)/d\, \log \,r.\end{equation} Then
the presence of a plateau would indicate a constant exponent
and hence a scaling region. In practice, however, this method
has problems. Indeed workers in the field argue that a Taylor-
Reynolds  number  of  greater  than  $R_{\lambda}\sim  500$  is
needed for this to work, and of course this is a very high
Reynolds number.

A popular way of overcoming this difficulty is the method of
extended scale-similarity (or ESS), which relies on the fact
that $S_3$ scales with $\zeta_3 =1$ in the inertial range,
indicating  that  one  might  replace  $r$  by  $S_3$  as  the
independent  variable,  thus:  \begin{equation}S_n(r)  \sim
[S_3(r)]^{\zeta_n^{\ast}},\qquad  \mbox{where}  \qquad
\zeta_n^{\ast}  =  \zeta_n/\zeta_3.\end{equation}  In  order  to
overcome problems with odd-order structural functions, this
technique was extended by using the modulus of the velocity
difference,  to  introduce  generalized  structure  functions
$G_n(r)$,  such  that:  \begin{equation}G_n(r)=\langle  |\delta
u_L(r)|^n \rangle\sim r^{\zeta_n’}, \qquad \mbox{with scaling



exponents}  \quad  \zeta’_n.  \end{equation}  Then,  by  analogy
with  the  ordinary  structure  functions,  taking  $G_3$  with
$\zeta’  =1$  leads  to  \begin{equation}  G_n(r)  \sim
[G_3(r)]^{\Sigma_n},  \qquad\mbox{with}  \quad  \Sigma_n  =
\zeta’_n /\zeta’_3 . \end{equation} This technique results in
scaling behaviour extending well into the dissipation range
which allows exponents to be more easily extracted from the
data. Of course, this is in itself an artefact, and this fact
should be borne in mind.

There is an alternative to ESS and that is the pseudospectral
method,  in  which  the  $S_n$  are  obtained  from  their
corresponding spectra by Fourier transformation. This has been
used by some workers in the field, and in [1] McComb et al
followed their example (see [1] for details) and presented a
comparison between this method and ESS. They also applied a
standard method for reducing systematic errors to evaluate the
exponent of the second-order structure function. This involved
considering the ratio $|S_n(r)/S_3(r)|$. In this procedure, an
exponent  $\Gamma_n$  was  defined  by  \begin{equation}\left  |
\frac{S_n(r)}{S_3(r)}\right  |\sim  r^{\Gamma_n},  \qquad
\mbox{where} \quad \Gamma_n= \zeta_n – \zeta_3. \end{equation}

Results were obtained only for the case $n=2$ and figures 9
and 10 from [1] are of interest, and are reproduced here. The
first  of  these  is  the  plot  of  the  compensated  ratio
$(r/\eta)^{1/3}U|S_2(r)/S_3(r)|$  against  $r/\eta$,  where
$\eta$ is the dissipation length scale and $U$ is the rms
velocity. This illustrates the way in which the exponents were
obtained.

 



Figure 9 from reference [1].

In the second figure, we show the variation of the exponent
$\Gamma_2  +  1$  with  Reynolds  number,  compared  with  the
variation of the ESS exponent $\Sigma_2$. It can be seen that
the first of these tends towards the K41 value of $2/3$, while
the ESS value moves away from the K41 result as the Reynolds
number increases.

 



Figure 10 from reference [1]

Both  methods  rely  on  the  assumption  $\zeta_3  =1$,  hence
$\Gamma_2+1 = \zeta_2$, which is why we plot that quantity. We
may note that figures 1 and 2 point clearly to the existence
of finite Reynolds number corrections as the cause of the
deviation from K41 values. Further details and discussion can
be found in reference [1].

[1] W. D. McComb, S. R. Yoffe, M. F. Linkmann, and A. Berera.
Spectral analysis of structure functions and their scaling
exponents  in  forced  isotropic  turbulence.  Phys.  Rev.  E,
90:053010, 2014.


