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In  last  week’s  post,  we  discussed  the  corrections  to  the
third-order structure function $S_3(r)$ arising from forcing
and viscous effects, as established by McComb et al [1]. This
week we return to that reference in order to consider the
effect  of  systematic  error  on  the  second-order  structure
function, $S_2(r)$. We begin with some general definitions.

The longitudinal structure function of order $n$ is defined
by:\begin{equation}  S_n(r)  =  \left\langle  \delta  u^n_L(r)
\right\rangle,  \end{equation}  where  $\delta  u_L(r)$  is  the
longitudinal velocity difference over a distance $r$. From
purely dimensional arguments we may write: \begin{equation}
S_n(r) = C_n \varepsilon^{n/3}\,r^{n/3}, \end{equation} where
the $C_n$ are dimensionless constants.
However, as is well known, measured values imply $S_n(r)\sim
\, r^{\zeta_n}$ where the exponents $\zeta_n$ are not equal to
the dimensional result, with the one exception: $\zeta_3 = 1$.
In fact it is found that $\Delta_n = |n/3 – \zeta_n|$ is
nonzero and increases with order $n$.

It is worth pausing to consider a question. Does this imply
that  the  measurements  give  $S_n(r)=C_n
\varepsilon^{\zeta_n}r^{\zeta_n}$?  No,  it  doesn’t.  Not  only
would this give the wrong dimensions but, more importantly,
the time dimension is controlled entirely by the dissipation
rate.  Accordingly,  we  must  have:  $S_n(r)=C_n
\varepsilon^{n/3}r^{\zeta_n}\mathcal{L}^{n/3-\zeta_n}$,  where
$\mathcal{L}$  is  some  length  scale.  Unfortunately  for
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aficionados  of  intermittency  corrections  (aka  anomalous
exponents), the only candidate for this is the size of the
system  (e.g.  $\mathcal{L}  =  L_{box}$),  which  leads  to
unphysical  results.

Returning to our main theme, the obvious way of measuring the
exponent $\zeta_n$ is to make a log-log plot of $S_n$ against
$r$,  and  determine  the  local  slope:  \begin{equation}
\zeta_n(r) = d\,\log \,S_n(r)/d\, \log \,r.\end{equation} Then
the presence of a plateau would indicate a constant exponent
and hence a scaling region. In practice, however, this method
has problems. Indeed workers in the field argue that a Taylor-
Reynolds  number  of  greater  than  $R_{\lambda}\sim  500$  is
needed for this to work, and of course this is a very high
Reynolds number.

A popular way of overcoming this difficulty is the method of
extended scale-similarity (or ESS), which relies on the fact
that $S_3$ scales with $\zeta_3 =1$ in the inertial range,
indicating  that  one  might  replace  $r$  by  $S_3$  as  the
independent  variable,  thus:  \begin{equation}S_n(r)  \sim
[S_3(r)]^{\zeta_n^{\ast}},\qquad  \mbox{where}  \qquad
\zeta_n^{\ast}  =  \zeta_n/\zeta_3.\end{equation}  In  order  to
overcome problems with odd-order structural functions, this
technique was extended by using the modulus of the velocity
difference,  to  introduce  generalized  structure  functions
$G_n(r)$,  such  that:  \begin{equation}G_n(r)=\langle  |\delta
u_L(r)|^n \rangle\sim r^{\zeta_n’}, \qquad \mbox{with scaling
exponents}  \quad  \zeta’_n.  \end{equation}  Then,  by  analogy
with  the  ordinary  structure  functions,  taking  $G_3$  with
$\zeta’  =1$  leads  to  \begin{equation}  G_n(r)  \sim
[G_3(r)]^{\Sigma_n},  \qquad\mbox{with}  \quad  \Sigma_n  =
\zeta’_n /\zeta’_3 . \end{equation} This technique results in
scaling behaviour extending well into the dissipation range
which allows exponents to be more easily extracted from the
data. Of course, this is in itself an artefact, and this fact
should be borne in mind.



There is an alternative to ESS and that is the pseudospectral
method,  in  which  the  $S_n$  are  obtained  from  their
corresponding spectra by Fourier transformation. This has been
used by some workers in the field, and in [1] McComb et al
followed their example (see [1] for details) and presented a
comparison between this method and ESS. They also applied a
standard method for reducing systematic errors to evaluate the
exponent of the second-order structure function. This involved
considering the ratio $|S_n(r)/S_3(r)|$. In this procedure, an
exponent  $\Gamma_n$  was  defined  by  \begin{equation}\left  |
\frac{S_n(r)}{S_3(r)}\right  |\sim  r^{\Gamma_n},  \qquad
\mbox{where} \quad \Gamma_n= \zeta_n – \zeta_3. \end{equation}

Results were obtained only for the case $n=2$ and figures 9
and 10 from [1] are of interest, and are reproduced here. The
first  of  these  is  the  plot  of  the  compensated  ratio
$(r/\eta)^{1/3}U|S_2(r)/S_3(r)|$  against  $r/\eta$,  where
$\eta$ is the dissipation length scale and $U$ is the rms
velocity. This illustrates the way in which the exponents were
obtained.

 



Figure 9 from reference [1].

In the second figure, we show the variation of the exponent
$\Gamma_2  +  1$  with  Reynolds  number,  compared  with  the
variation of the ESS exponent $\Sigma_2$. It can be seen that
the first of these tends towards the K41 value of $2/3$, while
the ESS value moves away from the K41 result as the Reynolds
number increases.

 



Figure 10 from reference [1]

Both  methods  rely  on  the  assumption  $\zeta_3  =1$,  hence
$\Gamma_2+1 = \zeta_2$, which is why we plot that quantity. We
may note that figures 1 and 2 point clearly to the existence
of finite Reynolds number corrections as the cause of the
deviation from K41 values. Further details and discussion can
be found in reference [1].
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