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The current interest in Onsager’s conjecture (see my blog of
23 September 2021) has sparked my interest in the nature of
turbulent dissipation. Essentially a fluid only moves because
a force acts on it and does work to maintain it in motion. The
effect  of  viscosity  is  to  convert  this  kinetic  energy  of
macroscopic  motion  into  random  molecular  motion,  which  is
perceived  as  heat.  If  there  is  turbulence,  this  acts  to
transfer  the  macroscopic  kinetic  energy  to  progressively
smaller  scales,  where  the  steeper  velocity  gradients  can
dissipate it as heat.

This  all  seems  quite  straightforward  and  well  understood.
However, Onsager’s conjecture, as a matter of physics, is less
easily understood. It interprets the infinite Reynolds number
limit as being when the continuum nature of the fluid breaks
down. It also implies that, when the Reynolds number becomes
very large, the Navier-Stokes equation somehow becomes the
Euler  equation;  which,  despite  its  inviscid  nature,
satisfactorily accounts for the dissipation. It can do this
(supposedly) because it has lost its property of conserving
energy.  In  turn,  this  is  supposed  to  happen  because  the
velocity is no longer a continuous and differentiable field.
Of course there does not seem to be any mechanism for turning
the dissipated energy into heat, so the thermodynamic aspects
of this process look distinctly dodgy.

There are two other cases where macroscopic kinetic energy is
not turned into heat.

The first of these is in large-eddy simulation, which has for
many years been widely studied for its practical significance.
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This of course is not a physical situation. It is purely a
method of simulating turbulence numerically without being able
to resolve all the scales: an introduction can be found in
[1]. The central problem is to model the flow of energy to the
scales  which  are  too  small  to  be  resolved:  the  so-called
subgrid  drain.  Various  models  have  been  studied  for  the
subgrid viscosity, while a novel approach is the operational
method of Young and McComb [2]. In this latter, an algorithm
is used to feed back energy into the resolved modes, such that
the spectral shape is kept constant. In fact this method can
be interpreted in terms of an effective subgrid viscosity
which  is  very  similar  to  that  found  in  conventional
simulations when a large-eddy simulation is compared to a
fully  resolved  one.  But,  so  far  as  I  know,  no  one  has
considered modelling the temperature rise that would be due to
the viscous dissipation in these cases.

The  second  case  is  the  direct  simulation  of  the  Euler
equation.  Such  simulations  can  only  lead  to  thermal
equilibrium but naturally the simulations must be truncated to
a finite number of modes, to avoid having an infinite amount
of  energy.  However,  in  2005,  some  interesting  transient
behaviour was been found in truncated Euler simulations [3]
and confirmed the following year by the use of a closure
approximation [4]. These simulations may be divided in terms
of their energy spectra into two spectral ranges: a Kolmogorov
range and an equipartition range. A buffer range in between
these two is described by Bos and Bertoglio as a ‘quasi-
dissipative’ zone, which is another example of non-viscous
dissipation. However, it can only exist for a finite time and
ultimately the system must move to thermal equilibrium.

I think it would be interesting to see one of the proponents
of Onsager’s conjecture explain the simple physics of how the
conjectured  situation  came  about  with  increasing  Reynolds
number. All the mathematical expressions you need to do that
are available. But I don’t think I will see that any time



soon!
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