
Viscous  and  forcing
corrections  to  Kolmogorov’s
‘4/5’ law.
Viscous and forcing corrections to Kolmogorov’s ‘4/5’ law.

The  Kolmogorov  `4/5′  law  for  the  third-order  structure
function $S_3(r)$ is widely regarded as the one exact result
in  turbulence  theory.  And  so  it  should  be:  it  has  a
straightforward  derivation  from  the  Karman-Howarth  equation
(KHE),  which  is  an  exact  energy  balance  derived  from  the
Navier-Stokes  equation.  Nevertheless,  there  is  often  some
confusion  around  its  discussion  in  the  literature.  In
particular, for stationary isotropic turbulence, there can be
confusion about the effects of viscosity (small scales) and
forcing (large scales). These aspects have been clarified by
McComb et al [1], who used spectral methods to obtain $S_2$
and $S_3$ from a direct numerical simulation of the equations
of motion.

If we follow the standard treatment (see [2], Section 4.6.2),
we may write: \begin{equation} S_3(r)= -\frac{4}{5}\varepsilon
r + 6\nu\frac{\partial S_2}{\partial r}.\end{equation}
In the past, this statement has been criticised because it
omits the forcing which must be present in order to sustain a
stationary turbulent field. However, it should be borne in
mind that this is an entirely local equation; and, if the
effect of the forcing is concentrated at the largest scales,
then omission of these scales also omits the forcing. We can
shed some light on this by reproducing Figure 7 from [1],
thus:
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Variation of the third-order structure function showing
the effect of viscous corrections.

 

The  results  were  taken  at  a  Taylor-Reynolds  number
$R_{\lambda} = 435.2$, and show how the departure from the
`4/5′ law at the small scales is due to the viscous effects.
Clearly there is a range of values of $r$ where the `4/5′ law
may be regarded as exact, in the ordinary sense appropriate to
experimental work. This range of scales is, of course, the
inertial range. Note that $\eta$ is the Kolmororov length
scale.

Presumably  the  departure  from  the  `4/5′  law  at  the  large
scales is due to forcing effects, and McComb et al [1] also
shed light on this point. They did this by working in spectral
space, where stirring forces have been studied since the late
1950s  in  the  context  of  the  statistical  theories  (e.g
Kraichnan, Edwards, Novikov, Herring: see [3] for details) and
are correspondingly well understood. They began with the Lin



equation: \begin{equation} \frac{\partial E(k,t)}{\partial t}
= T(k,t) – 2\nu k^2E(k,t) + W(k), \end{equation} where in
principle the energy and transfer spectra depend on time,
whereas the spectrum of the stirring forces $W(k)$ is taken as
independent of time in order to ensure ultimate stationarity.
Thus we will drop the time dependences hereafter as we will
only consider the stationary case.

We can derive the KHE from this and the result is the usual
KHE  plus  an  input  term  $I(r)$,  defined  by:
\begin{equation}I(r)  =  \frac{3}{r^3}\int_0^r\,  dy  \,y^2\,
W(y),\end{equation}  where  $W(y)$  is  the  three-dimensional
Fourier transform of the work spectrum $W(k)$. By integrating
the KHE (as Kolmogorov did in deriving the `4/5′ law) we
obtain  the  form  for  the  third-order  structure  function
$S_3(r)$ as: \begin{equation} S_3(r)=X(r) + 6\nu\frac{\partial
S_2}{\partial r},\end{equation}where where $X(r)$ is given in
terms of the forcing spectrum by: \begin{equation} X(r) =
-12r\int_0^{\infty}\,dk W(k)\,\left[\frac{3\sin kr – 3kr \cos
kr-(kr)^2 \sin kr}{(kr)^5}\right].\end{equation}
The result of including the effect of forcing is shown in
Figure 8 of [1], which is reproduced here below.

 



Variation  of  the  third-order  structure  function  with
scale  showing  both  viscous  effects  and  those  due  to
forcing.

 

These results are taken from the same simulation as above, and
now the contributions from viscous and forcing effects can be
seen to account for the departure of $S_3$ from the `4/5′ law
at all scales.

In [1] it is pointed out that $X(r)$ is not a correction to
K41, as used in other previous studies. Instead, it replaces
the erroneous use of the dissipation rate of others’, and
contains  all  the  information  of  the  energy  input  at  all
scales.  In  the  limit  of  $\delta(k)$  forcing,  $I(y)=
\varepsilon_W  =  \varepsilon$,  such  that  $X(r)  =
-4\varepsilon\,  r/5$,  giving  K41  in  the  infinite  Reynolds
number limit. Note that $\varepsilon_W$ is the rate of doing
work by the stirring forces. Further details may be found in
[1].
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