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This post was prompted by something that came up in a previous
one (i.e. see my blog on 12 August 2021), where I commented on
the fact that an anonymous referee did not know what to make
of  an  asymptotic  curve.  The  obvious  conclusion  from  this
curve, for a physicist, was that the system had evolved! There
was  no  point  in  worrying  about  the  precise  value  of  the
Reynolds number. That is a matter of agreeing a criterion if
one needs to fix a specific value. But evidently the ratio
shown  was  constant  within  the  resolution  limits  of  the
measurements  of  the  system;  and  this  is  the  key  point.
Everything in physics comes down to experimental error: the
only  meaningful  comparison  possible  (i.e.  theory  with
experiment  or  one  experiment  with  another)  is  subject  to
experimental  error  which  is  inherent.  Strictly  one  should
always quote the error, because it is never zero.

In  everyday  life,  there  are  of  course  many  practical
expedients. For instance, radioactivity takes in principle an
infinite amount of time to decay completely, so in practice
radioisotopes are characterised by their half-life. So the
manufacturers of smoke alarms can tell you when to replace
your alarm, as they know the half-life of the radioactive
source used in it. In acoustics or diffusion processes or
electromagnetism, exponential decays are commonplace, and it
is  usual  to  introduce  a  relaxation  time  or  length,
corresponding  to  when/where  the  quantity  of  interest  has
fallen to $1/e$ of its initial value.

In fluid mechanics, the concept of a viscous boundary layer on
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a  solid  surface  is  of  great  utility  in  reconciling  the
practical consequences of a flow (such as friction drag) with
the elegance and solubility of theoretical hydromechanics. The
boundary  layer  builds  up  in  thickness  in  the  stream-wise
direction as vorticity created at the solid surface diffuses
outwards. But how do we define that thickness? A reasonable
criterion is to choose the point where the velocity in the
boundary  layer  is  approximately  equal  to  the  free-stream
velocity. From my dim memory of teaching this subject several
decades ago, a criterion of $u_1(x_2) = U_1$, where $U_1$ is
the constant free-stream velocity, was adequate for pedagogic
purposes.

An  interesting  partial  exception  arises  in  solid  state
physics, when dealing with crystal lattices. The establishment
of the lattice parameters is of course subject to the usual
caveats about experimental error, but for statistical physics
lattices are countable systems. So if one is carrying out
renormalization group calculations (e.g see [1]) then one is
coarse-graining the description by replacing the unit cell, of
side length $a$, by some larger (renormalized) unit cell. In
wavenumber  (momentum)  space,  this  means  we  start  from  a
maximum wavenumber $k_{max}=2\pi/a$ and average out a band of
wavenumber modes $k_1 \leq k \leq k_0$, where $k_0=k_{max}$.
You can see where the countable aspect comes in, and of course
the  initial  wavenumber  is  precisely  defined  (although  of
course its precise value is subject to the error made in
determining the lattice constant).

When  extending  these  ideas  to  turbulence,  the  problem  of
defining  the  maximum  wavenumber  is  not  solved  so  easily.
Originally  people  (myself  included)  used  the  Kolmogorov
dissipation  wavenumber,  but  this  is  not  necessarily  the
maximum excited wavenumber in turbulence. In 1985 I introduced
a criterion which was rather like a boundary-layer thickness,
adapting  the  definition  of  the  dissipation  rate,  thus:
\[\varepsilon = \int^{\infty}_0 \, 2\nu_0 k^2 E(k) dk \simeq



\int^{k_{max}}_0 \, 2\nu_0 k^2 E(k) dk,\] where $\nu_0$ is the
molecular viscosity and $E(k)$ is the energy spectrum [2].
When I first started using this, physicists found it odd,
because they were used to the more precise lattice case. I
should mention for completeness that it is also necessary to
use a non-trivial conditional average [3].

Recently there has been growing interest in these matters by
those  who  study  the  philosophy  of  maths  and  science.  For
instance, van Wierst [4] notes that in the theory of critical
phenomena,  phase  transitions  require  an  infinite  system,
whereas in real life they take place in finite (and sometimes
quite small!) systems. She argues that this paradox can be
resolved by the introduction of ‘constructive mathematics’,
but my view is that it can be adequately resolved by the
concept  of  scale-invariance.  Which  brings  us  back  to  the
infinite Reynolds number limit for turbulence. But, for the
moment, I have said enough on that topic in previous posts,
and will not expand on it here.
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